高二数学(理)第二学期周练试题(13套,有答案)
- 格式:doc
- 大小:1.94 MB
- 文档页数:43
河南省驻马店市正阳县2017-2018学年高二数学下学期周练(二)试题 理一.选择题(只有一个选项是正确的,每小题5分,共60分)1.已知命题p:112x ≤≤,命题q:()(1)0x a x a ---≤,若非p 是非q 的必要不充分条件,则实数a 的取值范围是__________:A.1[0,]2 B.1[,1]2 C.11[,]32 D.1(,1]3 2.若/2()()xf x f x x e =+,则f(1)=( )A.eB.0C.e+1D.e-13.若(6,1,4),(1,2,1),(4,2,3)A B C --,则ABC ∆的形状是( )A.不等边锐角三角形B.直角三角形C.钝角三角形D.等边三角形 4.已知椭圆221169x y +=,则以点3(2,)2为中点的弦所在的直线方程为( ) A.8x-6y-7=0 B.3x+4y=0 C.3x+4y-12=0 D.6x+8y-25=05.在ABC ∆中,S 为ABC ∆的面积,且2221()2S b c a =+-,则tanB+tanC-2tanBtanC=( ) A.1 B.-1 C.2 D.-26.已知数列{}n a 为等比数列,n S 为其前n 项和,且201720162018,n n S t =⨯-则t=( ) A.20152016 B. 20162017 C. 20172018 D. 201820197.在正三棱柱111ABC A B C -中,已知AB=1,12AA =,D 为1BB 的中点,则AD 与平面11AAC C 所成角的余弦值为( )A.12 B.32 C.64104 8.不等式11ax x b+>+的解集为(,1)(3,)-∞-+∞,则不等式220x bx a +-<的解集为( ) A.(-2,5) B.(-0.5,0.2) C.(-2,1) D.(-0.5,1) 9.若0<x<1,则121x x x +-的最小值为( ) A.222 C.2+22210.已知抛物线C :22(0)y px p =>,过其焦点F 的直线l 交抛物线C 于点A 、B ,3AF BF =,则AB =( )A.p B.43p C.2p D. 83p 11.从一楼到二楼共有十级台阶,小明从一楼上到二楼,每次可以一部跨一级台阶,也可以跨两级台阶,则小明从一楼上到二楼的方法共有( )种A.87B.88C.89D.9012.已知点P 为椭圆2211612x y +=上的动点,EF 为圆N :22(1)1x y +-=的任一条直径,则 .PE PF 的最大值和最小值是( ) A.16,123-17,133-19,123-20,1343-二.填空题(每小题5分,共20分)13.过32()325f x x x x =-++图象上一个动点作此函数图象的切线,则所作切线倾斜角的取值范围是( ) 14.已知实数x,y 满足不等式组236022010x y x y y -+≥⎧⎪+-≤⎨⎪+≥⎩,则z x y =+的取值范围是( )15.若点P 2222(5)(5)6x y x y -+++=所表示的曲线上的点,同时P 又是直线y=4上的点,则点P 的横坐标为( )16.已知:(1)123...2n n n +++++=;(1)(2)1223...(1)3n n n n n ++⨯+⨯+++=; (1)(2)(3)123234...(1)(2)4n n n n n n n +++⨯⨯+⨯⨯++++=, 利用上述结果,计算:3333123..._______n ++++=三.解答题:17.(本题满分10分)已知P:方程22192x y m m+=-表示焦点在x 轴上的椭圆,命题q:双曲线 2215x y m-=的离心率62)e ∈ (1)若椭圆22192x y m m +=-的焦点与双曲线2215x y m-=的顶点重合,求实数m 的值 (2)若“p 且q ”是真命题,求实数m 的取值范围18. (本题满分12分) 在ABC ∆中,内角A 、B 、C 的对边分别是a,b,c,且A 、B 、C 成等差数列(1)若2b c ==,求ABC ∆的面积(2)若sinA 、sinB 、sinC 成等比数列,试判断ABC ∆的形状19. (本题满分12分)本学期,学校食堂为了更好地服务广大师生员工,对师生员工的主食购买情况做了一个调查(主食只供应米饭和面条,且就餐人数保持稳定),经调查统计发现凡是购买米饭的人下一次会有20℅的人改买面条,而购买面条的人下一次会有30℅的人改买米饭。
一、个选项中,只有一项是符合题目要求的。
1、已知曲线C的极坐标方程 ,给定两点P(0,π/2),Q(-2,π),则P、Q是否在曲线C上()A.P在曲线C上,Q不在曲线C上B. P、Q都不在曲线C上C. P不在曲线C上,Q在曲线C上D. P、Q都在曲线C上2、在极坐标系中,点关于极点对称的点的一个坐标是()A. B. C. D.3、在极坐标系下,已知点则为()A、正三角形B、直角三角形C、锐角等腰三角形D、直角等腰三角形4、化极坐标方程为直角坐标方程为()A.或B. C.或 D.5、圆的圆心极坐标是()A. B. C. D.6、在极坐标系中,曲线关于()对称A.直线轴对称 B.直线轴对称C.点(2,)中心对称 D.极点中心对称7、在极坐标系中,圆心坐标是(),半径为的圆的极坐标方程是()A.()B.()C.() D.()8、在符合互化条件的直角坐标和极坐标中,直线与曲线相交,则的取值范围是()A. B. C. D. 但9、将的横坐标缩短为原来的,纵坐标伸长为原来的2倍,则曲线的方程为()A. B. C. D.10、已知定义在实数集R上的函数f(x)满足f(1)=1,f(x)的导数f′(x)<2(x∈R),则不等式f(x)<2x﹣1的解集为()A.(﹣∞,1) B.(1,+∞) C.(1,2) D.(﹣∞,﹣1)∪(1,+∞)第II卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
把答案填在题中横线上。
11、已知,复数是纯虚数,则 ________.12、. .13、点M的直角坐标为(-1,-1,),则它的球坐标为,在柱坐标系中,两点的距离为14、在极坐标系中,圆上的点到直线的距离的最小值是 .班级:____________ 学号:__________ 姓名:______________11. __________ 12. ______、_______ 13. _____、_____ 14. ___________三、解答题:本大题共3小题,共30分。
2021年高二下学期数学周练试题(理科3.13)含答案一.选择题(每小题给出的四个选项中,只有一项是符合题目要求的)1.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为 ( )A.15B.25C.35D.452.位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.783.已知函数,为抛掷一颗骰子所得的点数,则函数在上零点的个数小于5或大于6的概率为()A. B. C. D.4.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x(cm)160165170175180体重y(kg)6366707274) A.70.09kg B.70.12kg C.70.55kg D.71.05kg5.设,,这两个正态分布密度曲线如图所示.下列结论中正确的是()A.B.C.对任意正数,D.对任意正数,6.如图,设抛物线的焦点为,不经过焦点的直线上有三个不同的点,,,其中点,在抛物线上,点在轴上,则与的面积之比是( ) A. B. C. D.7. 一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 8.在某大学校园内通过随机询问100 名性别不同的大学生是否爱打篮球,得到如下的列表:由算得参照右上附表,得到的正确结论( ) A.在犯错误的概率不超过5%的前提下,认为“是否爱打篮球与性别有关” B.在犯错误的概率不超过5%的前提下,认为“是否爱打篮球与性别无关” C.有97.5%以上的把握认为“是否爱打篮球与性别有关” D.有97.5%以上的把握认为“是否爱打篮球与性别无关”9.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布 ,则 , 。
高二第二学期月考数学试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A.3B.4C.5D.62.已知i 是虚数单位,则复数z = 2−i4+3i 在复平面内对应的点所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.曲线y = x 2+3x 在点A (2,10)处的切线的斜率k 是( ) A.7 B.6 C.5 D.44.(√x −1x )9展开式中的常数项是( ) A.-36 B.36 C.-84 D.845.已知命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0,那么命题p 的否定是( ) A.∃a 0∈(0,+∞),a 02 - 2a 0 -3≤0 B.∃a 0∈(-∞,0),a 02 - 2a 0 -3≤0 C.∀a ∈(0,+∞),a 2 - 2a -3≤0 D.∀a ∈(-∞,0),a 2 - 2a -3≤06.已知F 1,F 2是双曲线12222=-bx a y(a >0,b >0)的下、上焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为( ) A.√2 B.2 C.√3 D.37.某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为∧y=8.5x +7.5,则表中的m 的值为( )A.50B.55C.60D.658.若f (x )=x 2 - 2x - 4lnx ,则)('x f <0的解集( )A.(0,+∞)B.(0,2)C.(0,2)∪(-∞,-1)D.(2,+∞)9.设△ABC 的三内角A 、B 、C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形10.设等差数列{a n }的前n 项和为S n ,若a 1 = - 11,a 4 + a 6= - 6,则当S n 取最小值时,n 等于( ) A.6 B.7 C.8 D.911.由曲线y =√x ,直线y = x - 2及y 轴所围成的图形的面积为( ) A.103 B.4 C.163 D.612.定义在R 上的函数f (x )满足:f (x )+)('x f >1,f (0)= 4,则不等式e xf (x )>e x +3(其中e 为自然对数的底数)的解集为( ) A.(0,+∞) B.(-∞,0)∪(3,+∞) C.(-∞,0)∪(0,+∞) D.(3,+∞)二、填空题(本大题共4小题,共20.0分)13.设随机变量X ~N (μ,σ2),且P (X <1)=12, P (X >2)=p ,则P (0<X <1)= ______ . 14.已知函数f (x )=13x 3+ax 2+x +1有两个极值点,则实数a 的取值范围是 ______ . 15.已知函数xx f x f sin cos )4()('+=π,则f (π4)= ______ .16.观察下列一组等式:①sin 230°+cos 260°+sin 30°cos 60° = 34,②sin 215°+cos 245°+sin 15°cos 45° = 34,③sin 245°+cos 275°+sin 45°cos 75° = 34,…,那么,类比推广上述结果,可以得到的一般结果是: ______ .三、解答题(本大题共6小题,共72.0分)17.已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,√3sin C cos C - cos 2C = 12,且c =3 (1)求角C(2)若向量m⃗⃗ =(1,sin A )与n⃗ =(2,sin B )共线,求a 、b 的值.18.已知正数数列 {a n } 的前n 项和为S n ,且对任意的正整数n 满足2√S n =a n +1. (Ⅰ)求数列 {a n } 的通项公式; (Ⅱ)设11+⋅=n n n a a b ,求数列{b n } 的前n 项和B n .19.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望E (X ).20.如图,在直三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D(Ⅰ)求证:BD ⊥A 1C(Ⅱ)求二面角B-A 1D-C 的大小.21.已知椭圆C :x 2a 2+y 2b 2=1的左焦点F 1的坐标为(-√3,0),F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3. (1)求椭圆C 的方程;(2)过定点P (0,2)作直线l 与椭圆C 交于不同的两点A ,B ,且OA ⊥OB (其中O 为坐标原点),求直线l 的方程.22.已知函f (x )= ax 2 - e x (a ∈R ).(Ⅰ)a =1时,试判断f (x )的单调性并给予证明; (Ⅱ)若f (x )有两个极值点x 1,x 2(x 1<x 2). (i ) 求实数a 的取值范围; (ii )证明:1)(21-<<-x f e(注:e 是自然对数的底数)【解析】1. 解:因为集合A={1,2,3},B={4,5},M={x |x =a +b ,a ∈A ,b ∈B},所以a +b 的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8, 所以M 中元素只有:5,6,7,8.共4个. 故选B .利用已知条件,直接求出a +b ,利用集合元素互异求出M 中元素的个数即可. 本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力. 2. 解:复数z =2−i4+3i =(2−i)(4−3i)(4+3i)(4−3i)=5−10i 25=15−25i 在复平面内对应的点(15,−25)所在的象限为第四象限. 故选:D .利用复数的运算法则及其几何意义即可得出.本题考查了复数的运算法则及其几何意义,属于基础题. 3. 解:由题意知,y =x 2+3x ,则y ′=2x +3, ∴在点A (2,10)处的切线的斜率k =4+3=7, 故选:A .根据求导公式求出y ′,由导数的几何意义求出在点A (2,10)处的切线的斜率k .本题考查求导公式和法则,以及导数的几何意义,属于基础题.4. 解:(√x −1x )9展开式的通项公式为T r +1=C 9r•(-1)r •x9−3r2,令9−3r 2=0,求得r =3,可得(√x −1x )9展开式中的常数项是-C 93=-84,故选:C .先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题. 5. 解:根据特称命题的否定是全称命题,得; 命题p :∃a 0∈(0,+∞),a 02-2a 0-3>0, 那么命题p 的否定是:∀a ∈(0,+∞),a 2-2a -3≤0. 故选:C .根据特称命题的否定是全称命题,写出命题p 的否定命题¬p 即可. 本题考查了特称命题与全称命题的应用问题,是基础题目.6. 解:由题意,F 1(0,-c ),F 2(0,c ),一条渐近线方程为y =ab x ,则F 2到渐近线的距离为√a 2+b 2=b .设F 2关于渐近线的对称点为M ,F 2M 与渐近线交于A ,∴|MF 2|=2b ,A 为F 2M 的中点, 又0是F 1F 2的中点,∴OA ∥F 1M ,∴∠F 1MF 2为直角, ∴△MF 1F 2为直角三角形, ∴由勾股定理得4c 2=c 2+4b 2 ∴3c 2=4(c 2-a 2),∴c 2=4a 2, ∴c =2a ,∴e =2. 故选:B .首先求出F 2到渐近线的距离,利用F 2关于渐近线的对称点恰落在以F 1为圆心,|OF 1|为半径的圆上,可得直角三角形,即可求出双曲线的离心率.本题主要考查了双曲线的几何性质以及有关离心率和渐近线,考查勾股定理的运用,考查学生的计算能力,属于中档题. 7. 解:由题意,x .=2+4+5+6+85=5,y .=25+35+m+55+755=38+m5,∵y 关于x 的线性回归方程为y ^=8.5x +7.5, 根据线性回归方程必过样本的中心, ∴38+m5=8.5×5+7.5,∴m =60. 故选:C .计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到结论. 本题考查线性回归方程的运用,解题的关键是利用线性回归方程恒过样本中心点,这是线性回归方程中最常考的知识点.属于基础题.8. 解:函数f (x )=x 2-2x -4lnx 的定义域为{x |x >0}, 则f '(x )=2x -2-4x =2x 2−2x−4x,由f '(x )=2x 2−2x−4x <0,得x 2-x -2<0,解得-1<x <2,∵x >0,∴不等式的解为0<x <2, 故选:B .求函数的定义域,然后求函数导数,由导函数小于0求解不等式即可得到答案.本题主要考查导数的计算以及导数不等式的解法,注意要先求函数定义域,是基础题. 9. 解:∵△ABC 的三内角A 、B 、C 成等差数列, ∴∠B=60°,∠A+∠C=120°①; 又sin A 、sin B 、sin C 成等比数列, ∴sin 2B=sin A •sin C=34,②由①②得:sin A •sin (120°-A )=sin A •(sin 120°cos A-cos 120°sin A )=√34sin 2A+12•1−cos2A2=√34sin 2A-14cos 2A+14 =12sin (2A-30°)+14 =34,∴sin (2A-30°)=1,又0°<∠A <120° ∴∠A=60°. 故选D .先由△ABC 的三内角A 、B 、C 成等差数列,求得∠B=60°,∠A+∠C=120°①;再由sin A 、sin B 、sin C 成等比数列,得sin 2B=sin A •sin C ,②,①②结合即可判断这个三角形的形状.本题考查数列与三角函数的综合,关键在于求得∠B=60°,∠A+∠C=120°,再利用三角公式转化,着重考查分析与转化的能力,属于中档题.10. 解:设该数列的公差为d ,则a 4+a 6=2a 1+8d =2×(-11)+8d =-6,解得d =2, 所以S n =−11n +n(n−1)2×2=n 2−12n =(n −6)2−36,所以当n =6时,S n 取最小值.故选A .条件已提供了首项,故用“a 1,d ”法,再转化为关于n 的二次函数解得. 本题考查等差数列的通项公式以及前n 项和公式的应用,考查二次函数最值的求法及计算能力.11. 解:联立方程{y =x −2y=√x得到两曲线的交点(4,2),因此曲线y =√x ,直线y =x -2及y 轴所围成的图形的面积为:S=∫(40√x −x +2)dx =(23x 32−12x 2+2x)|04=163.故选C .利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y =√x ,直线y =x -2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题.12. 解:设g(x)=e x f(x)-e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)-e0=4-1=3,∴g(x)>g(0),∴x>0故选:A.构造函数g(x)=e x f(x)-e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.13. 解:随机变量X~N(μ,σ2),可知随机变量服从正态分布,X=μ,是图象的对称轴,可知P(X<1)=12,P(X>2)=p,P(X<0)=p,则P(0<X<1)=12−p.故答案为:12−p.直接利用正态分布的性质求解即可.本题考查正态分布的简单性质的应用,基本知识的考查.14. 解:函数f(x)=13x3+ax2+x+1的导数f′(x)=x2+2ax+1由于函数f(x)有两个极值点,则方程f′(x)=0有两个不相等的实数根,即有△=4a2-4>0,解得,a>1或a<-1.故答案为:(-∞,-1)∪(1,+∞)求出函数的导数,令导数为0,由题意可得,判别式大于0,解不等式即可得到.本题考查导数的运用:求极值,考查二次方程实根的分布,考查运算能力,属于基础题.15. 解:由f(x)=f′(π4)cosx+sinx,得f′(x)=-f′(π4)sinx+cosx,所以f′(π4)=-f′(π4)sinπ4+cosπ4,f′(π4)=-√22f′(π4)+√22.解得f′(π4)=√2-1.所以f(x)=(√2-1)cosx+sinx则f(π4)=(√2-1)cosπ4+sinπ4=√22(√2−1)+√22=1.故答案为:1.由已知得f′(π4)=-f′(π4)sinπ4+cosπ4,从而f(x)=(√2-1)cosx+sinx,由此能求出f(π4).本题考查函数值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.16. 解:观察下列一组等式:①sin230°+cos260°+sin30°cos60°=34,②sin215°+cos245°+sin15°cos45°=34,③sin245°+cos275°+sin45°cos75°=34,…,照此规律,可以得到的一般结果应该是sin2x+sinx)cos(30°+x)+cos2(30°+x),右边的式子:34,∴sin2x+sinxcos(30°+x)+cos2(30°+x)=34.证明:sin2x+sinx(√32cosx−12sinx)+(√32cosx−12sinx)2=sin2x+√32sinxcosx-12sin2x+34cos2x-√32sinxcosx+14sin2x=3 4sin2x+34cos2x=34.故答案为:sin2x+sinxcos(30°+x)+cos2(30°+x)=34.观察所给的等式,等号左边是sin230°+cos260°+sin30°cos60°,3sin215°+cos245°+sin15°cos45°…规律应该是sin2x+sinxcos(30°+x)+cos2(30°+x),右边的式子:34,写出结果.本题考查类比推理,考查对于所给的式子的理解,从所给式子出发,通过观察、类比、猜想出一般规律,不需要证明结论,该题着重考查了类比的能力.答案和解析【答案】1.B2.D3.A4.C5.C6.B7.C8.B9.D 10.A 11.C 12.A13.12−p14.(-∞,-1)∪(1,+∞)15.116.sin2(30°+x)+sin(30°+x)cos(30°-x)+cos2(30°-x)=3417.解:(1)∵√3sinCcosC−cos2C=12,∴√32sin2C−1+cos2C2=12∴sin(2C-30°)=1∵0°<C<180°∴C=60°(2)由(1)可得A+B=120°∵m ⃗⃗⃗ =(1,sinA)与n ⃗ =(2,sinB)共线, ∴sin B-2sin A=0∴sin (120°-A )=2sin A 整理可得,cosA =√3sinA 即tan A=√33∴A=30°,B=90° ∵c =3.∴a =√3,b =2√3 18.解:(Ⅰ)由2√S n =a n +1,n =1代入得a 1=1, 两边平方得4S n =(a n +1)2(1),(1)式中n 用n -1代入得4S n−1=(a n−1+1)2&(n ≥2)(2), (1)-(2),得4a n =(a n +1)2-(a n -1+1)2,0=(a n -1)2-(a n -1+1)2,(3分) [(a n -1)+(a n -1+1)]•[(a n -1)-(a n -1+1)]=0, 由正数数列{a n },得a n -a n -1=2,所以数列{a n }是以1为首项,2为公差的等差数列,有a n =2n -1.(7分) (Ⅱ)b n =1an ⋅a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),裂项相消得B n =n2n+1.(14分)19.(I )解:设“在X 次游戏中摸出i 个白球”为事件A i (i =,0,1,2,3),“在1次游戏中获奖”为事件B ,则B=A 2∪A 3, 又P (A 3)=C 32C 21C 52C 32=15,P (A 2)=C 32C 22+C 31C 21C 21C 52C 32=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710; (II )解:由题意可知X 的所有可能取值为0,1,2.X ~B(2,710) 所以X 的分布列是 X 012P9100215049100X 的数学期望E (X )=0×9100+1×2150+2×49100=75. 20.(Ⅰ)证明:分别以AB 、AC 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系,∵AC=2√3,AA 1=√3,AB=2,点D 在棱B 1C 1上,且B 1C 1=4B 1D , ∴B (2,0,0),C (0,2√3,0),A 1(0,0,√3),D (32,√32,√3).则BD⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,−√3), ∴BD ⃗⃗⃗⃗⃗⃗ ⋅A 1C ⃗⃗⃗⃗⃗⃗⃗ =−12×0+√32×2√3−√3×√3=0. ∴BD ⊥A 1C ;(Ⅱ)解:设平面BDA 1的一个法向量为m ⃗⃗⃗ =(x ,y ,z),BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−2,0,√3),BD ⃗⃗⃗⃗⃗⃗ =(−12,√32,√3),∴{m ⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =−12x +√32y +√3z =0m ⃗⃗⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =−2x+√3z=0,取z =2,则m ⃗⃗⃗ =(√3,−3,2);设平面A 1DC 的一个法向量为n ⃗ =(x ,y ,z),DC ⃗⃗⃗⃗⃗ =(−32,3√32,−√3),CA 1⃗⃗⃗⃗⃗⃗⃗=(0,−2√3,√3),∴{n ⃗ ⋅CA 1⃗⃗⃗⃗⃗⃗⃗ =−2√3y +√3z =0n⃗⃗ ⋅DC ⃗⃗⃗⃗⃗⃗ =−32x+3√32y−√3z=0,取y =1,得n ⃗ =(−√3,1,2).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m⃗⃗⃗ ||n ⃗⃗ |=4×2√2=−√28.∴二面角B-A 1D-C 的大小为arccos √28.21.解:(1)∵椭圆C :x 2a 2+y 2b 2=1的左焦点F 1的坐标为(-√3,0), F 2是它的右焦点,点M 是椭圆C 上一点,△MF 1F 2的周长等于4+2√3, ∴{c =√32a +2c =4+2√3a 2=b 2+c 2,解得a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,不满足题意.当直线l 的斜率存在时,设直线l 的方程为y =kx -2,A (x 1,y 1),B (x 2,y 2), 联立{x 24+y 2=1y =kx −2,得(1+4k 2)x 2-16kx +12=0,△=(-16k )2-48(1+4k 2)>0,由根与系数关系得x 1+x 2=16k1+4k 2,x 1•x 2=121+4k 2, ∵y 1=kx 1-2,y 2=kx 2-2,∴y 1y 2=k 2x 1•x 2-2k (x 1+x 2)+4. ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0,∴(1+k 2)x 1x 2-2k (x 1+x 2)+4=0, ∴12(1+k 2)1+4k 2-32k 21+4k 2+4=0,解得k =±2,∴直线l 的方程是y =2x -2或y =-2x -2. 22.解:(Ⅰ)当a =1时,f (x )=x 2-e x ,f (x )在R 上单调递减.事实上,要证f ′(x )=x 2-e x 在R 上为减函数,只要证明f ′(x )≤0对∀x ∈R 恒成立即可,设g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x ,当x =ln 2时,g ′(x )=0,当x ∈(-∞,ln 2)时,g ′(x )>0,当x ∈(ln 2,+∞)时,g ′(x )<0. ∴函数g (x )在(-∞,ln 2)上为增函数,在(ln 2,+∞)上为减函数. ∴f ′(x )max =g (x )max =g (ln 2)=2ln 2-2<0,故f ′(x )<0恒成立 所以f (x )在R 上单调递减; (Ⅱ)(i )由f (x )=ax 2-e x ,所以,f ′(x )=2ax -e x .若f (x )有两个极值点x 1,x 2,则x 1,x 2是方程f ′(x )=0的两个根,故方程2ax-e x=0有两个根x1,x2,又因为x=0显然不是该方程的根,所以方程2a=e xx有两个根,设ℎ(x)=e xx ,得ℎ′(x)=e x(x−1)x2.若x<0时,h(x)<0且h′(x)<0,h(x)单调递减.若x>0时,h(x)>0.当0<x<1时h′(x)<0,h(x)单调递减,当x>1时h′(x)>0,h(x)单调递增.要使方程2a=e xx 有两个根,需2a>h(1)=e,故a>e2且0<x1<1<x2.故a的取值范围为(e2,+∞).(ii)证明:由f′(x1)=0,得:2ax1−e x1=0,故a=e x12x1,x1∈(0,1)f(x1)=ax12−e x1=e x1 2x1⋅x12−e x1=e x1(x12−1),x1∈(0,1)设s(t)=e t(t2−1)(0<t<1),则s′(t)=e t(t−12)<0,s(t)在(0,1)上单调递减故s(1)<s(t)<s(0),即−e2<f(x1)<−1.。
2021年高二下学期数学周练试卷(理科实验班零班3.20)含答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.随机变量服从正态分布,若,则()A. B. C. D.2.某班有50人,从中选10人均分2组(即每组5人), 一组打扫教室, 一组打扫操场,那么不同的选派法有( )A. B. C. D.3.已知随机变量的分布列是其中,则-1 0 2PA、 B、 C、4.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x 1.99 3 4 5.1 6.12y 1.5 4.04 7.5 12 18.01( )A.y=2x-2 B.y=(12)x C.y=log2xD.y=12(x2-1)5.已知函数,则其导函数的图象大致是()A. B. C. D.6.某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的体积等于 ( )A. B. C. D.7.已知函数的导函数为,且满足关系式,则的值等于()A. B. C. D.8.已知,是的导函数,即,,…,,,则()A. B. C. D.9.如图是可导函数,直线:是曲线在x=3处的切线,令, 是的导函数,则=()A.-1 B.0 C.2 D.410.如图是函数的大致图象,则等于A. B. C. D.11. 下列判断错误..的是()A.若随机变量服从正态分布则B.若组数据的散点都在上,则相关系数C.若随机变量服从二项分布: ,则D.“”是“”的必要不充分条件12.定义域为的可导函数的导函数为,满足,且则不等式的解集为()A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分.)13.,则等于 ___________14.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线的周围,令z=ln y,求得线性回归方程为,则该模型的回归方程为________.15.若函数,是的导函数,则函数的最大值是.16.设、分别为具有公共焦点、的椭圆和双曲线的离心率,是两曲线的一个公共点,且满足,则的值为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽样100名市民, 按年龄情况进行统计的频率分布表Ⅰ和频率分布直方图2,频率分布表Ⅰ(1)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图统计这500名志愿者得平均年龄;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加的宣传活动,再从这20名中选取2名志愿者担任主要发言人.记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:(1)根据以上数据,(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“微信控”和“非微信控”的人数;(3)从(2)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,记这3人中“微信控”的人数为,试求的分布列与数学期望.参考公式:,其中.参考数据:19、设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求20.已知函数,其中若在x=1处取得极值,求a的值;求的单调区间;21.如图,已知斜三棱柱中,平面平面,且,,求侧面与底面所成锐二面角的大小.22.如图,M是抛物线上上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB. (1)若M为定点,证明:直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹.丰城中学xx学年下学期高二周考试题答案(数学)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A D D C B D A B D D B 二、填空题(本大题共有4小题,每小题4分共16分.把答案填在题中横线上)13. 14.15. 16.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.平均年龄估值为:(45×0.05+55×0.2+65×0.35+75×0.3+85×0.1)=33.5(岁).(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2, , , ,∴X的分布列为:.18.(本小题满分12分)【答案】(1)没有60%的把握认为“微信控”与“性别”有关;(2)2人;(3)的分布列是的期望值是.. (10分)所以的分布列是所以X 的期望值是.(12分19.【答案】解:(Ⅰ)由已知得到:当两次摸到的球分别是红红时,此时;当两次摸到的球分别是黄黄,红蓝,蓝红时,此时;当两次摸到的球分别是红黄,黄红时,此时;当两次摸到的球分别是黄蓝,蓝黄时,此时;当两次摸到的球分别是蓝蓝时,此时;所以的分布列是:2 3 4 5 6 P(Ⅱ)由已知得到:有三种取值即1,2,3,所以的分布列是:1 2 3 P所以:2225233555253(1)(2)(3)9333a b c E a b c a b c a b c a b c D a b c a b c a b c ηη⎧==++⎪⎪++++++⎨⎪==-⨯+-⨯+-⨯⎪++++++⎩,所以.20. 解(Ⅰ)22222'(),1(1)(1)(1)a ax a f x ax x ax x +-=-=++++ ∵在x=1处取得极值, ∴解得 (Ⅱ)∵ ∴①当时,在区间∴的单调增区间为 ②当时,由22'()0,'()0,aaf x x f x x a a-->><<解得由解得 ∴()),a af x a a+∞2-2-的单调减区间为(0,单调增区间为(,). 21.解:过点A 1作A 1O ⊥AC,由题意O 为AC 的中点,过点O 作OD ⊥AC 交AB 于D ,平面平面ABC,平面ABC, (3分) 以O 为原点,OD,OC,OA 1分别为轴,建立如图所示的直角坐标系,则1263(0,3,0),(,,0),(0,0,3)33A B A - (6分),由题意平面ABC 的一个法向量为 设,平面的一个法向量为,则由 ,令,则设平面A 1ABB 1与平面ABC 所成锐二面角为, 则 (11分)所以平面A 1ABB 1与平面ABC 所成锐二面角为 (12分) 22.(本题12分)解:(1)设M (y,y 0),直线ME 的斜率为k(l>0) ——1分 则直线MF 的斜率为-k ,方程为 ——2分 ∴由,消 ——3分解得 ——5分∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值) ——6分 所以直线EF 的斜率为定值.(2)90,45,1,EMF MAB k ∠=∠==当时所以 ——7分 直线ME 的方程为由得——8分同理可得——9分设重心G(x, y),则有222200000000(1)(1)23333(1)(1)333M E FM E Fy y y yx x xxy y y yx x xx⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩——10分消去参数得——12分 D30999 7917 礗uWt30275 7643 癃31083 796B 祫21707 54CB 哋 35102 891E 褞 K。
Oyx(14题图) ty oty o︒ty o ︒ty o︒︒高中二年级下学期数学周练1一、选择题: 1.如果232()nx x -的展开式中含有非零常数项,则正整数n 的最小值为 ( ) A .3B .5C .6D .102.已知函数)(x f y =,其导函数)(x f y '=的图象如图所示,则)(x f y = ( ) A .在(-∞,0)上为减函数 B .在=x 0处取极小值 C .在(4,+∞)上为减函数 D .在=x 2处取极大值3.设1~24X N ⎛⎫- ⎪⎝⎭,,则X 落在(][)3.50.5---+,,∞∞内的概率是A.95.4% B.99.7% C.4.6% D.0.3% ( )4.将4个颜色互不相同的球全部放入编号为1、2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有 A .10种B .20种C .36种D .52种 ( )5..复数ii -+1)1(4+2等于( )A .2-2iB .-2iC .1-ID .2i6.对于R 上的可导的任意函数)(x f ,若满足,0)(')(≥-x f a x 则必有 ( )A .)()(a f x f ≥B .)()(a f x f ≤C .)()(a x f >D .)()(a f x f <7. 已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于 ( )A .1B .2C .0 D. 28. 下面说法正确的有 ( ) ①演绎推理是由一般到特殊的推理; ②演绎推理得到的结论一定是正确的; ③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A.1个 B.2个 C.3个 D.4个 9. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()S t ((0)0S =),则导函数()y S t '=的图像大致为A B C D..10.若ln 33a =,ln 55b =,ln 66c =,则( ) A .a b c << B .c b a <<C . c a b <<D .b a c <<二、填空题:11. 观察下列等式:211=,22123-=-, 2221236-+=,2222123410-+-=-,……,由以上等式推测到一个一般的结论:对于*n N ∈,=-+⋅⋅⋅+-+-+212222)1(4321n n 。
高二理科数学周测卷 (10班级 ________________姓名 _______________分数 ______________一、填空题 (每题 5 分,共 40 分1. 已知会合 }1,1{-=M ,}0|{2=+=x x x N ,则M N =(A.}1,0,1{-B.}1,1{-C.{1}-D.{0}2.3a =是直线 230ax y a ++=和直线 3(17x a y a +-=-平行的 ( A . 充足不用要条件B .必需不充足条件C .充要条件D .既不充足又不用要条件3.计算 :=+? -222(sin dx x (A.-1B.1C.8D.-84.把函数 6sin( π+=x y 图象上各点的横坐标缩短到本来的21 倍(纵坐标不变 ,再将图象向右平移3π个单位 ,那么所得图象的一条对称轴方程为( A .2π-=x B .4π-=x C .8π=x D .4π=x5.甲、乙两人玩猜数字游戏,先由甲心中想一个数字 ,记为 a ,再由乙猜甲方才所想的数字 ,把乙猜的数字记为 b ,此中 {},1,2,3,4,5,6a b ∈,若 1a b -≤,就称甲乙“心有灵犀”现.随意找两人玩这个游戏,则他们“心有灵犀”的概率为 (A .19B .29C.718D.496.平面向量 a 与 b 的夹角为 60? ,(2,0,||1==a b ,则|2|+a b 等于 ( AB.C.4D.127.已知双曲线 221x my +=的虚轴长是实轴长的 2 倍 ,则实数 m 的值是 (A . 4B.14C.14 -D.-4 8.如图 ,水平搁置的三棱柱的侧棱长和底边长均为2,且侧棱 AA 1 ⊥平面 A 1B 1C 1,正视图是正方形 ,俯视图是正三角形 ,该三棱柱的侧视图面积为(二、填空题 (每题 5 分,共 30 分9.已知 i 为虚数单位 ,复数 2i 1iz+=-,则 |z | = .10.在等比数列 }{n a 中,已知 ,21=a 164=a ,n a =__________.11.已知 ??? >+-≤ =0,11(0,cos (x x f x x x f 则 4π,(3f 的值为 _______.12.某校有高级教师 26 人,中级教师 104 人 ,其余教师若干人 .为了认识该校教师的薪资收入状况 ,若按分层抽样从该校的全部教师中抽取 56 人进行检查 ,已知从其余教师中共抽取了 16 人 ,则该校共有教师人. 13. (6睁开式中的常数项是 (用数字作答。
高二年级下学期数学周测试卷及答案详解(答案附后) 姓名: 班级: 学号: 得分:一、填空题(请把正确的答案写在题后的横线上,每小题5分,共80分)1.抛物线22x y =的焦点坐标是 ;2.如果函数213x y x-=+在x t =时取得极小值,那么t = ; 3.双曲线2214x y -=的离心率等于____________; 4.若P 为圆()1222=+-y x 上的动点,则点P 到直线02:=+-y x l 的最短距离为 ;5.设曲线ax e y =在点(0,1)处的切线与直线012=++y x 垂直,则a= .6.设)(x f 是周期为2的奇函数,当0≤x ≤1时,)1(2)(x x x f -=,则=-)25(f ;7.设两圆21C C 、都和两坐标轴相切,且都过点(4,1),则两圆心的距离=21C C ;8.已知抛物线C :x y 42=的焦点为F ,直线y=2x-4与C 交与A ,B 两点,则cos ∠AFB= ; 9.若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是 ;10.函数π()cos 26cos()2f x x x =+-的最大值为 ; 11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b = ;12.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ;13.已知正方体ABCD-A1B1C1D1中,E 为C1D1的中点,则异面直线AE 与BC 所成角的余弦值为 ;14.已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成的角的余弦值为 ;15.已知数列的通项25+-=n a n ,其前n 项和为S n = ;16.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 .二、解答题(20分)17.已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.2017年高二年级下学期数学周测试卷参考答案1.解:∵2221x y y ==⨯⨯∴22x y =的焦点坐标是1(0,)2. 2.解:∵213x y x -=+ ∴2222223(1)223(3(3)x x x x x y x x ----⨯--'==++) ∵当1x <-或3x >时,0y '>,当13x -<<时,0y '<,∴当3t =时,y 取得极小值.3.4.答案:14.最短距离为圆心到直线距离再减去半径.已知圆心为)0,2(,则圆心到直线的距离为22222=+,半径为1,故最短距离为122-.5..ax ae y =',当0=x 时2'=∴=a a y ;7.答案:88.答案:54- 9.答案:[)1,+∞10.答案:512.答案:313.答案:32 14.答案:10103 15.答案:252n n --16.答案:23 17.【答案】(Ⅰ)220.x y +-=;(Ⅱ)(],2.-∞.【解析】试题分析:(Ⅰ)先求定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,对实数a 分类讨论,用导数法求解. 试题解析:(I )()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x ,(1)2,(1)0.'=-=f f 曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(II )当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x ,则 222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x , (i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;(ii )当2>a 时,令()0'=g x 得1211=-=-+x a x a由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()0<g x . 综上,a 的取值范围是(],2.-∞考点:导数的几何意义,函数的单调性.。
2021年高二数学下学期周练试题13 理1.已知,若A=B,则.2.设若M=把直线l:2x+y+7=0变换为自身,则,.3.设A=,B=,则= .4.试求圆经对应的变换后的曲线方程为.5.矩阵的特征值为___ __ .6.在的展开式中的常数项是.7. 除以8余数是8.如图,在某个城市中,M,N两地之间有南北街道5条、东西街道4条,现要求沿图中的街道,以最短的路程从M走到N,则不同的走法共有_____ 种.9.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为_______ .10.某医院有内科医生5名,外科医生6名,现要派4名医生参加赈灾医疗队,如果要求内科医生和外科医生中都有人参加,则有种选法(用数字作答).11. 从不同号码的双鞋中任取只,其中恰好有双的取法种数为12.用数学归纳法证明“<,>1”时,由>1不等式成立,推证时,左边应增加的项数是.13.一项“过关游戏”规则规定:在第关要抛掷一颗骰子次,如果这次抛掷所出现的点数之和大于,则算过关,那么,连过前二关的概率是___ ____.14. 已知的展开式中的常数项为,是以为周期的偶函数,且当时,,若在区间内,函数有4个零点,则实数的取值范围是_______;15.已知矩阵,,向量,为实数,若,求的值.16. 求直线在矩阵的变换下所得曲线的方程.17.设函数,.(1)求的展开式中系数最大的项;(2)若(为虚数单位),求.18.已知数列的前项和为,通项公式为,.(1)计算的值;(2)比较与的大小,并用数学归纳法证明你的结论.19.某同学参加高二学业水平测试的4门必修科目考试.已知该同学每门学科考试成绩达到“A”等级的概率均为,且每门考试成绩的结果互不影响.(1)求该同学至少得到两个“A”的概率;(2)已知在高考成绩计分时,每有一科达到“A”,则高考成绩加1分,如果4门学科均达到“A”,则高考成绩额外再加1分.现用随机变量Y表示该同学学业水平测试的总加分,求Y的概率分别列和数学期望.20.已知函数,为常数.(1)若函数在处的切线与轴平行,求的值;(2)当时,试比较与的大小;(3)若函数有两个零点、,试证明.参考答案:1. 12. 1,-1;3.答案:4.; 5、3或-1 ;6. 0 ; 7. 6 ;8、35_;9、;10. 310;11. 120 ; 12. ;13. ;14. __.15.本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分. ,,由得解得16.解:设是所求曲线上的任一点,它在已知直线上的对应点为,则,解得, …5分代入中,得,化简可得所求曲线方程为. ……10分17.解:(1)展开式中系数最大的项是第4项=; ………6′(2)由已知,,两边取模,得,所以.所以=而1001229910101010101010(1)i C C i C i C i C i =++++++ ……………………10′ ()()0246810135791010101010101010101010C C C C C C C C C C C i =++++----+-所以 …………16′18. (1)由已知,,; …………………………5分(2)由(1)知;当时,.……………………7分下面用数学归纳法证明:当时,.(1)由(1)当时,;………………………………………8分(2)假设时,,即, …………………………………9分 那么11111(1)1222122f k k k k k k +=+++++++++ 11111111222122k k k k k k k ⎛⎫=++++++- ⎪++++⎝⎭ ………………11分,所以当时,也成立. ………………………………………14分 由(1)和(2)知,当时,. ……………………………………15分 所以当,和时,;当时,.…………………16分19、解:(1)设4门考试成绩得到“A”的次数为X ,依题意, 随机变量X ~B (4,),则P (X≥2)=1﹣P (X=0)﹣P (X=1)=1﹣=,故该同学至少得到两个“A”的概率为.…(6分)(2)随机变量Y 的可能值为0,1,2,3,5,…(7分)P (Y=0)=0=,P (Y=1)=,P (Y=2)==,P (Y=3)==,P (Y=5)==.…(12分)从而E (Y )=0×+1×+2×+3×+5×=.…(14分) 20.解: (1),由题,.…………………4分(2)当时,,,当时,,单调递增,当时,,单调递减.由题,令()()1111ln (ln )2ln h m f m f m m m m m m m m ⎛⎫=-=---=-+ ⎪⎝⎭, 则()2222212111=0m m m h m m m m m-+--⎛⎫'=--=-≤ ⎪⎝⎭.…………………………7分 又,①当时,,即;②当时,;③当时,即.…………………………………………10分(3),, ,,,………………………………………………………………………12分 欲证明,即证,因为,所以即证,所以原命题等价于证明,即证:,令,则,设,,所以在单调递增,又因为,所以,所以,所以…………………………………………………………16分Z32754 7FF2 翲E25248 62A0 抠40345 9D99 鶙24355 5F23 弣 30075 757B 畻*h30522 773A 眺34902 8856 衖36773 8FA5 辥nl。
编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河南省正阳县第二高级中学2017-2018学年高二数学下学期周练(十三)理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河南省正阳县第二高级中学2017-2018学年高二数学下学期周练(十三)理的全部内容。
一.选择题:1.已知(1+2i)z=4+3i(其中i是虚数单位,z是z的共轭复数),则z的虚部为() A.1 B.-1 C.i D.-i2.函数f(x)=lnx在点(1,0)处的切线被坐标轴截得的线段长为()A。
1 B.2 C3.P为椭圆2214xy+=上一点,P在第二象限,A、B为椭圆的左右顶点,PB交y轴于C点,则直线AP斜率和AC斜率2倍之和的最小值为()A。
4 B。
D。
14.用反证法证明某命题时,对结论:“自然数a,b,c中至少有一个偶数.”正确的反设为( )A.a,b,c中至少有两个偶数 B.a,b,c都是奇数C.a,b,c中至少有两个偶数或都是奇数 D.a,b,c都是偶数5.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依此规律A(8,2)为()错误!错误!错误!错误!错误!错误!115错误!错误!错误!121错误!错误!错误!错误!…A。
错误! B.错误! C。
错误! D。
错误!6.已知函数2()2lnf x x x=-的极值点的情况是()A。
有极小值点12,极大值点12- B.没有极值点C。
有极大值点12-,无极小值点 D. 有极小值点12,无极大值点7. 用数学归纳法证明不等式1111...2321nn++++<-(n为正整数)过程中,由n=k递推到n=k+1时,不等式左端增加的项数是( )A。
高二数学(理)周练二时间:40分钟满分:74分命卷人: 审核人:注 意 事 项1、考生务必确认试卷上的名字为考生本人姓名。
2、考生务必在答题卡指定位置作答,并保持卷面整洁。
3、教师务必使用红笔阅卷。
班级: 姓名:1 2 3 4 5 6 10▄ [A] [A] [A] [A] [A] [A] ▄ [B] [B] [B] [B] [B] [B] [C] [C] [C] [C] [C] [C] ▄ [D] [D] [D] [D] [D] [D]▄一、选择题(每小题5分,共30分)1、类比平面内 “垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论: ①垂直于同一条直线的两条直线互相平行 ②垂直于同一个平面的两条直线互相平行 ③垂直于同一条直线的两个平面互相平行 ④垂直于同一个平面的两个平面互相平行 则正确的结论是( ) A.①② B.②③C.③④D.①④ 2、已知数列,且,(),可归纳猜想出( )A.B.C.D.3、已知实数满足,,则的值( ) A.一定是正数 B.一定是负数 C.可能是0 D.正负不能定4、已知复数与是共轭复数,则的值为( )A.B.C.D.5、若定义在上的二次函数在区间上是递增函数,且,则实数的取值范围是( ).A.B.C.D.或6、已知,,…,,则可推测实数的值分别为( ) A.B.C.D.二、填空题(每小题5分,共20分)7、现有一个关于平面图形的命题:如下图所示,同一个平面内有两个边长都是的正方形,其中一个正方形的某起点在另一个正方形的中心,则这两个正方形重叠部分的面积恒为,类比到空间,有两个棱长为的正方体,其中某一个正方体的某顶点在另一个正方体的中心,则这两个正方体的重叠部分的体积恒为__________.第7题 第10题 8、用数学归纳法证明时,从到左边需要添加的因式是__________.9、设复数z 满足(是虚数单位),则的模为__________. 10、如上图,一个小朋友按如图所示的规则练习数数,大拇指,食指,中指,无名指,小指,无名指,…,一直数到对应的指头是__________(填指头的名称).三、解答题(每小题12分,共24分)(请翻至背面作答)▄20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 点.5▄11、设复数,若,求实数的值.20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 点.5 12、用数学归纳法证明.尤溪五中高二数学(理)周练二答案解析第1题答案B第1题解析因为类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论:垂直于同一个平面的两条直线互相平行和垂直于同一条直线的两个平面互相平行,故选.第2题答案B第2题解析因为,,所以,,,…,由此可归纳猜想出.故选B.第3题答案B第3题解析因为实数满足,,取特殊值,知结果可以为负数.∵,且(由知均不为).∴.∴.故选B.第4题答案A第4题解析因为复数与是共轭复数,所以,所以,所以,,所以.故选A.第5题答案A第5题解析∵二次函数的对称轴为,又在上是递增函数,∴,∵,∴.第6题答案C第6题解析根据题意,分析所给的等式可得:(且是正整数).所以当时,,.故选C.第7题答案第7题解析同一个平面内有两个边长都是的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为,类比到空间有两个棱长均为的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为.第8题答案第8题解析∵当时,左边,当时,左边,比较两式可知,由到,左边需添加的因式为.故答案为.第9题答案第9题解析设,则,从而解得故.第10题答案食指第10题解析因为大拇指对的数是,食指对的数是(是奇数)或(是偶数).又因为是奇数,且,所以数到时对应的指头是食指.第11题答案,第11题解析因为,所以由,得,所以,所以解得,.第12题答案略第12题解析①当时,左边,右边,等式成立.②假设当时,有成立,则当时,.即当时等式也成立.根据①②得,对,等式都成立.。
高二下理科普通班周周练测试题一.选择题1.下列求导运算正确的是( )A B .2ln 1)(log '2x x = C .e x x 3'log 3)3(= D .x x x x sin 2)cos ('2-=2.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( ) A .1,1a b == B .1,1a b =-= C .1,1a b ==- D .1,1a b =-=- 3.若复数z 满足1zi i =-,则z 的共轭复数是 ( )A .1i --B .1i -C .1i -+D .1i + 4.设复数z 满足||2+=+z z i ,那么z 等于( ) A .34-+i B .34-i C .34--i D .34+i 5.已知e 为自然对数的底数,设函数f (x )=xe x,则( ) A .1是f (x )的极小值点B .﹣1是f (x )的极小值点 C .1是f (x )的极大值点D .﹣1是f (x )的极大值点6.已知13)(23+-+=mx x x x f 在]2,2[-为单调增函数,则实数m 的取值范围为( ) A .3-≤m B .0≤m C .24-≥m D .1-≥m7.已知m x x x f +-=2362)((m 为常数)在]2,2[-上有最大值3,那么此函数在]2,2[-上的最小值为( )A .-37B .-29C .-5D .-118.用数学归纳法证明“(1)(2)()212(21)()nn n n n n n N +++⋅⋅⋅+=⋅⋅⋅⋅⋅-∈时,从 “n k =到1n k =+”时,左边应增添的式子是( ).A .21k +B .23k +C .2(21)k +D .2(23)k +9.10)d x x -⎰等于( )A .1 B .1 C .1π- D .2π-10.若2()2'(1)f x xf x =+,则'(0)f 等于 ( ) A. -2 B. -4 C. 2 D. 0 11.设函数)(x f 在R 上可导,其导函数为)(x f '且函数)()1(x f x y '-=的图像如图所示,则下列结论一定成立的是( )A.函数)(x f 的极大值是)2(f ,极小值是)1(fB.函数)(x f 的极大值是)2(-f ,极小值是)1(fC.函数)(x f 的极大值是)2(f ,极小值是)2(-fD.函数)(x f 的极大值是)2(-f ,极小值是)2(f12.已知定义在R 上的函数()f x 满足()()0xf x f x '+>,当01a b <<<时,下面选项中最大的一项是( )A .()b b a f a ⋅ B .()a ab f b ⋅ C .()log log a a b f b ⋅ D .()log log b b a f a ⋅二.填空题13.设m ∈R ,()2221i m m m +-+-是纯虚数,其中i 是虚数单位,则m = .14.函数32()6(,)f x ax x x =---∞+∞+在上既有极大值又有极小值,则a 的取值范围为 15.复数满足,则的最小值为 .16.函数f(x)=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f(x 1)-f(x 2)|≤t,则实数t 的最小值是________.姓名:________ 班级:________ 考号:________ 分数:________ 13._ _____ 14._ _____ 15._ _____ 16._ _____ 三.解答题17.已知函数3()3f x x x =- (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[-3,2]上的最值.18.已知函数3()16f x x x =+-.(1)求曲线()y f x =在点(2,6)-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.19.若函数4)(3+-=bx ax x f .当2=x 时,函数)(x f 取得极值4-3. (1)求函数的解析式;(2)若函数k x f =)(有3个解,求实数k 的取值范围.20.已知函数()1xf x e ax =--(0,a e >为自然对数的底数). (1)求函数()f x 的最小值;(2)若()0f x ≥对任意的x R ∈恒成立,求实数a 的值.21.设a为实数,函数f(x)=e x﹣2x+2a,x∈R.(1)求f(x)的单调区间及极值;(2)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.22.函数()32()330f x ax x x a =++≠(1)讨论()f x 的单调性;(2)若函数()f x 在区间()1,2上是增函数,求a 的取值范围。
FP2021年高二下学期周末训练数学(理)试题(2)含答案一、填空题(本大题共14小题,每小题5分,共70分.) 1.若复数,则= ▲ . 2. 用数学归纳法证明2231*11+(1,)1n n a a a a aa n N a++-++++=≠∈-,在验证n=1成立时,等式左边是 ▲ . 3.已知,且,,…,,…,则= ▲ .4.已知三棱锥O-ABC ,点G 是△ABC 的重心。
设,,,那么向量用基底{,,}可以表示为 ▲ .5.将3名男生和4名女生排成一行,甲、乙两人必须站在两头,则不同的排列方法共有 种。
(用数字作答)6. 某医院有内科医生5名,外科医生6名,现要派4名医生参加赈灾医疗队,如果要求内科医生和外科医生中都有人参加,则有 ▲ 种选法(用数字作答).7.一种报警器的可靠性为%,那么将这两只这样的报警器并联后能将可靠性提高到 ▲ .8.用数学归纳法证明“<,>1”时,由>1不等式成立,推证时,左边应增加的项数是 ▲ .9.若,则最大值为___▲_______.10.边长均为正整数,且最大边长为11的三角形的个数为 ▲ . 11.展开式中的一次项系数为 ▲ . 12.已知,则= ▲ .13.已知关于实数的方程组没有实数解,则实数的取值范围为 ▲ . 14.设是关于的方程的两个根,则的值为▲ . 二、解答题(本大题共6道题,共计90分) 15.(本小题满分15分)求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *). 16.(本小题满分15分)设z 是虚数,是实数,且.(1)求|z|的值;(2)求z 的实部的取值范围. 17.(本小题满分15分)如图,四边形是正方形,△ 与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点. (1)求证:;(2)求二面角的平面角的正弦值. 18.(本小题满分16分)设函数,.(1)求的展开式中系数最大的项; (2)若(为虚数单位),求. 19.(本小题满分16分)电子蛙跳游戏是: 青蛙第一步从如图所示的正方体顶点起跳,每步从一顶点跳到相邻的顶点.(1)直接写出跳两步跳到的概率; (2)求跳三步跳到的概率; (3)青蛙跳五步,用表示跳到过的次数,求随机变量的概率分布.20. (本小题满分16分)设M 是由满足下列条件的函数构成的集合:“①的定义域为R ;②方程有实数根;③函数的导数满足”.(1)判断函数是否是集合M 中的元素,并说明理由; (2)证明:方程只有一个实数根; (3)证明:对于任意的,,当且时,.答案一.填空题:1. 2. 3. 0 4. 5. 240 6. 310 7.8. 9.2 10. 36 11. 55 12. 28 13. 14.二.解答题:15.证明: ①n =1时,左边=12-22=-3,右边=-3,等式成立. ………6′1Azyx EFDCB AP………15′ 16.解:(1)设z =a +bi (a,b ∈R 且b ≠0)则(2) 1.a 212知ω1由2a,于是ω 1.z||即1,b a 0,ω是实数,b i.b a b b b a a a bi a 1bi a ω222222<<-<<-===+∴≠⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛++=+++= ………8′………15′17.(1)证明:∵是的中点,且,∴ .∵ △与△均是以为直角顶点的等腰直角三角形, ∴ ,.∵ ,平面,平面, ∴ 平面. ∵ 平面, ∴ .∵ 四边形是正方形, ∴ . ∵ ,平面,平面, ∴ 平面. ∵ 平面, ∴ .∵ ,平面,平面, ∴ 平面. ∵ 平面,∴ . ………6′ (2)解法1:作于,连接,∵ ⊥平面,平面 ∴ .∵ ,平面,平面, ∴ ⊥平面. ∵ 平面,∴ . ∴∠为二面角的平面角. 设正方形的边长为,则,, 在Rt △中,,在Rt △中,,,在Rt △中, .∴ 二面角的平面角的正弦值为. …………15′ 解法2:以为坐标原点,分别以所在直线为轴,轴,轴 , 建立空间直角坐标系,设, 则,,,. ∴,.设平面的法向量为, 由 得令 ,得, ∴ 为平面的一个法向量. ∵ 平面,平面, ∴ 平面平面. 连接,则.∵ 平面平面,平面, ∴ 平面. ∴ 平面的一个法向量为. 设二面角的平面角为, 则. ∴.∴ 二面角的平面角的正弦值为. …………15′ 18.解:(1)展开式中系数最大的项是第4项=; ………6′ (2)由已知,,两边取模,得,所以.所以=而1001229910101010101010(1)i C C i C i C i C i =++++++ ()()024*********1010101010101010101010C C C C C C C C C C C i =++++----+-所以 …………16′19.解:将A 标示为0,A 1、B 、D 标示为1,B 1、C 、D 1标示为2,C 1标示为3,从A 跳到B 记为01,从B 跳到B 1再跳到A 1记为121,其余类推.从0到1与从3到2的概率为1,从1到0与从2到3的概率为,从1到2与从2到1的概率为.(1)P =; ………4′(2)P =P (0123)=1=; ………10′ (3)X =0,1,2. P (X =1)=P (010123)+P (012123)+P (012321)=11+1+11=,P (X =2)=P (012323)=11= , P (X =0)=1-P (X =1)-P (X =2)=或P (X =0)=P (010101)+P (010121)+P (012101)+P (012121)=111+11+11+1=,…………16′20.解:(1)易证函数满足条件①②③,因此 ………4′(2)假设存在两个实根,则,不妨设,∵∴函数为减函数,∴>,矛盾.所以方程只有一个实数根 ………10′(3) 不妨设,∵,∴为增函数,∴,又∵∴函数为减函数,∴, ∴,即,∴2|||||)(||||)()(|121312132323<-+-≤---=-<-x x x x x x x x x x x f x f …………16′tM_21988 55E4 嗤@|23858 5D32 崲23412 5B74 孴40294 9D66 鵦#21541 5425 吥27708 6C3C 氼R。
辽宁省葫芦岛市2015-2016学年高二数学下学期周考试题(二)理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(辽宁省葫芦岛市2015-2016学年高二数学下学期周考试题(二)理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为辽宁省葫芦岛市2015-2016学年高二数学下学期周考试题(二)理的全部内容。
辽宁省葫芦岛市2015-2016学年高二数学下学期周考试题(二)理一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 有且只有一项符合题目要求.1.已知全集U=R,集合A={x|x 〈一1或x 〉4),B={x|—2≤x≤3),那么阴影部分表示的集合为( )A .{x |—2≤x 〈4}B .{x|x≤3或x≥4}C 。
{x |-2≤x≤一1}D 。
{x|-1≤x≤3}2.欧拉公式θ+θ=θsin cos i e i (e 为自然对数的底数,i 为虚数单位)是瑞士著名数学家欧拉发明的,01=+πi e 被英国科学期刊《物理世界》评选为十大最伟大的公式之一,根据欧拉公式可知,复数i e 6-π的虚部为( )A. i 21- B 。
i 21 C 。
21- D 。
213.函数()()06sin >ω⎪⎭⎫⎝⎛π+ω=x x f 的最小正周期为π,则()x f 的单调递增区间可以是( )A 。
⎪⎭⎫ ⎝⎛ππ63-, B 。
⎪⎭⎫ ⎝⎛ππ12512-, C 。
⎪⎭⎫ ⎝⎛ππ1211125, D 。
⎪⎭⎫ ⎝⎛ππ326, 4。
已知()()611ax x -+展开式中2x 项的系数为21,则实数=a ( )A.535±B.27-C.1或57- D 。
高二年级下学期数学周测试卷及答案详解姓名: 班级: 学号: 得分:一、填空题(请把正确的答案写在题后的横线上,每小题5分,共80分)1.已知平面向量a 与b 的夹角等于23π,如果||2,||3a b ==,那么|23|a b -等于 ; 1.答案1332.已知是等比数列的前项和,与的等差中项等于15. 如果,那么 ;2.解:设等比数列的公比为,由已知得,,化简得,解得. ∴. ∴. 3.已知,,则向量在向量方向上的投影等于 ; 3.解:∵,, ∴,,. ∴向量在向量方向上的投影为. 4.已知的渐近线,那么a 等于 ; 4.解析:23,2,3===a a b b 则 n S {}n a n 1a 3a 4120S =2012200920093S S -={}n a q 1q ≠2114130(1)1201a a q a q q ⎧+=⎪⎨-=⎪-⎩2121(1)30(1)(1)120a q a q q ⎧+=⎨++=⎩133a q ⎧=⎨=⎩3(13)3(31)132n n n S --==-20122009201220092009200933339323S S --=⨯=01a =(,)34)b =-(,a b 01a =(,)34)b =-(,4a b ⋅=-5b =45a bb ⋅=-a b 45-2220,219x y a y x a>=-=如果直线是双曲线5.如图,在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点E 、F 分别是棱A 1B 1、BC 的中点,则异面直线AE 与B 1F 所成的角的余弦值等于 ;5.答案:6.已知2222sin cos 2tan 2,2sin cos ααααα-+=+则等于 ; 6.答案:913解析:分子)cos (sin 2222αα+= 7.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1,26a B C π===,则b = ; 7.答案:18.执行右图所示的程序框图,若输入10=x ,则输出y 的值为 ; 8.45- 解析:本题考查了循环结构的程序框图,一般都可以反复的进行运算直到满足条件结束.;4,10==y x ;1,4==y x ;21,1-==y x ;45,21-=-=y x 此时143<=-x y ,输出45-=y . 9.34331654+log log 8145-⎛⎫+=⎪⎝⎭________. 9.答案:827 10若曲线P x x y 上点ln =处的切线平行于直线P y x 则点,012=+-的坐标是_______.10.答案:(,)e e11.已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为_______.11.答案:43- 12.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为 ;4512.答案:52 13.已知42a =,lg x a =,则x =________.13.答案:1014.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤+-≥+-,08,10105,02y x y x y x 则目标函数y x z 43-=的最小值为 .14.答案:-1115.曲线在点处的切线方程为 ; 15.答案 :解 ,故切线方程为,即.16.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为 ;16.答案:解析:由已知,而,所以二、解答题(20分)17.设函数.(Ⅰ)若曲线在点处与直线相切,求的值;(Ⅱ)求函数的单调区间与极值点.17.解析:本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.(Ⅰ),∵曲线在点处与直线相切,∴ (Ⅱ)∵,21x y x =-()1,1111222121||[]|1(21)(21)x x x x x y x x ===--'==-=---1(1)y x -=--20x y +-=2()()f x g x x =+()y g x =(1,(1))g 21y x =+()y f x =(1,(1))f (1)2g '=()()2f x g x x ''=+(1)(1)214f g ''=+⨯=3()3(0)f x x ax b a =-+≠()y f x =(2,())f x 8y =,a b ()f x ()'233f x x a =-()y f x =(2,())f x 8y =()()()'203404,24.86828f a a b a b f ⎧=-=⎧=⎧⎪⎪⇒⇒⎨⎨⎨=-+==⎪⎩⎪⎩⎩()()()'230f x x a a =-≠当时,,函数在上单调递增, 此时函数没有极值点.当时,由,当时,,函数单调递增, 当时,,函数单调递减, 当时,,函数单调递增, ∴此时是的极大值点,的极小值点.0a <()'0f x >()f x (),-∞+∞()f x 0a >()'0f x x =⇒=(,x ∈-∞()'0f x >()f x (x ∈()'0f x <()f x )x ∈+∞()'0f x >()f x x =()f x x =()f x。
2021年高二下学期数学周考试题(理科尖子班3.15)含答案一、选择题:本大题共10小题。
每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量X的分布列为,则为()A.B.C. D.2、某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75 C.0.6 D.0.453、从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则=()A. B. C. D .4、设,则落在内的概率是()A.B.C.D.5、某厂生产的零件外直径ξ~N(10,0.04),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.9cm和9.3cm,则可认为()A.上午生产情况正常,下午生产情况异常 B.上午生产情况异常,下午生产情况正常C.上、下午生产情况均正常 D.上、下午生产情况均异常6、在回归分析中,相关指数R2越接近1,说明()A.两个变量的线性相关关系越强B.两个变量的线性相关关系越弱C.回归模型的拟合效果越好D.回归模型的拟合效果越差7、为研究变量和的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程和,两人计算知相同,也相同,下列正确的是( )A. 与重合B. 与一定平行C. 与相交于点D. 无法判断和是否相交8、已知函数f(x)=-x2+x的图像上一点(-1,-2)及邻近一点(-1+Δx,-2+Δy),则=( )A. 3-Δx B.3Δx-(Δx)2 C.3-(Δx)2 D. 39、已知函数是可导函数,且满足,则在曲线上的点的切线斜率是()A. B.4 C.1 D.-410、某医疗机构通过抽样调查(样本容量n=1000),利用2×2列联表和K2统计量研究患肺病是否与吸烟有关.计算得K2=4.453,经查对临界值表知P(K2≥3.841)≈0.05,现给出四个结论,其中正确的一个结论是()A.在100个吸烟的人中约有95个人患肺病B.若某人吸烟,那么他有95%的可能性患肺病C.有95%的把握认为“患肺病与吸烟有关”D.只有5%的把握认为“患肺病与吸烟有关第II卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
2021年高二下学期数学周练试题(理科实验班3.6) 含答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若二项式⎝⎛⎭⎪⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.54 C .1 D.242.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.453.设,则落在内的概率是( )A.B.C.D.4.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .245.设,则等于( )A.1.6 B.3.2 C.6.4 D.12.86.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为( )A.0.998 B.0.046 C.0.002 D.0.9547.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( ) A . B . C . D .8.如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为,则的均值为( ) A . B . C . D .9.袋子里装有大小相同的黑白两色的手套,黑色手套15支,白色手套10只,现从中随机地取出2只手套,如果2只是同色手套则甲获胜,2只手套颜色不同则乙获胜.试问:甲、乙获胜的机会是( )A.甲多 B.乙多 C.一样多 D.不确定10.节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X 服从如下表所示的分布:200 300 400 500 0.20 0.35 0.30 0.15若进这种鲜花500A.706元 B.690元 C.754元 D.720元11.如图,分别是椭圆的左、右焦点,和是以为圆心,以为半径的圆与该椭圆的两个交点,且是等边三角形,则椭圆的离心率为 A . B . C . D .12.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3), 从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(1)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(2)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2). 则( )A .p 1<p 2,E (ξ1)>E (ξ2)B . p 1>p 2,E (ξ1)<E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)二、填空题(本大题共4小题,每小题5分,共20分.)13.事件相互独立,若,则 .14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在 线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于 其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取 值范围是 .16.某公司有5万元资金用于投资开发项目.如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果.则该公司一年后估计可获收益的均值是 元. 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求 (1)恰有1人译出密码的概率;(2)若达到译出密码的概率为,至少需要多少乙这样的人.18.(本小题满分12分)设焦点在轴上的双曲线渐近线为,且焦距为4,已知点.(Ⅰ)求双曲线的标准方程;(Ⅱ)过点的直线交双曲线于两点,点为线段MN的中点,求直线的方程.19.(本小题满分12分)现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为:若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C槽,得重投一次的机会,但投球的总次数不超过3次.(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的分布列及数学期望.20.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.21.(12分)如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA = AB = 2a, DC = a , F为EB的中点,G为AB的中点.(1) 求证:FD∥平面ABC;(2) 求二面角B—FC—G的正切值.22.(12分)(12分)某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分.已知射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.(1)求这位射手在三次射击中命中目标的概率;(2)求这位射手在这次射击比赛中得分的均值.丰城中学xx 学年上学期高二周考试题答案(数学)(本大题共有4小题,每小题4分共16分.把答案填在题中横线上)13. 14. 15. 16.4760三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17..解:设“甲译出密码”为事件A ;“乙译出密码”为事件B , 则. (1).(2)个乙这样的人都译不出密码的概率为. .解得.达到译出密码的概率为,至少需要17人. 18.解:(1)5分(2)设直线:12A(1,)是 12分19. 解:(1)由题意可知投一次小球,落入B 槽的概率为⎝⎛⎭⎫122+⎝⎛⎭⎫122=12.(2)落入A 槽的概率为⎝⎛⎭⎫122=14,落入B 槽的概率为12,落入C 槽的概率为⎝⎛⎭⎫122=14. X 的所有可能取值为0,5,10, P (X =0)=⎝⎛⎭⎫143=164,P (X =5)=12+14×12+⎝⎛⎭⎫142×12=2132,P(X=10)=14+14×14+14×⎝⎛⎭⎫142=2164,X的分布列为E(X)=0×164+5×2132+10×2164=105 16.20.解:记E={甲组研发新产品成功},F={乙组研发新产品成功}.由题设知P(E)=23,P(E)=13,P(F)=35,P(F)=25.且事件E与F,E与F,E与F,E与F都相互独立.(1)记H={至少有一种新产品研发成功},则H=E F,于是P(H)=P(E)P(F)=13×25=215,故所求的概率为P(H)=1-P(H)=1-215=1315.(2)设企业可获利润为X(万元),则X的可能取值为0,100,120,220.P(X=0)=P(E F)=13×25=215,P(X=100)=P(E F)=13×35=315,P(X=120)=P(E F)=23×25=415,P(X=220)=P(EF)=23×35=615.故所求的X分布列为数学期望为E(X)=0×215+100×315+120×415+220×615=300+480+1 32015=2 10015=140.21.解:∵F、G分别为EB、AB的中点,∴FG=EA, ……… 2分又EA、DC都垂直于面ABC, 所以∥且FG =DC, ………4分∴四边形FGCD为平行四边形, ∴FD∥GC, 又GC面ABC, FD面ABC.∴FD ∥面ABC. ……………… 6分 (2) 因为是正三角形,是的中点, 所以 又//,,.FG EA EA B FG BA ⊥∴⊥且面A C作于点连则面即为所求二面角的平面角. ……… 8分…………… 12分方法二(向量法)分别以所在直线为轴建系如图,…… 7分 则…………… 9分 平面的法向量 设平面的法向量则222010(3,1,n BC ax x y z x n BF ax az n ⎧⎧⋅=-==⎪⎪⇒=-⎨⎨=⋅=-+=⎪⎪⎩⎩∴=--设 …………… 10分则121212cos ,7||||7n n n n n n ⋅-<>===-⋅设二面角B —FC —G 的大小为则故二面角B —FC —G 的正切值为.…22.解:记第一、二、三次射击命中目标分别为事件,三次都未击中目标为事件D ,依题意,设在m 处击中目标的概率为,则,且, ,即, ,,.(1) 由于各次射击都是相互独立的, ∴该射手在三次射击中击中目标的概率 .(2)依题意,设射手甲得分为X ,则,,,,117492558532102914414414448EX =⨯+⨯+⨯+⨯==∴.P %-[27425 6B21 次^27063 69B7 榷 33314 8222 舢30551 7757 睗25277 62BD 抽 23853 5D2D 崭。
河南省正阳县第二高级中学2018-2019学年下期高二数学理科周练(一)一.选择题:1. 函数()332f x x x =-++的单调递增区间是 A. ()1,+∞ B. (),1-∞- C. ()1,1- D. ()2,2-2.关于函数2()2ln f x x x =- 的极值,下列说法正确的是( )A.有极大值点-1和极小值点1B.仅仅有极小值点-1C.仅仅有极小值点1D.无极值3.命题“,sin 1x R x ∀∈>”的否定是A. ,sin 1x R x ∀∈≤B. ,sin 1x R x ∀∈<C. ,sin 1x R x ∃∈≤D. ,sin 1x R x ∃∈< 4.椭圆22143x y +=的左右焦点为1F ,2F ,点P 为椭圆上异于长轴端点的任一点,则12PF F ∆的周长为( )A.4 B.2 C.5 D.65.与双曲线22:1169x y C -=有相同的渐近线的双曲线E 的离心率为 A. 53 B. 54 C. 53或54 D. 53或526."0,0"a b >>时“22222a b a b ++⎛⎫≤ ⎪⎝⎭”的 A. 充分不必要条件 B. 必要不充分条件C.充要条件D.既不充分也不必要条件7.平面内到x 轴于与到y 轴的距离之和为1的点的轨迹围成的图形的面积为A. 1B. 2C. 3D. 48.若""p q ∧⌝为假命题,""p q ⌝∨为真命题,p ⌝为假命题则,p q 的真假为A.p 假且q 假B.p 假且q 真C.p 真且q 假D.p 真q 真9.四面体A —BCD 的所有棱长均相等,E 为AB 的中点,则异面直线CE 和BD 所成的余弦值为( )A.6 B. 3 C. 13 D. 2310.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,点P 在此双曲线的右支上,若12211tan ,tan 22PF F PF F ∠=∠=-,则双曲线的离心率为( )A.55 D.511.已知12,F F 分别为双曲线22:145x y C -=的左、右焦点,P 为C 右支上一点,且122PF PF =,则12PF F ∆外接圆的半径为A.15 B. 15 C. 15 D.15 12.设△ABC 的内角A ,B ,C 所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C ,3b=20acosA ,则sinA∶sinB∶sinC 为( )(A)4∶3∶2 (B)5∶6∶7 (C)5∶4∶3 (D)6∶5∶4二.填空题:13.连接椭圆()222210x y a b a b+=>>的四个顶点构成的四边形的面积为4,其一个焦点与抛物线2y =14.已知12,F F 分别为双曲线22:143x y C -=的左、右焦点,抛物线29:4E y x =与C 的一个交点为P ,则12PF F ∆的面积为 .15.给出下列四个结论:①若,a b R ∈,则220a ab b ++≥ ②“若tan 1α=,则34πα=”的逆命题; ③“若2x y +≠,则1x ≠或1y ≠”的否命题;④“若()()22001x a y b -+-=,则点()00,x y 在圆()()221x a y b -+-=内”的否命题 其中正确的是 .(只填正确的结论的序号)16.设函数()x f x m π=,若存在f(x)的极值点0x 满足22200[()]x f x m +<,则实数m 的取值范围是_________________三。
解答题:17.(本题满分10分)命题:p 关于x 的方程20x mx m ++=无实根,命题q :函数()()1x f x m =+在R 上为减函数,若""p q ∨为假命题,求实数m 的取值范围.18.设a ∈R ,函数f (x )=ax 3﹣3x 2,x=2是函数y=f (x )的极值点.(1)求a 的值;(2)求函数f (x )在区间[﹣1,5]上的最值.19. 已知函数f (x )=x 3+bx 2+cx+d 的图象过点P (0,2),且在点M (﹣1,f (﹣1))处的切线方程为6x ﹣y+7=0.(1)求函数y=f (x )的解析式;(2)求函数y=f (x )的单调区间.20.(本题满分10分)如图,ABCD 为正方形,MD ⊥平面ABCD ,NBC ∆为等腰直角三角形,且BN CN ⊥,平面NBC ⊥平面ABCD ,.MD AD =(1)求证:CN ⊥平面BMN ;(2)求平面CDM 与平面BMN 所成角锐二面角.21.已知函数),0( )(2R a x xa x x f ∈≠+=(1)求函数f(x)的单调区间(2)若)(x f 在区间),2[+∞上是增函数,求实数a 的取值范围22.在平面直角坐标系xOy 中,直线l 与抛物线y 2=2x 相交于A 、B 两点.(1)求证:“如果直线l 过点T (3,0),那么.OA OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.CDCA 7-12.BDACDD 13.2214x y += 14.① 16.2m >或2m <- 17.(,1]{0}[4,)-∞-+∞ 18.(1)a=1(2)最大值50,最小值-419.(1)32()332f x x x x =--+(2)在(,1)-∞-++∞上递增,在(1-+上递减20.(1)略(2)45° 21. (1)当a>0时,f(x)在(-∞上递减,在)+∞上递增;当a=0时,f(x)在(,0)-∞上递减,在(0,)+∞上递增;当a>0时,f(x)在(-∞上递减,在,(0,)+∞上递增(2)16a ≤22.(1)略(2)假命题河南省正阳县第二高级中学2018-2019学年下期高二数学理科周练(二)一.选择题(只有一个选项是正确的,每小题5分,共60分)1.已知命题p:112x ≤≤,命题q:()(1)0x a x a ---≤,若非p 是非q 的必要不充分条件,则实数a 的取值范围是__________:A.1[0,]2 B.1[,1]2 C.11[,]32 D.1(,1]32.若/2()()x f x f x x e =+,则f(1)=( ) A.e B.0 C.e+1 D.e-13.若(6,1,4),(1,2,1),(4,2,3)A B C --,则ABC ∆的形状是( )A.不等边锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.已知椭圆221169x y +=,则以点3(2,)2为中点的弦所在的直线方程为( ) A.8x-6y-7=0 B.3x+4y=0 C.3x+4y-12=0 D.6x+8y-25=05.在ABC ∆中,S 为ABC ∆的面积,且2221()2S b c a =+-,则tanB+tanC-2tanBtanC=( ) A.1 B.-1 C.2 D.-26.已知数列{}n a 为等比数列,n S 为其前n 项和,且201720162018,n n S t =⨯-则t=( ) A.20152016 B. 20162017 C. 20172018 D. 201820197.在正三棱柱111ABC A B C -中,已知AB=1,12AA =,D 为1BB 的中点,则AD 与平面11AAC C 所成角的余弦值为( )A.12B.2C.44 8.不等式11ax x b+>+的解集为(,1)(3,)-∞-+∞,则不等式220x bx a +-<的解集为( ) A.(-2,5) B.(-0.5,0.2) C.(-2,1) D.(-0.5,1)9.若0<x<1,则121x x+-的最小值为( )A.10.已知抛物线C :22(0)y px p =>,过其焦点F 的直线l 交抛物线C 于点A 、B ,3AF BF =,则AB =( )A.p B.43p C.2p D. 83p 11.从一楼到二楼共有十级台阶,小明从一楼上到二楼,每次可以一部跨一级台阶,也可以跨两级台阶,则小明从一楼上到二楼的方法共有( )种A.87B.88C.89D.9012.已知点P 为椭圆2211612x y +=上的动点,EF 为圆N :22(1)1x y +-=的任一条直径,则 .PEPF 的最大值和最小值是( )A.16,12-17,13-19,12-20,13-二.填空题(每小题5分,共20分)13.过32()325f x x x x =-++图象上一个动点作此函数图象的切线,则所作切线倾斜角的取值范围是( ) 14.已知实数x,y 满足不等式组236022010x y x y y -+≥⎧⎪+-≤⎨⎪+≥⎩,则z xy =+的取值范围是( )15.若点P 6=所表示的曲线上的点,同时P 又是直线y=4上的点,则点P 的横坐标为( )16.已知:(1)123...2n n n +++++=;(1)(2)1223...(1)3n n n n n ++⨯+⨯+++=; (1)(2)(3)123234...(1)(2)4n n n n n n n +++⨯⨯+⨯⨯++++=, 利用上述结果,计算:3333123..._______n ++++= 三.解答题:17.(本题满分10分)已知P:方程22192x y m m+=-表示焦点在x 轴上的椭圆,命题q:双曲线2215x y m-=的离心率2e ∈ (1)若椭圆22192x y m m +=-的焦点与双曲线2215x y m-=的顶点重合,求实数m 的值 (2)若“p 且q ”是真命题,求实数m 的取值范围18. (本题满分12分) 在ABC ∆中,内角A 、B 、C 的对边分别是a,b,c,且A 、B 、C 成等差数列(1)若2b c ==,求ABC ∆的面积(2)若sinA 、sinB 、sinC 成等比数列,试判断ABC ∆的形状19. (本题满分12分)本学期,学校食堂为了更好地服务广大师生员工,对师生员工的主食购买情况做了一个调查(主食只供应米饭和面条,且就餐人数保持稳定),经调查统计发现凡是购买米饭的人下一次会有20℅的人改买面条,而购买面条的人下一次会有30℅的人改买米饭。
若用n a ,n b 分别表示第n 次购买米饭、面条的人员比例,假设第一次购买时比例恰好相等,即1112a b == (1)求n n a b +的值(2)写出数列{}n a 的递推关系式(3)求出数列{}n a 和{}n b 的通项公式,并指出随着时间推移(假定就餐人数为2000)食堂的主食应该准备米饭和面条各大约多少份,才能使广大师生员工满意20. (本题满分12分)已知/,()ln(1),(2)2a R f x a x x f ∈=-+=(1)求a 的值,并求曲线y=f(x)在点(2,f (2))处的切线方程y=g(x)(2)设/()()()1h x mf x g x =++,若对任意的[2,4]x ∈,h(x)>0,求实数m 的取值范围21. (本题满分12分)已知正三棱柱111ABC A B C -的各个棱长都相等,E 为BC 的中点,动点F 在1CC 上,且不与点C 重合(1)当14CC CF =时,求证:1EF A C ⊥(2)设二面角C —AF —E 的大小为α,求tan α的最小值22. (本题满分12分)已知椭圆C :2221(1)x y a a+=>,1F ,2F 分别为左右焦点,在椭圆C 上满足条件12.0AF AF =的点A 有且只有两个(1)求椭圆c 的方程(2)若过点2F 的两条相互垂直的直线1l 与2l ,直线参考答案:1-6.ABACDC 7-12.DABDCC13.3[0,)[,)24πππ 14.[-1,3.5] 15.-22(1)4n n + 17.(1)43m =(2)532m <<等边三角形 19.(1)1(2)113210n n a a -=+(3)米饭1200份,面条800份 20.(1)g(x)=x-1 (2)32m >-21.(1)略(222.(1)2212x y +=(2)S ≥河南省正阳县第二高级中学2018-2019学年下期高二理科数学周练(四) 一.选择题:A .30°B .45°C .60°D .75°2.已知等差数列{a n }中,a 5=13,S 5=35,则公差d=( )A .-2B .-1C .1D .33.设数列{a n }满足:2a n =a n+1(a n ≠0)(n∈N*),且前n 项和为S n ,则42S a 的值为( ) A . 152 B .154C .4D .2 4.若变量x,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则z=2x+3y 的最大值为( )A .2B .5C .8D .105.若直线1(0,0)x y a b a b+=>>过点(1,1),则a+b 的最小值为( ) A .2 B .3 C .4 D .56.“sin cos αα=”是“cos20α=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知椭圆22221(0)x y a b a b+=>>的两顶点为A(a,0),B(0,b),且左焦点为F ,△FAB 是以角B 为直角的直角三角形,则椭圆离心率e 为( )ABCD8.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0),且双曲线的渐近线与圆22(2)3x y -+=相切,则双曲线的方程为( )A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -= 9.过抛物线28y x =的焦点F 的直线交抛物线于A 、B 两点,交抛物线准线于C ,若|AF|=6,BCFB λ=,则λ的值为( )A .34B .32CD .3 10.已知(2,1),(4,)a b λ=-=,a ∥b 则实数λ等于( )A .-1B .-2C . 1D .211.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件B .(1,+∞) C.(-∞,-2) D .(-∞,-1)二.填空题:13. 已知数列{}n a 的前n 项之和为n S 1115,6(2,)2n n a a a n n N -==-+≥∈,,对于任意的正整数n ,1(4)3n p S n ≤-≤,则实数p 的取值范围是____________14.已知函数2()f x ax bx =+,且(1)[1,2],(1)[2,4]f f -∈-∈,则f(-2)的取值范围是________.15.已知直线y=k(x-1)(k>0)与抛物线28y x =相交于A 、B 两点,F 为抛物线焦点,若|FA|=2|FB|,则k 的值为___________.16.已知函数32()33f x x ax bx c =+++在x=2处有极值,其图象有在x=1处的切线平行于直线0526=++y x ,则)(x f 极大值与极小值之差为__________.三.解答题:17. 已知0>c ,且1≠c ,设:p 函数x c y =在R 上单调递减;q :函数12)(2+-=cx x x f 在⎪⎭⎫ ⎝⎛+∞,21上为增函数,若“q p ∧”为假,“q p ∨”为真,求实数C 的取值范围。