2019高考数学真题(理)分类汇编- 平面向量含答案解析
- 格式:docx
- 大小:497.92 KB
- 文档页数:11
1. 【2019高考福建卷第8题】在下列向量组中,能够把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e2. 【2019高考广东卷理第5题】已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A.()1,1,0- B. ()1,1,0- C.()0,1,1- D.()1,0,1-3. 【2019高考湖南卷第16题】在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD =1,则OA OB OD ++的最大值是_________.【答案】17+【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程4. 【2019高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 .5. 【2019陕西高考理第13题】设20πθ<<,向量()()1cos cos 2sin ,,,θθθb a=,若b a //,则=θtan _______.6. 【2019高考安徽卷理第10题】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满足2()OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤,区域{0,}P r PQ R r R Ω=<≤≤<.若CΩ为两段分离的曲线,则( )A. 13r R <<<B.13r R <<≤C.13r R ≤<<D.13r R <<<考点:1.平面向量的应用;2.线性规划.7. 【2019高考北京版理第10题】已知向量a 、b 满足1||=a ,)1,2(=b ,且0b a =+λ(R λ∈),则||λ= .8. 【2019高考湖北卷理第11题】设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ= .【答案】3±10. 【2019江西高考理第15题】已知单位向量1e 与2e 的夹角为α,且1cos 3α=,向量1232a e e =-与123b e e =-的夹角为β,则cos β= .11. 【2019辽宁高考理第5题】设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( ) A .p q ∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()p q ∨⌝12. 【2019全国1高考理第15题】已知C B A ,,为圆O 上的三点,若()AC AB AO +=21,则AB 与AC 的夹角为_______.【考点定位】1、平面向量基本定理;2、圆的性质.13. 【2019全国2高考理第3题】设向量a,b 满足|a+b |=10,|a-b |=6,则a ⋅b = ( ) A. 1 B. 2 C. 3 D. 514. 【2019高考安徽卷理第15题】已知两个不相等的非零向量,,b a 两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有准确命题的编号). ①S 有5个不同的值. ②若,b a ⊥则min S 与a 无关. ③若,b a ∥则min S 与b 无关. ④若a b 4>,则0min >S .⑤若2min||2||,8||b a Sa ==,则a 与b 的夹角为4π2222min 34()8||cos 4||8||S S a b b a a a θ==⋅+=+=,∴2cos 1θ=,∴3πθ=,故⑤错误.所以准确的编号为②④.考点:1.平面向量的运算;2.平面向量的数量积.15. 【2019四川高考理第7题】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =( ) A .2- B .1- C .1 D .216. 【2019浙江高考理第8题】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+17. 【2019重庆高考理第4题】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )9.2A -.0B .C 3 D.15218. 【2019天津高考理第8题】已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF ?-,则l m += ( ) (A )12 (B )23 (C )56 (D )71219. 【2019大纲高考理第4题】若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( )A .2B .2C .1D .22。
2019年高考真题理科数学解析分类汇编6 平面向量1.【2019高考重庆理6】设,x y ∈R ,向量(,1),(1,),(2,4)a x b y c ===-且c b c a //,⊥+(A (B (C )(D )10 【答案】B【解析】因为c b c a //,⊥,所以有042=-x 且042=+y ,解得2=x ,2-=y ,即)2,1(),1,2(-==b a ,所以)1,3(-=+b a 10=+,选B. 2.【2019高考浙江理5】设a ,b 是两个非零向量。
A.若|a+b|=|a|-|b|,则a ⊥bB.若a ⊥b ,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa ,则|a+b|=|a|-|b| 【答案】C【解析】利用排除法可得选项C 是正确的,∵|a +b|=|a|-|b|,则a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b|=|a|-|b|时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b|=|a|-|b|不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b|=|a|-|b|不成立. 3.【2019高考四川理7】设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b = 【答案】C 【解析】A.||||b b a a =为既不充分也不必要条件;B.可以推得||||a ba b =||||b a =为必要不充分条件;C .为充分不必要条件;D 同B.[点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.4.【2019高考辽宁理3】已知两个非零向量a ,b 满足|a+b|=|a -b|,则下面结论正确的是(A) a ∥b (B) a ⊥b (C){0,1,3} (D)a+b=a -b 【答案】B【解析】一、由|a+b|=|a -b|,平方可得a ⋅b=0, 所以a ⊥b ,故选B二、根据向量加法、减法的几何意义可知|a+b|与|a -b|分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a+b|=|a -b|,所以该平行四边形为矩形,所以a ⊥b ,故选B【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题。
状元考前提醒拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
答题策略答题策略一共有三点:1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
考试时,每一道题都认真思考,能做几步就做几步,对于考生来说就是能做几分是几分,这是考试中最好的策略。
检查后的涂改方式要讲究发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。
如果对现有的题解不满意想重新写,要先写出正确的,再划去错误的。
有的同学先把原来写的题解涂抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。
考试期间遇到这些事,莫慌乱!绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
专题07平面向量1.【2019年高考全国I卷理数】已知非零向量a,b满足|a |2|b|,且(a b)b,则a与b的夹角为A.C.π62π3B.D.π35π62.【2019年高考全国II A.−3C.2卷理数】已知AB=(2,3),AC=(3,t),BCB.−2D.3=1,则AB BC=3.【2019年高考北京卷理数】设点A,B,C不共线,则“AB 与AC的夹角为锐角”是“|AB AC ||B C|”的A.充分而不必要条件C.充分必要条件B.必要而不充分条件D.既不充分也不必要条件4.【2019年高考全国I II卷理数】已知a,b为单位向量,且a·b=0,若c 2a 5b,则cos,a c ___________. 5.【2019年高考天津卷理数】在四边形ABCD中,AD∥BC,AB 23,AD 5,A 30,点E 在线段CB的延长线上,且AE BE,则BD AE _____________.6.【2019年高考江苏卷】如图,△在ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若AB AC 6A O EC,则ABAC的值是_____.7.【2019年高考浙江卷】已知正方形ABCD的边长为1,当每个i(i 1,2,3,4,5,6)取遍时,|AB BC CD DA AC BD|123456的最小值是________;最大值是_______.8.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在矩形ABCDuu r中,AB=4,AD 2.若点M,N分别是CD,BC的中点,则AM MN A.4B.31C.2D.19.【福建省漳州市2019届高三下学期第二次教学质量监测数学试题】已知向量a,b(a b)(2a b)且a与b的夹角为,则6满足|a|1,|b|3,A.12B.32C.12D.3210.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量a (1,2),b (2,3),c (4,5),若(a b)c,则实数A.12B.12C.2D.211.【2019 届北京市通州区三模数学试题】设a,b均为单位向量,则“a与b夹角为的2π”是“|a b|3”3A.充分而不必要条件C.充分必要条件B.必要而不充分条件D.既不充分也不必要条件12.【辽宁省丹东市2019届高三总复习质量测试数学(二)】在△ABC中,AB AC 2A D,AE DE 0,若EB xAB y AC,则A.C.y 3xy 3xB.D.x 3yx 3y13.【2019年辽宁省大连市高三5月双基考试数学试题】已知直线y=x+m和圆x +y=1交于A、B两点,O为坐标原点,若AO AB 32,则实数m=A.1B.3 2C.22D.1214.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查数学试题】已知菱形ABCD的边长为2,BAD 120,点E,F分别在边BC,DC上,BC 3BE,DC DF,若AE AF 1,222则 的值为A .3B .2 5 3C .D .2215.【江西省新八校 2019 届高三第二次联考数学试题】在矩形ABCD中,AB3, AD 4,AC与 BD 相交于点O,过点 A作 AEB D ,垂足为 E ,则 AE ECA .C .72 5 12 5B .D .144 2512 2516.【湖师范大学附属中学 2019 届高三数学试题】如图所示,在正方形 ABCD 中,E 为 AB 的中点,F 为CE 的中点,则 AFA .3 1ABAD 4 4B .1 3AB AD4 4C . 1 2ABAD D . 3 1AB AD4 217.【2019 年北京市高考数学试卷】已知向量a =(-4,3),b =(6,m ),且 a b ,则 m =__________.18.【山东省烟台市 2019 届高三 3 月诊断性测试(一模)数学试题】已知圆x 2y 2 4 x 5 0的弦 AB 的中点为 ,直线 AB 交 轴于点 P ,则 PA PB的值为__________.3(1,1) x。
2019年高考数学试题分项版——平面向量(原卷版)一、选择题1.(2019·全国Ⅰ文,8)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.2.(2019·全国Ⅱ文,3)已知向量a=(2,3),b=(3,2),则|a-b|等于()A.B.2 C.5D.503.(2019·全国Ⅰ理,7)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.4.(2019·全国Ⅱ理,3)已知=(2,3),=(3,t),||=1,则·等于() A.-3 B.-2 C.2 D.35.(2019·北京理,7)设点A,B,C不共线,则“AB与AC的夹角为锐角”是“||||+>”AB AC BC 的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题1.(2019·全国Ⅲ文,13)已知向量a=(2,2),b=(-8,6),则cos〈a,b〉=________. 2.(2019·北京文,9)已知向量a=(-4,3),b=(6,m),且a⊥b,则m=________. 3.(2019·浙江,17)已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1+λ2+λ3+λ4+λ5+λ6|的最小值是________,最大值是________.4.(2019·江苏,12)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若·=6·,则的值是_________.5.(2019·全国Ⅲ理,13)已知a,b为单位向量,且a·b=0,若c=2a-b,则cos〈a,c〉=________.6.(2019·天津理,14)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB的延长线上,且AE=BE,则·=________.。
专题03 平面向量【母题来源一】【2019年高考全国II 卷理数】已知AB u u u r =(2,3),AC u u u r =(3,t ),BC uuu r =1,则AB BC ⋅u u u r u u u r =A .−3B .−2C .2D .3【答案】C【母题来源二】【2018年高考全国II 卷理数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0【答案】B【母题来源三】【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r 的最小值是A .2-B .32-C .43-D .1-【答案】B【命题意图】高考对本部分内容的考查以运算求解和数形结合为主,重点考查平面向量数量积定义和坐标运算以及相关的参数取值问题.【命题规律】主要以选择或者填空的形式,考查平面向量数量积的定义、转化法、坐标运算等内容.【答题模板】解答本类题目,以2017年高考真题为例,一般考虑如下三步:第一步:根据已知条件建立平面直角坐标系第二步:用坐标表示向量;第三步:利用坐标表示平面数量积进而求范围.【方法总结】(一)平面向量的概念及线性运算1. 解决向量的概念问题应关注六点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量则未必是相等向量.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a 与||a a 的关系:||a a 是a 方向上的单位向量. (6)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小.2. 平面向量线性运算问题的求解策略.(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.3. 共线向量定理的应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB u u u r =λAC u u u r ,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.(4)对于三点共线有以下结论:对于平面上的任一点O ,OA u u u r 、OB uuu r 不共线,满足OP uuu r =x OA u u u r +y OB uuu r (x ,y ∈R ),则P 、A 、B 共线⇔x +y =1.(二)平面向量基本定理及坐标表示1. 对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.(2)平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组.(3)用平面向量基本定理可将任一向量分解成形如a =λ1e 1+λ2e 2的形式,是向量线性运算知识的延伸.2. 平面向量共线的坐标表示(1)两向量平行的充要条件若a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同.(2)三点共线的判断方法判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定.(三)平面向量的数量积1. 计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2. 求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3. 利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.4. 在解题时,注意数形结合、方程思想及转化与化归数学思想的运用.(四)平面向量的应用1. 向量的坐标运算将向量与代数有机结合起来,这就为向量与函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2. 以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.3. 向量的两个作用:(1)载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;(2)工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.4. 向量中有关最值问题的求解思路:一是“形化”,利用向量的几何意义将问题转化为平面几何中的最值或范围问题;二是“数化”,利用平面向量的坐标运算,把问题转化为代数中的函数最值、不等式的解集、方程有解等问题.1.【陕西省2019年高三第三次教学质量检测数学试题】若向量(1,1)=a ,(1,3)=-b ,(2,)x =c 满足(3)10+⋅=a b c ,则x =A .1B .2C .3D .4 【答案】A2.【重庆南开中学2019届高三第四次教学检测考试数学试题】已知O 为V ABC 内一点且满足OA OB OC ++=0u u u r u u u r u u u r ,若AOC △2AB BC ⋅=-u u u r u u u r ,则ABC ∠= A .3π B .4π C .6π D .12π 【答案】A3.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)数学试题】向量(2,1), (1,1), (, 2)k ==-=a b c ,若()-⊥a b c ,则k 的值是A .4B .-4C .2D .-2 【答案】B4.【四川省宜宾市2019届高三第二次诊断性考试数学试题】等比数列{}n a 的各项均为正数,已知向量()45,a a =a ,()76,a a =b ,且4⋅=a b ,则2122210log log log a a a ++⋯+=A .12B .10C .5D .22log 5+ 【答案】C5.【东北师大附中、重庆一中、吉大附中、长春十一中等2019届高三联合模拟考试数学试题】已知平面向量a ,b 的夹角为3π,且2=a ,1=b ,则2-=a b A .4B .2C .1D .166.【辽宁省朝阳市重点高中2019届高三第四次模拟考试数学试题】已知P 为等边三角形ABC 所在平面内的一个动点,满足()BP BC R λλ=∈u u u r u u u r ,若2AB =u u u r ,则()AP AB AC u u u v u u u v u u u v ⋅+=A .B .3C .6D .与λ有关的数值【答案】C7.【甘、青、宁2019届高三5月联考数学试题】在ABC △中,D 为BC 上一点,E 是AD 的中点,若BD DC λ=u u u r u u u r ,13CE AB AC μ=+u u u r u u u r u u u r ,则λμ+= A .13 B .13- C .76 D .76- 【答案】B8.【黑龙江省大庆市实验中学2019届高三下学期数学二模考试数学试题】在矩形ABCD 中,AB =,2BC =,点E 为BC 的中点,点F 在CD ,若AB AF ⋅=u u u r u u u r AE BF ⋅u u u r u u u r 的值为AB .2C .0D .1【答案】A 9.【宁夏六盘山高级中学2019届高三下学期第二次模拟考试数学试题】已知向量()1,1=a ,()2,x =b ,若()-∥a a b ,则实数x 的值为A .2-B .0C .1D .2【答案】D10.【甘肃省兰州市第一中学2019届高三6月最后高考冲刺模拟数学试题】已知非零向量a ,b 的夹角为60o ,且满足22-=a b ,则⋅a b 的最大值为A .12B .1C .2D .3【答案】B11.【新疆维吾尔自治区2019年普通高考第二次适应性检测数学】O 是ABC △的外接圆圆心,且OA AB AC ++=0u u u r u u u r u u u r ,1OA AB ==u u u r u u u r ,则CA u u u r 在BC uuu r 方向上的投影为A .12-B .C .12D 【答案】B12.【内蒙古呼伦贝尔市2019届高三模拟统一考试(一)数学试题】已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u r u u u rA .4B .6C .D .【答案】B13.【内蒙古2019届高三高考一模试卷数学试题】已知单位向量a ,b 的夹角为3π4,若向量2=m a ,4λ=-n a b ,且⊥m n ,则=nA .2-B .2C .4D .6 【答案】C。
2019年全国高考数学试题分类汇编(理科)平面向量一、选择题1.(全国Ⅰ卷理7)已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A.π6B.π3C.2π3D.5π6【答案】B【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B .2.(全国Ⅱ卷理3)已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2 D. 3【答案】C【分析】根据向量三角形法则求出t ,再求出向量的数量积.【详解】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .二、填空题4.(全国Ⅲ卷理13)已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,ac <>=___________. 【答案】23. 【分析】根据2||c 结合向量夹角公式求出||c ,进一步求出结果. 【详解】因为25c a b =-,0a b ⋅=,所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅.5.(天津卷理14)在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_________. 【答案】1-【分析】可利用向量的线性运算,也可以建立坐标系利用向量的坐标运算求解。
专题平面向量1.【2019年新课标1理科07】已知非零向量,满足||=2||,且()⊥,则与的夹角为()A.B.C.D.【解答】解:∵()⊥,∴,∴,∵,∴.故选:B.2.【2018年新课标1理科06】在△ABC中,AD为BC边上的中线,E为AD的中点,则()A.B.C.D.【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,(),故选:A.3.【2015年新课标1理科07】设D为△ABC所在平面内一点,,则()A.B.C.D.【解答】解:由已知得到如图由;故选:A.【2011年新课标1理科10】已知与均为单位向量,其夹角为θ,有下列四个命题P1:||>1⇔θ∈[0,4.);P2:||>1⇔θ∈(,π];P3:||>1⇔θ∈[0,);P4:||>1⇔θ∈(,π];其中的真命题是()A.P1,P4B.P1,P3C.P2,P3D.P2,P4【解答】解:由,得出2﹣2cosθ>1,即cosθ,又θ∈[0,π],故可以得出θ∈(,π],故P3错误,P4正确.由||>1,得出2+2cosθ>1,即cosθ,又θ∈[0,π],故可以得出θ∈[0,),故P2错误,P1正确.故选:A.5.【2017年新课标1理科13】已知向量,的夹角为60°,||=2,||=1,则|2|=.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴4•4=22+4×2×1×cos60°+4×12=12,∴|2|=2.【解法二】根据题意画出图形,如图所示;结合图形2;在△OAC中,由余弦定理得||2,即|2|=2.故答案为:2.6.【2016年新课标1理科13】设向量(m,1),(1,2),且||2=||2+||2,则m=﹣2 .【解答】解:||2=||2+||2,可得•0.向量(m,1),(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.7.【2014年新课标1理科15】已知A,B,C为圆O上的三点,若(),则与的夹角为.【解答】解:在圆中若(),即2,即的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°8.【2013年新课标1理科13】已知两个单位向量,的夹角为60°,t(1﹣t).若•0,则t=.【解答】解:∵,,∴0,∴t cos60°+1﹣t=0,∴10,解得t=2.故答案为2.9.【2012年新课标1理科13】已知向量夹角为45°,且,则.【解答】解:∵, 1∴∴|2|解得故答案为:3考题分析与复习建议本专题考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积,平面向量的综合应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积等,预测明年本考点题目会比较稳定,备考方向以知识点平面向量的线性运算,平面向量的数量积,平面向量的综合应用等为重点较佳.最新高考模拟试题1.在ABC ∆中,2AB AC AD +=,0AE DE +=,若EB xAB y AC =+,则( ) A .3y x = B .3x y =C .3y x =-D .3x y =-【答案】D 【解析】因为2AB AC AD +=,所以点D 是BC 的中点,又因为0AE DE +=,所以点E 是AD 的中点,所以有:11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+,因此 31,344x y x y =-=⇒=-,故本题选D.2.已知非零向量a ,b 的夹角为60,且满足22a b -=,则a b ⋅的最大值为( ) A .12B .1C .2D .3【答案】B 【解析】因为非零向量a ,b 的夹角为60,且满足22a b -=, 所以2222444a ba b a b -=+-⋅=,即2244cos 604a b a b +-=,即22424a b a b +-=, 又因为2244a ba b +≥,当且仅当2a b =时,取等号;所以222424a b a b a b ≤+-=,即2a b ≤; 因此,1cos6012a b a b a b ⋅==≤. 即a b ⋅的最大值为1. 故选B3.设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“||3a b +=”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D 【解析】因为a ,b 均为单位向量, 若a 与b 夹角为2π3, 则222||211211cos13a b a b a b π+=++⋅=++⨯⨯⨯=; 因此,由“a 与b 夹角为2π3”不能推出“||3a b +=”; 若||3a b +=,则22||211211cos ,3a b a b a b a b +=++⋅=++⨯⨯⨯=,解得1cos ,2a b =,即a 与b 夹角为π3, 所以,由“||3a b +=”不能推出“a 与b 夹角为2π3” 因此,“a 与b 夹角为2π3”是“||3a b +=”的既不充分也不必要条件. 故选D4.在矩形ABCD 中,4AB ,2AD =.若点M ,N 分别是CD ,BC 的中点,则AM MN ⋅=( )A .4B .3C .2D .1【答案】C 【解析】由题意作出图形,如图所示:由图及题意,可得:12AM AD DM AD AB =+=+, 1122MN CN CM CB CD =-=-11112222BC DC AD AB =-+=-+.∴111222AM MN AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭221111||||41622424AD AB =-⋅+⋅=-⋅+⋅=. 故选:C .5.已知P 为等边三角形ABC 所在平面内的一个动点,满足()BP BC R λλ=∈,若2AB =,则()AP AB AC ⋅+=( )A .23B .3C .6D .与λ有关的数值【答案】C 【解析】如图:以BC 中点为坐标原点O ,以BC 方向为x 轴正方向,OA 方向为y 轴正方向,建立平面直角坐标系,因为2AB =,则3AO =,因为P 为等边三角形ABC 所在平面内的一个动点,满足()BP BC R λλ=∈, 所以点P 在直线BC ,所以AP 在AO 方向上的投影为AO , 因此2()226AP AB AC AO AP AO ⋅+=⋅==. 故选C6.已知向量(2,1),(,1)a b m ==-,且()a a b ⊥-,则m 的值为( ) A .1 B .3C .1或3D .4【答案】B 【解析】因为(2,1),(,1)a b m ==-,所以(2,2)a b m -=-,因为()a a b ⊥-,则()2(2)20a a b m ⋅-=-+=,解得3m =所以答案选B.7.已知向量a 、b 为单位向量,且a b +在a 的方向上的投影为31+,则向量a 与b 的夹角为( ) A .6π B .4π C .3π D .2π 【答案】A 【解析】设向量a 与b 的夹角为θ, 因为向量a 、b 为单位向量, 且a b +在a 的方向上的投影为31+, 则有3()||12a b a a ⎛⎫+⋅=+ ⎪ ⎪⎝⎭,变形可得:3112a b +⋅=+, 即3cos c 1o 1s a b θθ⋅=⨯⨯==, 又由0θπ≤≤,则6πθ=,故选A .8.在矩形ABCD 中,3,4,AB AD AC ==与BD 相交于点O ,过点A 作AE BD ⊥,垂足为E ,则AE EC ⋅=( )A .725B .14425C .125D .1225【答案】B 【解析】 如图:由3AB =,4=AD得:5BD ==,125AB AD AE BD ⋅== 又()AE EC AE EO OC AE EO AE OC AE EO AE AO ⋅=⋅+=⋅+⋅=⋅+⋅AE BD ⊥ 0AE EO ∴⋅=又2144cos 25AE AE AO AE AO EAO AE AO AE AO⋅=∠=⋅==14425AE EC ∴⋅=本题正确选项:B9.已知直线y=x+m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,若3AO AB 2⋅=,则实数m=( ) A .1± B .±C .D .12±【答案】C 【解析】联立221y x m x y =+⎧⎨+=⎩ ,得2x 2+2mx+m 2-1=0,∵直线y=x+m 和圆x 2+y 2=1交于A 、B两点,O 为坐标原点, ∴△=4m 2+8m 2-8=12m 2-8>0,解得m >3或m <-3,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,21212m x x -= ,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO =(-x 1,-y 1),AB =(x 2-x 1,y 2-y 1),∵21123,2AO AB AO AB x x x ⋅=∴⋅=-+y 12-y 1y 2=1221122m m ----+m 2-m 2=2-m 2=32, 解得m=2±. 故选:C .10.已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1AE AF ⋅=,则λ的值为( )A .3B .2C .23 D .52【答案】B 【解析】 由题意可得:()()AE AF AB BE AD DF ⋅=+⋅+113AB BC BC AB λ⎛⎫⎛⎫+⋅+ ⎪ ⎪⎝⎭⎝⎭22111133AB BC AB BC λλ⎛⎫=+++⋅ ⎪⎝⎭,且:224,22cos1202AB BC AB BC ==⋅=⨯⨯=-, 故()44112133λλ⎛⎫+++⨯-= ⎪⎝⎭,解得:2λ=. 故选:B .11.已知正ABC ∆的边长为4,点D 为边BC 的中点,点E 满足AE ED =,那么EB EC ⋅的值为( ) A .83- B .1-C .1D .3【答案】B 【解析】由已知可得:7, 又23tan BED 3BD ED ∠===所以221tan 1cos 1tan 7BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EBEC BEC ⎛⎫⋅=∠=-=- ⎪⎝⎭‖故选:B .12.在ABC ∆中,3AC =,向量AB 在AC 上的投影的数量为2,3ABC S ∆-=,则BC =( )A .5B. CD.【答案】C【解析】∵向量AB 在AC 上的投影的数量为2-,∴||cos 2AB A =-.①∵3ABC S ∆=, ∴13||||sin ||sin 322AB AC A AB A ==, ∴||sin 2AB A =.②由①②得tan 1A =-,∵A 为ABC ∆的内角, ∴34A π=,∴2||3sin 4AB π== 在ABC ∆中,由余弦定理得2222232cos323(294BC AB AC AB AC π=+-⋅⋅⋅=+-⨯⨯=,∴BC =故选C . 13.在△ABC 中,,2,BD DC AP PD BP AB AC λμ===+,则λμ+= ( )A .1-3B .13C .1-2D .12【答案】A【解析】因为,2,BD DC AP PD ==所以P 为ABC ∆的重心,所以11311,22222AD AB AC AP AB AC =+∴=+, 所以1133AP AB AC =+, 所以23BP AP AB AB AC =-=-+因为BP AB AC λμ=+, 所以211=,,333λμλμ-=∴+=-故选:A14.在ABC ∆中,543AB BC BC CA CA AB →→→→→→==,则sin :sin :sin A B C =( )A .9:7:8BC .6:8:7D 【答案】B【解析】 设•••543AB BC BC CA CA ABt ===,所以5,4,3AB BC t BC CA t CA AB t ⋅=⋅=⋅=,所以cos 5,cos 4,cos 3ac B t ab C t bc A t -=-=-=,所以22222222210,8,6c a b t b a c t c b a t +-=-+-=-+-=-,得,,a b c ===所以sin :sin :sin ::A B C a b c ==故选:B15.在平行四边形ABCD 中,113,2,,,32AB AD AP AB AQ AD ====若12,CP CQ ⋅=则ADC ∠=( )A .56πB .34πC .23πD .2π【答案】C【解析】如图所示,平行四边形ABCD 中, 3,2AB AD ==,11,32AP AB AQ AD ==, 23CP CB BP AD AB ∴=+=--, 12CQ CD DQ AB AD =+=--, 因为12CP CQ ⋅=, 所以2132CP CQ AD AB AB AD ⎛⎫⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭ 22214323AB AD AB AD =++⋅222143232cos 12323BAD =⨯+⨯+⨯⨯⨯∠=, 1cos 2BAD ∠=,,3BAD π∴∠= 所以233ADC πππ∠=-=,故选C. 16.已知△ABC 中,22BC BA BC =⋅=-,.点P 为BC 边上的动点,则()PC PA PB PC ⋅++的最小值为( )A .2B .34-C .2-D .2512- 【答案】D【解析】以BC 的中点为坐标原点,建立如图的直角坐标系, 可得()()1010B C -,,,,设()()0P a A x y ,,,, 由2BA BC ⋅=-,可得()()120222x y x +⋅=+=-,,,即20x y =-≠,,则()()()101100PC PA PB PC a x a a a y ⋅++=-⋅---+-++,, ()()()()21312332a x a a a a a =--=---=--21253612a ⎛⎫=-- ⎪⎝⎭, 当16a =时,()PC PA PB PC ⋅++的最小值为2512-. 故选:D .17.如图Rt ABC ∆中,2ABC π∠=,2AC AB =,BAC ∠平分线交△ABC 的外接圆于点D ,设AB a =,AC b =,则向量AD =( )A .a b +B .12a b +C .12a b +D .23a b + 【答案】C【解析】 解:设圆的半径为r ,在Rt ABC ∆中,2ABC π∠=,2AC AB =, 所以3BAC π∠=,6ACB π∠=,BAC ∠平分线交ABC ∆的外接圆于点D ,所以6ACB BAD CAD π∠=∠=∠=,则根据圆的性质BD CD AB ==,又因为在Rt ABC ∆中,12AB AC r OD ===, 所以四边形ABDO 为菱形,所以12AD AB AO a b =+=+.18.在ABC ∆中,90A ∠=︒,1AB =,2AC =,设点D 、E 满足AD AB λ=,(1)AE λ=-()AC R λ∈,若5BE CD ⋅=,则λ=( )A .13-B .2C .95D .3【答案】D【解析】因为90A ∠=︒,则•0AB AC =,所以()()BE CD AE AB AD AC •=-•- 22[(1)]()(1)4(1)34AC AB AB AC AC AB λλλλλλλ=--•-=---=---=-.由已知,345λ-=,则3λ=.选D .19.已知点C 为扇形AOB 的弧AB 上任意一点,且120AOB ∠=︒,若(,)OC OA OB R λμλμ=+∈,则λμ+的取值范围为( )A .[2,2]-B .C .D .[1,2] 【答案】D【解析】解:设半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,建立直角坐标系,其中A (12-,B (1,0),C (cos θ,sin θ)(其中∠BOC =θ203πθ⎛⎫≤≤ ⎪⎝⎭有OC OA OB λμ=+(λ,μ∈R )即:(cos θ,sin θ)=λ(12-+μ(1,0);整理得:12-λ+μ=cos θλ=sin θ,解得:λ=,μ=cos θ,则λ+μ=cos θ=sin θ+cos θ=2sin (θ6π+),其中203πθ⎛⎫≤≤ ⎪⎝⎭;易知λ+μ=+cos θ=θ+cos θ=2sin (θ6π+),由图像易得其值域为[1,2]20.在同一平面内,已知A 为动点,B ,C 为定点,且∠BAC=3π,2ACB π∠≠,BC=1,P 为BC 中点.过点P 作PQ⊥BC 交AC 所在直线于Q ,则AQ 在BC 方向上投影的最大值是( )A .13B .12C .3D .23【答案】C 【解析】建立如图所示的平面直角坐标系,则B (-12,0),C (12,0),P (0,0), 由BAC 3π∠=可知,ABC 三点在一个定圆上,且弦BC 所对的圆周角为3π,所以圆心角为23π.圆心在BC 的中垂线即y 轴上,且圆心到直线BC 的距离为1326tan 3BC π=,即圆心为3),22133()()263+=. 所以点A 的轨迹方程为:22313x y ⎛+-= ⎝⎭,则213x ≤ ,则303x -≤< , 由AQ 在BC 方向上投影的几何意义可得:AQ 在BC 方向上投影为|DP|=|x|,则AQ 在BC 方向上投影的最大值是3 故选:C .21.已知圆22450x y x ++-=的弦AB 的中点为(1,1)-,直线AB 交x 轴于点P ,则PA PB ⋅的值为______.【答案】5-设(1,1)M -,圆心(2,0)C -, ∵10112MC k -==-+, 根据圆的性质可知,1AB k =-,∴AB 所在直线方程为1(1)y x -=-+,即22gR r, 联立方程224500x y x x y ⎧++-=⎨+=⎩可得,22450x x +-=, 设11(,)A x y ,22(,)B x y ,则1252x x +=-, 令0y =可得(0,0)P , 12121225PA PB x x y y x x ⋅=+==-,故答案为:-5.22.已知向量(2,1),(,1)a b λ=-=,若||||a b a b +=-,则λ=______. 【答案】12【解析】解:()()2,1,,1a b λ=-=()()2,0,2,2a b a b λλ∴+=+-=--; a b a b +=-;2λ∴+=()()22224λλ∴+=-+;解得12λ=. 故答案为:12. 23.向量()1,2a =-,()1,0b =-,若()()a b a b λ-⊥+,则λ=_________.【答案】13向量()1,2a =-,()1,0b =-,所以()()()2,2,1,2a b a b λλλ-=-+=--,又因为()()a b a b λ-⊥+,所以()()0a b a b λ-⋅+=,即()()21220λλ--⨯-=, 解得13λ=,故答案为13. 24.设向量12,e e 的模分别为1,2,它们的夹角为3π,则向量21e e -与2e 的夹角为_____. 【答案】6π 【解析】()221221242cos33e e e e e e π-⋅=-⋅=-= 又()221211e e e e -=-=-= ()212212212cos ,2e e e e e e e e e -⋅∴<->===-⋅⨯ ∴向量21e e -与2e 的夹角为:6π 本题正确结果:6π 25.已知平面向量a ,m ,n ,满足4a =,221010m a m n a n ⎧-⋅+=⎨-⋅+=⎩,则当m n -=_____,则m 与n 的夹角最大.【解析】设a ,m ,n 的起点均为O ,以O 为原点建立平面坐标系,不妨设(4,0)a =,(,)m x y =,则222m x y =+,4a m x ⋅=,由210m a m -⋅+=可得22410x y x +-+=,即22(2)3x y -+=,∴m 的终点M 在以(2,0)为圆心,以3为半径的圆上, 同理n 的终点N 在以(2,0)为圆心,以3为半径的圆上.显然当OM ,ON 为圆的两条切线时,MON ∠最大,即m ,n 的夹角最大.设圆心为A ,则3AM =,∴221OM OA AM =-=,3sin 2MOA ∠=,∴60MOA ∠=︒, 设MN 与x 轴交于点B ,由对称性可知MN x ⊥轴,且2MN MB =,∴322sin 2132MN MB OM MOA ==⋅∠=⨯⨯=. 故答案为:3.26.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =,则PC PA ⋅的最小值为_______.【答案】5﹣213【解析】设圆心为O,AB 中点为D,由题得22sin 2,36AB AC π=⋅⋅=∴=.取AC 中点M ,由题得2PA PC PM PC PA AC⎧+=⎨-=⎩,两方程平方相减得2221944PC PA PM AC PM ⋅=-=-, 要使PC PA ⋅取最小值,就是PM 最小,当圆弧AB 的圆心与点P 、M 共线时,PM 最小.此时DM=221113,()322DM ∴=+=, 所以PM 有最小值为2﹣132, 代入求得PC PA ⋅的最小值为5﹣213.故答案为:5﹣21327.如图,在边长为2的正三角形ABC 中,D 、E 分别为边BC 、CA 上的动点,且满足CE mBD =(m 为定常数,且(0,1]m ∈),若AD DE ⋅的最大值为34-,则m =________.【答案】12【解析】 以BC 中点为坐标原点O ,OC 方向为x 轴正方向,OA 方向为y 轴正方向,建立如图所示平面直角坐标系, 因为正三角形ABC 边长为2,所以(1,0)B -,(1,0)C ,3)A ,则(2,0)BC =,(3)CA =-,因为D 为边BC 上的动点,所以设BD tBC =,其中01t ≤≤,则(2,0)BD t =,所以(21,0)D t -;又CE mBD tmBC ==,所以(3)CE tmCA tm tm ==-,因此(13)E tm tm -,所以(21,3)AD t =-,(223)DE tm t tm =--,故2(21)(22)32(2)2(3)2AD DE t tm t tm m t m t ⋅=----=-++--2223332(2)22(2)222424m m m m t t m t m m m ⎡⎤---⎛⎫⎛⎫⎛⎫=-+--=-+---⎢⎥ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦223101(2)2424m m m m t m m --+⎛⎫=-+-+ ⎪++⎝⎭, 因为(0,1]m ∈,所以31513,2422434m m m -⎡⎫=-+∈⎪⎢++⎣⎭,又01t ≤≤, 所以当且仅当324m t m -=+时,AD DE ⋅取得最大值, 即21013244m m m -+=-+,整理得221780m m -+=,解得12m =或8m =(舍) 故答案为1228.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B 成等差数列,则AB 的长为________.23 【解析】 因为1tan A ,1tan C ,1tan B成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B C C A B A B A B +=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=, 又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =,因为()12CM CA CB =+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++,即2222 4232cba ab cab=++⋅=,解23c=.即AB的长为23.故答案为2329.如图,在平面四边形ABCD中,90CBA CAD∠=∠=︒,30ACD∠=︒,AB BC=,点E为线段BC 的中点.若AC AD AEλμ=+(,Rλμ∈),则λμ的值为_______.43【解析】以A为原点,建立如图所示的平面直角坐标系,不妨设AB=BC=2,则有A(0,0),B(2,0),C(2,2),E(2,1),AC=2,AD=2×tan30°=263,过D作DF⊥x轴于F,∠DAF=180°-90°-45°=45°,DF26sin45°=2623323=,所以D(233-23),AC=(2,2),AD=(233-23),AE=(2,1),因为AC AD AEλμ=+,所以,(2,2)=λ(233-23)+μ(2,1),所以,23222323μλμ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:343λμ⎧=⎪⎪⎨⎪=⎪⎩λμ43故答案为:4330.在平面直角坐标系xOy 中,已知()11,A x y ,()22,B x y 为圆221x y +=上两点,且121212x x y y +=-.若C 为圆上的任意一点,则CA CB 的最大值为______.【答案】32【解析】因为C 为圆x 2+y 2=1上一点,设C (sinθ,cosθ),则 ()()1122sin ,cos ,sin ,cos CA x y CB x y θθθθ=--=--,∵()11,A x y ,()22,B x y 为圆221x y +=上两点,∴222211221,1x y x y +=+=,又121212x x y y +=-, ∴()()2212121212CA CB x x y y x x sin y y cos sin cos θθθθ⋅=+-+-+++ ()()2212121)2x x y y θϕ=++++ 222211*********)2x y x y x x y y θϕ=++++++ 1sin()2θϕ=-+,其中1212tan y y x x ϕ+=+, ∵sin()θϕ+∈[﹣1,1],∴当sin()θϕ+=1时,CA CB ⋅的最大值为32. 故答案为:32.。
平面向量专题1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.2.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .−3 B .−2 C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.4.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则co s ,=a c ___________. 【答案】23【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c . 【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.5.【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________. 【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BEy x =-, 直线AE的斜率为y =.由(3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)122BD AE =-=-.【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.6.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____..【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.7.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】0;则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-(AB BC CD DA AC BD λλλλλλ+++++=(1,2,3,4,5,6)i i λ=可取遍1±,所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.8.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在矩形ABCD 中,4AB =uu u r,2AD =.若点M ,N 分别是CD ,BC 的中点,则AM MN ⋅= A .4 B .3C .2D .1【答案】C【解析】由题意作出图形,如图所示:由图及题意,可得:12AM AD DM AD AB =+=+, 1122MN CN CM CB CD =-=-11112222BC DC AD AB =-+=-+.∴111222AM MN AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭221111||||41622424AD AB =-⋅+⋅=-⋅+⋅=. 故选:C .【名师点睛】本题主要考查基底向量的设立,以及向量数量积的运算,属基础题.9.【福建省漳州市2019届高三下学期第二次教学质量监测数学试题】已知向量a ,b 满足||1=a ,||=b 且a 与b 的夹角为6π,则()(2)+⋅-=a b a b A .12 B .32-C .12-D .32【答案】A【解析】()()2212223122+-=-+⋅=-+=a b a b a b a b . 故选A.【名师点睛】本题考查了平面向量数量积的性质及其运算,属基础题.10.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量(1,2)=a ,(2,3)=-b ,(4,5)=c ,若()λ+⊥a b c ,则实数λ=A .12-B .12C .2-D .2【答案】C【解析】因为(1,2)=a ,(2,3)=-b , 所以()12,23λλλ-+a +b =, 又()λ+⊥a b c ,所以()0λ+⋅=a b c , 即()()4125230+=λλ-+,解得2λ-= . 故选C.【名师点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于常考题型.11.【2019届北京市通州区三模数学试题】设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“||+=a b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】因为a ,b 均为单位向量, 若a 与b 夹角为2π3,则||1+===a b ,因此,由“a 与b 夹角为2π3”不能推出“||+=a b ”;若||+a b ||+=a b解得1cos ,2=a b ,即a 与b 夹角为π3,所以,由“||+=a b 不能推出“a 与b 夹角为2π3”因此,“a 与b 夹角为2π3”是“||+=a b ”的既不充分也不必要条件. 故选D【名师点睛】本题主要考查充分条件与必要条件的判断,以及向量的数量积运算,熟记充分条件与必要条件的概念,以及向量的数量积运算法则即可,属于常考题型.12.【辽宁省丹东市2019届高三总复习质量测试数学(二)】在ABC △中,2AB AC AD +=,AE DE +=0,若EB xAB y AC =+,则 A .3y x = B .3x y =C .3y x =-D .3x y =-【答案】D【解析】因为2AB AC AD +=,所以点D 是BC 的中点,又因为AE DE +=0,所以点E 是AD 的中点,所以有:11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+,因此 31,344x y x y =-=⇒=-,故题选D.【名师点睛】本题考查了向量加法的几何意义、平面向量基本定理.解题的关键是对向量式的理解、对向量加法的几何意义的理解.13.【2019年辽宁省大连市高三5月双基考试数学试题】已知直线y =x +m 和圆x 2+y 2=1交于A 、B 两点,O为坐标原点,若32AO AB ⋅=,则实数m =A .1±B .C .±D .12±【答案】C 【解析】联立221y x mx y =+⎧⎨+=⎩ ,得2x 2+2mx +m 2−1=0,∵直线y =x +m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,∴∆=-2m 2+8>0,解得x <<,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=−m ,21221-=m x x ,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO =(-x 1,-y 1),AB =(x 2-x 1,y 2-y 1),∵21123,2AO AB AO AB x x x ⋅=∴⋅=-+y 12-y 1y 2=1221122m m ----+m 2-m 2=2-m 2=23,解得m =2±. 故选:C .【名师点睛】本题考查根的判别式、根与系数的关系、向量的数量积的应用,考查了运算能力,是中档题.14.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查数学试题】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1A E A F ⋅=,则λ的值为 A .3 B .2C .23D .52【答案】B【解析】由题意可得:()()113AE AF AB BE AD DF AB BC BC AB λ⎛⎫⎛⎫⋅=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭22111133AB BC AB BC λλ⎛⎫=+++⋅ ⎪⎝⎭, 且:224,22cos1202AB BC AB BC ==⋅=⨯⨯=-,故()44112133λλ⎛⎫+++⨯-=⎪⎝⎭,解得:2λ=. 故选:B.【名师点睛】本题主要考查平面向量数量积的定义与运算法则,平面向量基本定理及其应用等知识,意在考查学生的转化能力和计算求解能力.15.【江西省新八校2019届高三第二次联考数学试题】在矩形ABCD 中,3,4,AB AD AC ==与BD 相交于点O ,过点A 作AE BD ⊥,垂足为E ,则AE EC ⋅=A .572B .14425C .125D .2512【答案】B 【解析】如图:由3AB =,4=AD得:5BD ==,125AB AD AE BD ⋅== 又()AE EC AE EO OC AE EO AE OC AE EO AE AO ⋅=⋅+=⋅+⋅=⋅+⋅AE BD ⊥,0AE EO ∴⋅=,又2144cos 25AE AE AO AE AO EAO AE AO AE AO⋅=∠=⋅==14425AEEC ∴⋅=. 故选B.【名师点睛】本题考查向量数量积的求解问题,关键是能够通过线性运算将问题转化为模长和夹角已知的向量之间的数量积问题.16.【湖师范大学附属中学2019届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF =A .3144AB AD + B .1344AB AD + C .12AB AD +D .3142AB AD +【答案】D【解析】根据题意得:1()2AF AC AE =+,又AC AB AD =+,12AE AB =,所以1131()2242AF AB AD AB AB AD =++=+.故选D.【名师点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.17.【2019年北京市高考数学试卷】已知向量a =(-4,3),b =(6,m ),且⊥a b ,则m =__________.【答案】8.【解析】向量4,36,m =-=⊥(),(),,a b a b 则046308m m ⋅=-⨯+==,,a b .【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.18.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】已知圆22450x y x ++-=的弦AB 的中点为(1,1)-,直线AB 交x 轴于点P ,则PA PB ⋅的值为__________. 【答案】8. 【答案】5-【解析】设(1,1)M -,圆心(2,0)C -,∵10112MC k -==-+,根据圆的性质可知,1AB k =-,∴AB 所在直线方程为1(1)y x -=-+,即0x y +=,联立方程22450x y x x y ⎧++-=⎨+=⎩可得,22450x x +-=,设11(,)A x y ,22(,)B x y ,则1252x x =-, 令0y =可得(0,0)P ,12121225PA PB x x y y x x ⋅=+==-,故答案为:-5.【名师点睛】本题主要考查了向量的数量积的坐标表示及直线与圆相交性质的简单应用,属于常考题型.。