七年级数学下册月考三测试题03
- 格式:doc
- 大小:211.50 KB
- 文档页数:2
河北省石家庄市赵县2022-2023学年七年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题是假命题的是()A .同旁内角互补,两直线平行;B .如果两条直线都和第三条直线平行,那么这两条直线也互相平行;C .同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;D .同位角互补,两直线平行;2.“小小竹排江中游,巍巍青山两岸走”,所描绘的图形变换主要是()A .平移变换B .翻折变换C .旋转变换D .以上都不对3.下列四个图形中,1∠与2∠是对顶角的是()A .B .C .D .4.2(0.7)-的平方根是()A .−0.7B .+0.7C .0.7±D .0.495.下列图形中,∠1与∠2是同位角的是()A .B .C .D .6.如图所示,直线AB 与CD 相交形成了1∠、2∠、3∠和4∠中,若要确定这四个角的度数,至少要测量其中的()A .1个角B .2个角C .3个角D .4个角7.在如下所示的条件中,可以判断两条直线互相垂直的是()①两直线相交所成的四个角都是直角;②两直线相交,对顶角互补;③两直线相交所成的四个角都相等.A .①②B .①③C .②③D .①②③8.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是()A .B .C .D .9.试说明“若180A B ∠+∠=︒,180C D ∠+∠=︒,A C ∠=∠,则B D ∠=∠”是真命题.以下是排乱的推理过程:①因为A C ∠=∠(已知);②因为180A B ∠+∠=︒,180C D ∠+∠=︒(已知);③所以180B A ∠=︒-∠,180D C ∠=︒-∠(等式的性质);④所以B D ∠=∠(等量代换);⑤所以180B C ∠=︒-∠(等量代换).正确的顺序是()A .①→③→②→⑤→④B .②→③→⑤→①→④C .②→③→①→⑤→④D .②→⑤→①→③→④10.如图,ABC 沿直线BC 向右平移得到DEF △,已知2EC =,8BF =,则CF 的长为()A .3B .4C .5D .611.若2253a b ==,,则a b +=()12.如图,//AB CD ,BF 交CD 于点E ,AE BF ⊥,34CEF ∠=︒,则A ∠的度数是()A .34°B .66°C .56°D .46°13.若2m -4与3m -1是同一个正数的平方根,则m 的值是()A .-3B .-1C .1D .-3或114.如图,长方形ABCD 的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形A B C D '''',则阴影部分面积是()A .12B .10C .8D .615.如图,,AB CD EC CD ⊥∥于C ,CF 交AB 于B ,已知229∠=︒,则1∠的度数是()A .58︒B .59︒C .61︒D .62︒16.如图,P 是∠ABC 内一点,点Q 在BC 上,过点P 画直线a ∥BC ,过点Q 画直线b ∥AB ,若∠ABC =115°,则直线a 与b 相交所成的锐角的度数为()A .25°B .45°C .65°D .85°二、填空题17.81的平方根是__________.18.如图,甲、乙两只蚂蚁在两条平行马路同一侧的A,B两点处,比赛看谁先横过马路.如果它们同时出发,速度一样,都走最近的道路,结果是______,依据是________________________.19.如图,若12∠=∠,则AD______BC,依据是__________________.三、解答题20.求下列各数的平方根:(1)121;(2)0.01;(3)72 9;(4)()213-.21.如图,已知:点A、点B及直线l.(1)请画出从点A到直线l的最短路线,并写出画图的依据.(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.22.如图,1∠与2∠互补,C EDF∠=∠.那么AED C∠=∠.证明如下:∵12180∠+∠=︒(已知),∴DF ______()∴C DFB ∠=∠()∵C EDF ∠=∠(已知)∴DFB EDF ∠=∠()∴______ ______()∴AED C ∠=∠()23.如图,AB 和CD 相交于点O ,OD 平分BOF ∠,OE CD ⊥于点O ,40AOC ∠=︒,求EOF ∠的度数.24.如图,AB 、CD 交于点O ,∠1=∠2,∠3:∠1=8:1,求∠4的度数.25.如图,EF //AD ,AD //BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.26.已知,在下列各图中,点O 为直线AB 上一点,∠AOC =60°,直角三角板的直角顶点放在点O处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC 的度数为°,∠CON的度数为°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB 的下方,此时∠BON的度数为°;(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为°;∠DOC 与∠BON的数量关系是∠DOC∠BON(填“>”、“=”或“<”);(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为°;∠AOM﹣∠CON的度数为°参考答案:1.D【分析】利用平行线的性质及判定分别判断后即可确定正确的选项.【详解】解:A 、同旁内角互补,两直线平行;是真命题,不合题意;B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不合题意;C 、同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,是真命题,不合题意;D 、同位角相等,两直线平行;故同位角互补,两直线平行是假命题,符合题意,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大.2.A【分析】根据平移是图形沿某一直线方向移动一定的距离,可得答案.【详解】解:“小小竹排水中游,巍巍青山两岸走”所描绘的图形变换主要是平移变换,故选:A .【点睛】本题考查了平移变换,利用了平移的定义.3.D【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可判断.【详解】解:由对顶角的定义可知,四个图形中D 中∠1与∠2为对顶角.故选:D .【点睛】本题考查了对顶角的定义,属于基础题,熟练掌握对顶角的概念是解决本题的关键.4.C【分析】根据平方根的定义解答.【详解】22(0.7)0.70.49-== ,0.7=±,2(0.7)∴-的平方根是0.7±.故选C .【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.B【分析】根据同位角的定义即两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角则可得出答案.【详解】解:A 、∠1与∠2的对顶角是同位角,故本选项不符合题意;B 、∠1与∠2是同位角,故本选项符合题意;C 、∠1与∠2是内错角,故本选项不符合题意;D 、∠1与∠2是同旁内角,故本选项不符合题意.故选:B .【点睛】本题考查了相交直线及其所成角的相关知识点,熟练区分同位角、内错角、同旁内角是解题的关键.6.A【分析】根据对顶角的定义解答即可.【详解】根据题意可得13∠=∠,24∠∠=,12180∠+∠= ∴要确定这四个角的度数,至少要测量其中的1个角即可.故选A【点睛】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键.7.D【分析】利用两条直线垂直的定义,结合补角、周角的定义、对顶角的性质逐一分析即可得出结论.【详解】解:∵因为两直线相交所成的四个角都是直角,即四个角都是90︒,∴所以两条直线互相垂直.∴①结论符合题意.两直线相交,对顶角互补,(对顶角相等)∴两条直线相交所成的对顶角是180=902︒︒.∴所以两条直线互相垂直.∴②结论符合题意.两直线相交所成的四个角都相等,∴四个角都是360=904︒︒.∴所以两条直线互相垂直.∴③结论符合题意.故选:D .【点睛】本题考查两条直线垂直的定义的理解与判断能力.如果两条直线相交所成的四个角中的任意一个角等于90︒,那么这两条直线垂直.理解对顶角相等、两条直线垂直的定义是解本题的关键.8.A【详解】解:图B 、C 、D 中,线段MN 不与直线l 垂直,故线段MN 的长度不能表示点M 到直线l 的距离;图A 中,线段MN 与直线l 垂直,垂足为点N ,故线段MN 的长度能表示点M 到直线l 的距离.故选A .9.C【分析】写出正确的推理过程,进行排序即可.【详解】证明:因为180A B ∠+∠=︒,180C D ∠+∠=︒(已知),所以180B A ∠=︒-∠,180D C ∠=︒-∠(等式的性质);因为A C ∠=∠(已知),所以180B C ∠=︒-∠(等量代换).所以B D ∠=∠(等量代换).∴排序顺序为:②→③→①→⑤→④.故选C .【点睛】本题考查推理过程.熟练掌握推理过程,是解题的关键.10.A【分析】根据平移的性质可得=BC EF ,根据CF EF EC =-即可求解.【详解】解:∵ABC 沿直线BC 向右平移得到DEF △,∴=BC EF ,∵CF BC EC =-,∴()==+CF BF BC BF CF EC --,∴()()1182322CF BF EC =-=-=,故选A .【点睛】本题考查了平移的性质,解一元一次方程,掌握平移的性质是解题的关键.11.D【分析】根据平方根和绝对值的意义先得出a b ,的值,再求出a b +即可得出答案.【详解】解:225a = ,||3b =,5a ∴=,3b =;5a =-,3b =;5a =,3b =-;5a =-,3b =-,则8a b +=±或2±.故选:D .【点睛】本题考查了平方根和绝对值的意义和有理数的加法,理解概念,掌握运算法则是解题关键.12.C【分析】由余角的定义得出AEC ∠的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵AE BF ⊥,34CEF ∠=︒,∴903456AEC ∠=-= ,∵//AB CD ,∴56A AEC ∠=∠= ,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.13.D【分析】根据平方根的性质列方程求解即可;【详解】当24=31m m --时,3m =-;当24310m m +=--时,1m =;故选:D.【点睛】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.14.C【分析】利用平移的性质得到AB ∥A ′B ′,BC ∥B ′C ′,则A ′B ′⊥BC ,延长A ′B ′交BC 于F ,AD 交A ′B ′于E ,CD 交B ′C ′于G ,根据平移的性质得到FB ′=2,AE =2,易得四边形ABFE 、四边形BEDG 都为矩形,然后计算出DE 和B ′E 后可得到阴影部分面积.【详解】解:∵长方形ABCD 先向上平移2个单位,再向右平移2个单位得到长方形A ′B ′C ′D ′,∴AB ∥A ′B ′,BC ∥B ′C ′,∴A ′B ′⊥BC ,延长A ′B ′交BC 于F ,AD 交A ′B ′于E ,CD 交B ′C ′于G ,∴FB ′=2,AE =2,易得四边形ABFE 、四边形BEDG 都为矩形,∴DE =AD -AE =6-2=4,B ′E =EF -B ′F =AB -B ′F =4-2=2,∴阴影部分面积=4×2=8.故选C .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.C【分析】延长DC 到F ,根据垂直的性质得到90DCE ∠=︒,根据余角的性质得到361∠=︒,根据平行线的性质由AB CD ∥,可得161∠=︒.【详解】延长DC 到F ,∵EC CD ⊥,∴90DCE ∠=︒,∵229∠=︒,∴361∠=︒,∵AB CD ∥,∴3161∠=∠=︒.故选C .【点睛】本田考查了平行线的性质,准确添加辅助线,熟练掌握知识点是解题关键.16.C【分析】首先根据题意画出图形,再根据两直线平行,同旁内角互补可得∠1=65°,再根据两直线平行,内错角相等可得∠2的度数.【详解】解:∵b∥AB,∴∠1+∠B=180°,∵∠ABC=115°,∴∠1=65°,∵a∥BC,∴∠2=∠1=65°,故选:C.【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补;两直线平行,内错角相等.17.±92【详解】81的平方根是;4,4的算术平方根即为2;故填±9;2.【点睛】前面题目可以根据平方根的定义求出结果;后面题目先根据算术平方根的定义化简18.同时到达平行线间的距离处处相等【分析】根据垂线段最短,以及平行线间的距离处处相等,进行作答即可.【详解】解:∵点到直线之间,垂线段最短,∴两只蚂蚁走的都是垂线段,∵平行线间的距离处处相等,它们同时出发,速度一样,∴它们同时到达;故答案为:同时到达,平行线间的距离处处相等.【点睛】本题考查平行线间的距离.熟练掌握平行线间的距离处处相等,是解题的关键.19. 内错角相等,两直线平行【分析】根据内错角相等,两直线平行,进行作答即可.【详解】解:若12∠=∠,AD BC∥,依据是内错角相等,两直线平行.故答案为: ,内错角相等,两直线平行.【点睛】本题考查平行线的判定.熟练掌握内错角相等,两直线平行,是解题的关键.20.(1)11±(2)0.1±(3)5 3±(4)13±【分析】(1)根据平方根的定义,进行求解即可;(2)根据平方根的定义,进行求解即可;(3)根据平方根的定义,进行求解即可;(4)根据平方根的定义,进行求解即可.【详解】(1)解:11=±;(2)0.1±;(3)53 ==±;(4)13=±.【点睛】本题考查求一个数的平方根.熟练掌握平方根的定义,是解题的关键.21.(1)如图所示:点E为所求见解析,根据垂线段最短;(2)如图所示见解析,根据两点之间线段最短.【分析】(1)过A作AE⊥l;(2)连接AB,与l交点就是O.【详解】(1)如图所示:点E为所求,根据垂线段最短;(2)如图所示:根据两点之间线段最短.【点睛】本题考查了垂线段最短,线段的性质:两点之间线段最短,熟练掌握这些知识点是本题解题的关键.22.见解析【分析】根据平行线的判定和性质,进行作答即可.【详解】证明:∵12180∠+∠=︒(已知),∴DF AC ∥(同旁内角互补,两直线平行),∴C DFB ∠=∠(两直线平行,同位角相等),∵C EDF ∠=∠(已知),∴DFB EDF ∠=∠(等量代换),∴DE BC ∥(内错角相等,两直线平行),∴AED C ∠=∠(两直线平行,同位角相等).【点睛】本题考查平行线的判定和性质.熟练掌握平行线的判定方法,证明两直线平行,是解题的关键.23.130︒【分析】OE CD ⊥,得到90COE DOE ∠=∠=︒,对顶角得到BOD AOC ∠=∠,根据OD 平分BOF ∠,得到DOF BOD ∠=∠,再用DOE DOF ∠+∠进行计算即可得解.【详解】解:∵OE CD ⊥,∴90COE DOE ∠=∠=︒,∵AB 和CD 相交于点O ,∴40BOD AOC ∠=∠=︒,∵OD 平分BOF ∠,∴40DOF BOD ∠=∠=︒,∴130EOF DOE DOF ∠=∠+∠=︒.【点睛】本题考查几何图形中的角度计算.正确的识图,理清角之间的和差关系,是解题的关键.24.∠4=36°【分析】利用∠1=∠2,∠3:∠1=8:1的关系,结合平角的定义,可得∠1,∠2的度数,运用对顶角相等得∠4的度数.【详解】∵∠1+∠2+∠3=180°,又∵∠1=∠2,∠3:∠1=8:1,即∠3=8∠1,∴∠1+∠1+8∠1=180°,即∠1=18°,∴∠4=∠1+∠2=36°.【点睛】本题考查对顶角的性质以及平角的定义,是一个需要熟记的内容.25.20°【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【详解】∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB−∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【点睛】本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.26.(1)120;150;(2)30°;(3)30,=;(4)150;30.【分析】(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON 的度数;(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.【详解】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.故答案为120;150;(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,由(1)得∠BOC=120°,∴∠BOM=12∠BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为30°;(3)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.故答案为30,=;(4)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为150;30.【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.。
人教版七年级下册数学第三次月考试卷一、单选题1.在﹣3,0,π)A.0 B.﹣3 C.πD2.若x是9的算术平方根,则x是()A.3 B.-3 C.9 D.81 3.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 334.下列计算不正确的是()A=±2 B9C0.4 D 65.方程1ax yx by+=⎧⎨+=⎩的解是11xy=⎧⎨=-⎩,则a,b为( )A.1ab=⎧⎨=⎩B.1ab=⎧⎨=⎩C.11ab=⎧⎨=⎩D.ab=⎧⎨=⎩6.在数轴上表示不等式组21xx>-⎧⎨≤⎩的解集,其中正确的是()A.B.C.D.7.下列语句中,是假命题的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.互补的两个角是邻补角D.垂线段最短8.实数a,b在数轴上的位置如图所示,则下列各式表示正确的是()A.b﹣a<0 B.1﹣a<0 C.b﹣1>0 D.﹣1﹣b<09.如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°10.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”,小刚却说:“只要把你的13给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出方程组正确的是()A.210330x yx y+=⎧⎨+=⎩B.210310x yx y+=⎧⎨+=⎩C.220310x yx y+=⎧⎨+=⎩D.220330x yx y+=⎧⎨+=⎩二、填空题112的相反数是____________,绝对值是_________________.12.87.19.(不用计算器)13.将方程2x+3y=6写成用含x的代数式表示y,则y=________.14.不等式3x﹣5≤1的正整数解是_______.15.在一本书上写着方程组21x pyx y+=⎧⎨+=⎩的解是0.5xy=⎧⎨=⎩,其中,y的值被墨渍盖住了,不过,我们可解得出p=___________.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.一个立方体的体积是64m3,若把这个立方体体积扩大1000倍,则棱长为______.三、解答题183|.19.解方程组4421x y x y -=⎧⎨+=-⎩.20.如图,经过平移,四边形ABCD 的顶点A 移到点A′,作出平移后的四边形.21.求不等式组34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩的整数解.22.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG ,∠CED=∠GHD (1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.某电器超市销售每台进价分别200元,170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台;(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a-3b|+(a+b-4)²=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案1.D【分析】从四个数中先找出无理数,再根据实数大小比较的法则进行比较即可得出答案.【详解】∵﹣3,0是有理数,∴无理数有π∴故选:D.【点睛】本题考查实数大小的比较,解题的关键是掌握实数大小比较的基本方法.2.A【详解】试题解析:∵32=9,,故选A.3.B【详解】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.4.A【分析】根据平方根和立方根的求解方法对原式各项计算得到结果,即可作出判断.【详解】A、原式=2,错误;B、原式=|﹣9|=9,正确;C、原式=0.4,正确;D、原式=﹣6,正确.故选:A.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的计算法则. 5.B【解析】由题意得:1011ab-=⎧⎨-=⎩,解得:1ab=⎧⎨=⎩,故选B.6.A【分析】先根据题意得出不等式组的解集,再在数轴上表示出来即可.【详解】由题意不等式组的解集为;﹣2<x≤1,在数轴上表示为:.故选:A.【点睛】本题考查解一元一次不等式组和在数轴上表示解集,熟练掌握解不等式组的方法是解此题的关键.7.C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、所有的实数都可用数轴上的点表示,正确是真命题,B、等角的补角相等,正确是真命题,C、互补的两个角不一定是邻补角,错误是假命题,D、垂线段最短,正确是真命题,故选:C.【点睛】此题主要考查命题的真假,涉及到补角和垂线段的知识,难度一般.8.A【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得b<a<0,再根据有理数的加减法法则可得答案.【详解】解:由题意,可得b<a<0,则b﹣a<0,1﹣a>0,b﹣1<0,﹣1﹣b与0无法比较,表示正确的是A;故选:A.【点睛】本题考查实数与数轴,关键是掌握在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.也考查了有理数的加减法法则.9.A【分析】如图,过点D作c∥a.由平行线的性质进行解题.【详解】如图,过点D作c∥a.则∠1=∠CDB=25°.又a ∥b ,DE ⊥b , ∴b ∥c ,DE ⊥c , ∴∠2=∠CDB+90°=115°. 故选A . 【点睛】本题考查了平行线的性质.能正确作出辅助线是解决此题的关键. 10.D 【详解】试题解析:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为102xy +=, 化简得220x y +=;根据把小龙的13给小刚,小刚就有10颗,可表示为103y x +=,化简得3x+y=30. 列方程组为220330.x y x y +=⎧⎨+=⎩ 故选D.11.2 2【详解】2的相反数是-2)=2,根据绝对值的2的绝对值是22.故答案为22. 考点:相反数;绝对值. 12.4.487 【详解】试题分析:被开方数的小数点每移动两位,其算术平方根的小数点移动一位..87,.487 考点:算术平方根 13.6−2x 3(或2−23x )【分析】将x 看做已知数求出y 即可. 【详解】解:方程2x+3y=6, 解得:y=6−2x 3=2−23x . 故答案为6−2x 3(或2−23x )14.2或1 【分析】解出不等式3x ﹣5≤1的解集,即可得到不等式3x ﹣5≤1的正整数解. 【详解】 解:3x ﹣5≤1 3x≤6 x≤2,∴不等式3x ﹣5≤1的正整数解是2或1, 故答案为:2或1. 【点睛】本题考查解一元一次不等式和正整数的定义,解题的关键是掌握解一元一次不等式. 15.3 【详解】解:将x=0.5代入第二个方程可得:0.5+y=1,则y=0.5,将x=0.5和y=0.5代入第一个方程可得:0.5+0.5p=2,解得:p=3. 故答案为:3. 16.65 【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可. 【详解】解:如图,由题意可知, AB ∥CD , ∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.40m【分析】根据体积扩大1000倍,可得立方体的体积,根据开方运算,可得答案.【详解】解:64×1000=64000m3,40,故答案为:40m.【点睛】本题考查立方根,解题的关键是先求体积再开方.18.2【分析】根据立方根和平方根的定义以及去绝对值法则,对式子化简即可得到答案.【详解】3|=2+0﹣3+3=2.【点睛】本题主要考查了立方根和二次根式的化简以及去绝对值法则,熟练掌握各知识点是解题的关键.19.7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【分析】方程组利用代入消元法求出解即可.【详解】解:4421x yx y-=⎧⎨+=-⎩①②,由①得:x=y+4,代入②得:4y+16+2y=﹣1,解得:y=﹣176,将y=﹣176代入①得:x=76,则方程组的解为7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查方程组的解法,解题的关键是掌握代入消元法的应用.20.见解析.【分析】根据题意分别作BB′、CC′、DD′与AA′平行且相等,即可得到B、C、D的对应点,顺次连接即可.【详解】解:如图:四边形A′B′C′D′即为所求.【点睛】本题考查的是平移变换作图.注意掌握作平移图形时,找关键点的对应点也是关键的一步.21.不等式组的所有整数解为3,4.【分析】根据题意先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】 解:34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩①②, ∵解不等式①得:x <92, 解不等式②得:x >52, ∴不等式组的解集为52<x <92, ∴不等式组的所有整数解为3,4.【点睛】本题考查解一元一次不等式以及解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.22.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b =+由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩ 解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x=x=±.解得3【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【详解】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.(1)A、B两种型号电风扇的销售单价分别为250元,210元;(2)A型号电风扇最多能采购10台;(3)在(2)的条件下,超市不能实现利润为1400元的目标,理由见解析【分析】(1)设A种型号的电风扇的销售单价为x元,B种型号的电风扇的销售单价为y元,根据总价=单价×数量结合近两周的销售情况统计表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号的电风扇采购a台,则B种型号的电风扇采购(30-a)台,根据进货总价=进货单价×进货数量结合超市准备用不多于5400元的金额采购两种型号的电风扇共30台,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售完这30台电风扇实现利润为1400元时的A种型号电风扇采购台数a,再结合(2)的取值范围判断即可.【详解】(1)设A、B两种型号的电风扇销售单价分别为x元、y元.⎧⎨⎩3518004103100x yx y+=+=解得:250210xy=⎧⎨=⎩答:A、B两种型号电风扇的销售单价分别为250元,210元.(2)设采购A种型号电风扇a台.200a+170(30-a)≤5400 解得:a≤10答:A型号电风扇最多能采购10台.(3)依题意解(250-200)a+(210-170)(30-a)=1400解得:a=20 ∵a≤10∴在(2)的条件下,超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.25.(1)a=3,b=1;(2)A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD.【分析】(1)根据非负数的性质列方程组求解即可;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况:①在灯A射线到达AN之前;②在灯A射线到达AN之后,分别列出方程求解即可;(3)设A灯转动时间为t秒,则∠CAN=180°−3t,∠BAC=∠BAN−∠CAN=3t−135°,过点C作CF∥PQ,则CF∥PQ∥MN,得出∠BCA=∠CBD+∠CAN=180°−2t,∠BCD=∠ACD−∠BCA=2t−90°,即可得出结果.【详解】解:(1)∵|a-3b|+(a+b-4)²=0,∴3040a ba b-=⎧⎨+-=⎩,解得:31ab=⎧⎨=⎩,故a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①在灯A射线到达AN之前,由题意得:3t=(20+t)×1,解得:t=10,②在灯A射线到达AN之后,由题意得:3t−180°=180°−(20+t)×1,解得:t=85,综上所述,A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD;理由:设A灯转动时间为t秒,则∠CAN=180°−3t,∴∠BAC=∠BAN−∠CAN=45°−(180°−3t)=3t−135°,∵PQ∥MN,如图2,过点C作CF∥PQ,则CF∥PQ∥MN,∴∠BCF=∠CBD,∠ACF=∠CAN,∴∠BCA=∠BCF+∠ACF=∠CBD+∠CAN=t+180°−3t=180°−2t,∵CD⊥AC,∴∠ACD=90°,∴∠BCD=∠ACD−∠BCA=90°−(180°−2t)=2t−90°,∴2∠BAC=3∠BCD.【点睛】本题考查了非负数的性质、解二元一次方程组、平行线的性质等知识,熟练掌握平行线的性质是解题的关键.。
人教版数学七年级下册第三次月考试题一、单选题1.下列各式的值一定是正数的是( )A B C .21a D .a 2.下列式子中,是一元一次不等式的是( )A .x 2<1B .y –3>0C .a+b=1D .3x=2 3.上海是世界知名金融中心,以下能准确表示上海市地理位置的是( ) A .在中国的东南方B .东经121.5C .在中国的长江出海口D .东经12129',北纬3114' 4.如图,已知a ∥b ,小明把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为( )A .65°B .120°C .125°D .145° 5.若点P (a ,b )在第二象限,则点Q (b +2,2﹣a )所在象限应该是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A .不超过3cmB .3cmC .5cmD .不少于5cm 7.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .7385y x y x =+⎧⎨+=⎩B .7385y x y x =+⎧⎨-=⎩C .7385y x y x =-⎧⎨=+⎩D .7385y x y x =+⎧⎨=+⎩8.下列计算或命题:①有理数和无理数统称为实数;=a ;的算术平方根是2;④实数和数轴上的点是一一对应的,其中正确的个数有( )A .1个B .2个C .3个D .4个9.如图,AB ∥CD ∥EF ,EH ⊥CD 于H ,则∠BAC+∠ACE+∠CEH=( ).A .180°B .270°C .360°D .540°10.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A .36,8B .28,6C .28,8D .13,311.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2) 12.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--.现已知x 1=-21x 3,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( )A .13-B .1-C .34D .4二、填空题13.下列实数中:3.14,π,0,2270.3232232223(⋯每相邻两个3之间依次增加一个2),0.123456;其中无理数有______个.14.化简(21+-+_____.15.不等式7﹣2x >1的非负整数解为:_______________.16.如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3m,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF的周长为_____cm.17.编队飞行(即平行飞行)的两架飞机A、B在直角坐标系中的坐标分别为A(﹣1,2)、B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是_____.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是_____.三、解答题19.如图所示,已知AB∥CD,∠C=75°,∠A=25°,求∠E的度数.20.解方程(或方程组):(1) 4x2=81;(2)(2x+10)3=﹣27.(3)24 {4523x yx y-=-=-(4)11 {23 3210. x yx y+-=+=21.长阳公园有四棵古树A,B,C,D (单位:米).(1)请写出A,B,C,D 四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH 用围栏圈起来,划为保护区,请你计算保护区的面积.22.已知()267567190a b a b +-+--=.(1)求a 和b 的值;(2)当x 取何值时,ax b -的值大于2.23.如图,已知直线AB 和CD 相交于O 点,射线OE ⊥AB 于O ,射线OF ⊥CD 于O ,且∠BOF =25∘.求:∠AOC 与∠EOD 的度数.24.在平面直角坐标系xOy 中,有一点P (a ,b ),实数a ,b ,m 满足以下两个等式:2a -6m +4=0,b +2m -8=0.(1)当a =1时,点P 到x 轴的距离为______;(2)若点P 在第一三象限的角平分线上,求点P 的坐标;(3)当a <b 时,则m 的取值范围是______.25.列方程组解应用题:某学校在筹建数学实验室过程中,准备购进一批桌椅,现有三种桌椅可供选择:甲种每套150元,乙种每套210元,丙种每套250元.若该学校同时购买其中两种不同型号的桌椅50套,恰好花费了9000元,则共有哪几种购买方案?26.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC度数.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC 与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC 有何数量关系?并说明理由.参考答案1.C【解析】【分析】根据实数、绝对值以及算术平方根的性质进行选择即可.【详解】解:A 、当a≤0时,,故A 错误;B 、当a=0时,,故B 错误;C 、∵a≠0,∴a 2>0,∴21a >0,故C 正确; D 、当a=0时,|a|=0,故D 错误;故选:C .【点睛】本题考查了实数,立方根,非负数:绝对值和算术平方根,掌握非负数的性质是解题的关键. 2.B【解析】【分析】根据一元一次不等式的定义,只含有一个未知数,并且未知数的次数是1的不等式,即可解答.【详解】解:A 、未知数次数是2,属于一元二次不等式,故本选项错误;B 、符合一元一次不等式的定义,故本选项正确;C 、含有2个未知数,属于二元一次方程,故本选项错误;D 、含有1个未知数,是一元一次方程,故本选项错误.故选B .【点睛】本题考查一元一次不等式的定义,解题的关键是熟练掌握一元一次不等式的定义. 3.D【解析】【分析】根据坐标确定点的位置可得.【详解】解:A、在中国的东南方,无法准确确定上海市地理位置;B、东经121.5,无法准确确定上海市地理位置;C、在中国的长江出海口,法准确确定上海市地理位置;D、东经12129',北纬3114',是地球上唯一的点,能准确表示上海市地理位置;故选:D.【点睛】本题主要考查坐标确定点的位置,掌握将平面用两条互相垂直的直线划分为四个区域,据此可表示出平面内每个点的准确位置是关键.4.C【解析】【分析】根据两直线平行,同位角相等,即可得到∠AEB=∠ACD=125°,再根据两直线平行,同位角相等,即可得到∠2的度数.【详解】如图所示,∵∠1=35°,∠ACB=90°,∴∠ACD=125°,∵a∥b,∴∠AEB=∠ACD=125°,∴由图可得∠2=∠AEB=125°,故选:C.【点睛】本题考查了平行线的性质,直角三角形的性质,熟记性质并准确识图是解题的关键.5.A【解析】【分析】直接利用第二象限内点的坐标特点得出a,b的符号进而得出答案.【详解】∵点P(a,b)在第二象限,∴a<0,b>0,∴b+2>0,2﹣a>0,∴点Q(b+2,2﹣a)所在象限应该是第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标特点是解题关键.6.A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P到直线l的距离是小于或等于3,故选A.【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短.7.C【解析】【分析】根据题意确定等量关系为:①组数×每组7人=总人数-3人;②组数×每组8人=总人数+5人.由此列方程组即可.【详解】根据组数×每组7人=总人数-3人,得方程7y=x-3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为73 85y xy x=-⎧⎨=+⎩.故选C.【点睛】本题考查了二元一次方程组的应用,根据题意确定等量关系为组数×每组7人=总人数-3人和组数×每组8人=总人数+5人是解决问题的关键.8.D【解析】【分析】利用实数的定义、算术平方根的定义以及立方根的性质,分别判定各项即可解答.【详解】①有理数和无理数统称为实数,①正确;,②正确;,4的算术平方根是2,③正确;④实数和数轴上的点是一一对应的,④正确.故选D.【点睛】本题考查了命题与定理,熟练运用相关定义是解决问题的关键.9.C【解析】【分析】根据平行线的性质可以求得:∠BAC与∠ACD,∠DCE与∠CEF的度数的和,再减去∠HEF 的度数即可.【详解】∵AB∥CD,∴∠BAC+∠ACD=180°,同理∠DCE+∠CEF=180°,∴∠BAC+∠ACE+∠CEF=360°;又∵EH⊥CD于H,∴∠HEF=90°,∴∠BAC+∠ACE+∠CEH=∠BAC+∠ACE+∠CEF-∠HEF=360°-90°=270°.故选B .【点睛】本题主要考查了平行线的性质:两直线平行同旁内角互补.10.A【解析】【分析】此题不变的是井深,用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】设绳长x 米、井深y 米,依题意有4314x y x y ⎧=+⎪⎪⎨⎪=+⎪⎩ , 解得368x y =⎧⎨=⎩, 即:绳长36米、井深8米.故选:A【点睛】本题考核知识点:二元一次方程组的应用.解题关键点:设好未知数,根据题意,找出等量关系,列出方程(组).11.D【解析】依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.点睛:本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.12.D【解析】【分析】根据已知条件可以先计算出几个x的值,从而可以发现其中的规律,求出x2019的值.【详解】解:由已知可得,x1=13 -,213,14 13x==⎛⎫--⎪⎝⎭314,314x==-411, 143x==--可知每三个一个循环,2019÷3=673,故x2019=4.故选D.【点睛】本题考查数字的规律问题,解题的关键是发现其中的规律,求出相应的x的值.13.4【解析】【分析】根据无理数的定义即可求出答案.【详解】π,0.3232232223…(每相邻两个3之间依次增加一个2)是无理数.故答案为:4.【点睛】本题考查了无理数的定义,解题的关键是熟练运用无理数的定义,本题属于基础题型.14.3+【解析】【分析】先算平方,再去绝对值,然后算立方根,从左往右依次相加即可.【详解】原式3故答案为3【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.15.0、1、2【解析】【分析】首先根据不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:不等式7-2x>1,整理得,2x<6,x<3,则不等式的非负整数解是:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键;解不等式应根据不等式的基本性质.16.20【解析】【分析】根据平移的距离表示出长方形A'ECF的长和宽,即可求出结论.【详解】解:由题意得到BE=3cm,DF=4cm,∵AB=DC=7cm,BC=10cm,∴EC=BC-BE=10cm-3cm=7cm,FC=DC-DF=7cm-4cm=3cm,∴长方形A'ECF的周长=2×(7+3)=20(cm),故答案为20.【点睛】本题考查了平移的性质,认准图形,准确求出长方形A'ECF的长和宽是解题的关键.17.(1,0)【解析】【分析】先根据飞机A确定出平移规律,再求出飞机B的横坐标与纵坐标即可得解.【详解】∵飞机A(-1,2)到达(2,-1)时,横坐标加3,纵坐标减3,∴飞机B(-2,3)的横坐标为-2+3=1,纵坐标为3-3=0,∴飞机B的坐标为(1,0).故答案为(1,0)【点睛】本题考查了坐标与图形的变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.18.(2018,0)【解析】分析:根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.详解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2018次运动后,动点P的横坐标为2018,纵坐标为1,0,2,0,每4次一轮,∴经过第2018次运动后,动点P的纵坐标为:2018÷4=504余2,故纵坐标为四个数中第2个,即为0,∴经过第2018次运动后,动点P的坐标是:(2018,0),故答案为: (2018,0).点睛:此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.19.50°.【解析】【分析】先根据平行线的性质得∠BFE=∠C=105°,然后根据三角形外角性质求∠E的度数.【详解】解:∵AB∥CD,∴∠BFE=∠C=75°,∵∠BFE=∠A+∠E,∴∠E=75°﹣25°=50°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.20.(1) x=92±; (2)x=132-; (3)436{313xy==;(4)=3{1=2xy.【解析】【分析】(1)系数化为1后,利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可;(3)利用代入消元法进行求解即可;(4)整理后,利用加减消元法进行求解即可.【详解】(1) 4x2=81,x2=81 4,x=所以x=92±;(2)(2x+10)3=﹣27,,2x+10=-3,x=132 -;(3)244523x yx y-=⎧⎨-=-⎩①②,由①得y=2x-4③,把③代入②得,4x-5(2x-4)=-23,解得x=436,把x=436代入③,得y=313,所以436313x y ⎧=⎪⎪⎨⎪=⎪⎩; (4) 整理得3283210x y x y -=⎧⎨+=⎩①②, ①+②得,6x=18,x=3,②-①得,4y=2,y=12, 所以312x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了利用平方根定义、立方根定义解方程,解二元一次方程组,熟练掌握相关定义以及求解方法是解题的关键.21.(1)A(10,10),B(20,30),C(40,40),D(50,20);(2)1950m 2【解析】试题分析:(1)根据图形即可直接写出A 、B 两点坐标;(2)用大长方形面积减去三个小三角形面积即可.试题解析:(1)A (10,10)、B (20,30);(2)保护区面积为:60×50﹣12×10×60﹣12×10×50﹣12×20×50=1950m 2. 考点:点的坐标. 22.(1)21a b =⎧⎨=-⎩;(2) 当12x >时, 21x +的值大于2 【解析】【分析】(1)已知()267567190a b a b +-+--=,由非负数的性质可得675067190a b a b +-=⎧⎨--=⎩,解方程组即可求得求a 和b 的值;(2)根据题意可得2ax b ->,把a 和b 的值代入后解不等式即可求得x 的取值范围.【详解】(1)由题意得,675067190a b a b +-=⎧⎨--=⎩, 解得, 21a b =⎧⎨=-⎩; (2) 2ax b ->∵2a =,1b =-∴()212x --> 即12x > 所以,当12x >时, 21x +的值大于2. 【点睛】本题考查了非负数的性质、二元一次方程组的解法及一元一次不等式的解法,根据非负数的性质得到方程组675067190a b a b +-=⎧⎨--=⎩是解决问题的关键.23.∠AOC =115°, ∠EOD =25°.【解析】【分析】根据垂线的性质和余角及补角的定义可求出∠ AOC ,由垂线的性质和余角的定义可求出∠EOD【详解】解:∵OF ⊥CD ,∴∠COF =90°,∴∠BOC =90°-∠BOF =65°,∴∠AOC =180°-65°=115°. ∵OE ⊥AB ,∴∠BOE =90°,∴∠EOF =90°-25°=65°,∵OF ⊥CD∴∠DOF=90°∴∠EOD=∠DOF −∠EOF=90°-65°=25°.【点睛】垂线的性质及补角和余角的定义都是本题的考点,正确找出角之间的关系是解题的关键. 24.(1)6.(2)(4,4).(3)m<2【解析】【分析】(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.【详解】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.【点睛】本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.25.有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套【解析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.解:①若同时购买甲、乙两种桌椅,则设购买甲x套,购买乙y套.根据题意,得50 1502109000x yx y+=⎧⎨+=⎩,解方程组,得2525x y =⎧⎨=⎩; ②若同时购买甲、丙两种桌椅,则设购买甲x 套,购买乙z 套.根据题意,得501502509000x z x z +=⎧⎨+=⎩, 解方程组,得 3515x z =⎧⎨=⎩, ③若同时购买乙、丙两种桌椅,则设购买乙y 套,购买丙z 套.根据题意,得502102509000y z y z +=⎧⎨+=⎩, 解方程组,得87.537.5y z =⎧⎨=-⎩(不符题意,舍),所以,共有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套. 26.(1)80°;(2)详见解析;(3)详见解析【解析】【分析】(1)过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP ,再根据APC APE CPE BAP DCP ∠=∠+∠=∠+∠进行计算即可;(2)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠AKE =∠BAK ,∠CKE =∠DCK ,得到∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,同理可得,∠APC =∠BAP +∠DCP ,再根据角平分线的定义,得1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,进而得到1.2AKC APC ∠=∠ (3)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠BAK =∠AKE ,∠DCK =∠CKE ,进而得到∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,同理可得,∠APC =∠BAP −∠DCP ,再根据角平分线的定义,得出1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,进而得到1.2AKC APC ∠=∠ 【详解】解:(1)如图1,过P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠APE =∠BAP ,∠CPE =∠DCP ,∴602080APC APE CPE BAP DCP ∠=∠+∠=∠+∠=+=; (2)1.2AKC APC ∠=∠理由:如图2,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠AKE =∠BAK ,∠CKE =∠DCK ,∴∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP +∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K , ∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,∴12AKC APC ∠=∠; (3) 12AKC APC ∠=∠;理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP −∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K ,∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,∴1.2AKC APC ∠=∠【点睛】考核知识点:平行线判定和性质综合.添辅助线,灵活运用平行线性质是关键.第21 页。
2024年03月七年级下学期数学月考试卷一、单选题(每题3分,共24分)1.下列各式:①;②;③;④;⑤.其中是一元一次方程的有( )A .1个B .2个C .3个D .4个2.已知是方程的解,则k 的值是( )A .B .2C .3D .53.已知关于的方程是一元一次方程,则( )A .B .C .D .4.若,则下列变形正确的是( )A .B .C .D .5.《九章算术》中有这样一道数学问题,原文如下:清明游园,共坐八船,大船满六,小船满四,三十八学子,满船坐观.请问客家,大小几船?其大意为:清明时节出去游园,所有人共坐了8只船,大船每只坐6人,小船每只坐4人,38人刚好坐满,问:大小船各有几只若设有只小船,则可列方程为( )A .B . B .C .D .6.下列方程组中,是二元一次方程组的是( )A .B .C .D .7.若关于、的方程组的解满足,则等于( )A .2021B .2022C .2023D .20243710+=2353x x x -=+211x +=21=x32x +3x =-()425k x k x +--=2-x ()1253k k xk --+=k =2±22-1±a b =23a b =a c b c +=-a b c c =2211a b c c =++x ()46838x x +-=()64838x x +-=4638x x +=8638x x +=357x y x y +=⎧⎨-=⎩261x y xy +=⎧⎨=⎩3120x y x z -=⎧⎨+=⎩35126x y y x-=⎧⎪⎨+=⎪⎩x y 32232732x y k x y k -=-⎧⎨+=-⎩2023x y +=k8.若方程组的解是,则方程组的解是( )A .B .C .D .二、填空题(每题3分,共18分)9.当 时,代数式的值是5.10.若,则 .11.若方程的解也是关于的方程的解,则的值为 12.若是一元一次方程,则的值是 .13.若满足方程组的,互为相反数,则的值为 .14.把直径为,长为的圆钢锻造成半径为的圆钢,则锻造后圆钢的长____________厘米.三、解答题(共78分)15.(每小题4分,共8分)解方程:(1); (2).16.(每小题5分,共10分)解下列方程组:(1); (2).23133530.9a b a b -=⎧⎨+=⎩8.31.2a b =⎧⎨=⎩2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩8.31.2x y =⎧⎨=⎩10.31.2x y =⎧⎨=⎩ 6.32.2x y =⎧⎨=⎩10.30.2x y =⎧⎨=⎩m =453m -()21270a b a b +-+-+=b a =564x x -=x ()234x n --=n 2(3)5m m x --=m 321x y m x y +=+⎧⎨-=-⎩x y m 6cm 16cm 4cm ()2123x x -=++122123x x +--=248x y x y -=⎧⎨+=⎩422237x y x y -=⎧⎨+=-⎩17.(本题6分)当k 为何值时,关于x 的方程7k+6x=2的解比关于x 的方程2(x-8)+5=1-x 的解大6?18.(本题6分)已知是方程组的解,那么的值为多少?19.(本题7分)对于任意有理数a ,b ,定义一种新运算:,等式右边是通常的加法、减法运算,如:.(1)求的值;(2)若,求的值.32x y =⎧⎨=⎩()139ax by a b x ay +=⎧⎨+-=⎩2030()a b -1*a b a b=-+12*2313=-+=(3)*2-()2*1*5m m =m20.(本题7分)以下是欣欣解方程:的解答过程:解:去分母,得,..①去括号,得,........②移项,合并同类项得:......③解得:..........④(1)欣欣的解答过程从第步开始出错(写序号即可);(2)请你完成正确的解答过程.21.(本题8分)小明解方程,由于粗心大意,在去分母时,方程右边的没有乘6,由此求得的解为,试求的值,并求出原方程的解.221132x x +--=()()223211x x +--=22631x x +-+=44x -=-1x =21332x x a -+=-3-2x =a22.(本题8分)甲和乙两人同解方程组,甲因抄错了a ,解得,乙因抄错了b ,解得,求的值.23.(本题9分)图1是某年10月的月历.(1)如图1所示,用一个框竖着框住三个数,若被框住的三个数的和为60,则这三个数分别为______.(2)如图1所示,若任意画一个十字框,框住五个数,设这五个数为,,,,,具体见图2,若,则的值为______.(3)(2)中画的十字框中,是否存在的值,使得?请说明理由.512x ay bx y +=⎧⎨+=⎩①②52x y =⎧⎨=⎩32x y =⎧⎨=⎩52a b -a b c d e 48a b c d +++=e e 100a b c d +++=24.(本题9分)某服装店用20000元购进甲,乙两种新式服装共450套,这两种服装的进价,标价如表所示:类型价格甲型乙型进价(元/件)4050标价(元/件)6080(1)求这两种服装各购进的件数;(2)如果甲种服装按标价的8折出售,乙种服装按标价的7折出售,那么这批服装全部售完后,服装店共盈利多少元?参考答案:1.A【分析】本题考查了一元一次方程的定义,理解定义“含有一个未知数,并且未知数的最高次数为的整式方程叫做一元一次方程.”是解题的关键.【详解】解:①,不含未知数,不是方程,不符合题意;②,未知数的最高次数是,不是一元一次方程,不符合题意;③,符合一元一次方程的定义,符合题意;④,不是整式方程,不符合题意;⑤,不是方程,不符合题意;故选:A .2.A【分析】本题考查一元一次方程的解:能使一元一次方程左右两边相等的未知数的值称为一元一次方程的解.将代入方程即可求解.【详解】解:由题意得:代入方程得:,解得:故选:A3.C【分析】本题考查一元一次方程的定义,根据等式两边只有一个未知数且未知数的最高指数为1的方程是一元一次方程列式求解即可得到答案.【详解】解:∵方程是一元一次方程,∴,,解得:,故选:C .4.D【分析】本题主要考查等式的基本性质,根据等式的基本性质:等式两边都加上(或减去)同一个整式,所得的结果仍是等式;等式两边都乘(或除以)同一个数(除数不能为零),所得的结果仍是等式,据此逐项判断即可.【详解】A 、,变形错误,该选项不符合题意;B 、,变形错误,该选项不符合题意;13710+=2353x x x -=+2211x +=21=x32x +3x =-3x =-()425k x k x +--=235k k -+=2k =-()1253k k xk --+=11k -=20k -≠2k =-22a b =a c b c +=+C 、当时,,变形错误,该选项不符合题意;D 、,变形正确,该选项符合题意.故选:D5.A【分析】本题考查了一元一次方程的应用,根据题意正确的列方程即可.【详解】解:设有只小船,则大船有只,根据题意,得,故选:A .6.A【分析】本题主要考查了二元一次方程组的概念,理解并掌握二元一次方程组的定义是解题关键.二元一次方程是指含有两个未知数,并且所含未知数的项的次数都是1的整式方程.两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组.利用二元一次方程组的定义逐一选项判断即可.【详解】解:A .方程组是二元一次方程组,符合题意;B .∵方程组中方程是二次方程,∴该方程组不是二元一次方程组,不符合题意;C .∵方程组含有三个未知数,∴该方程组不是二元一次方程组,不符合题意;D .∵方程组中方程不是整式方程,∴该方程组不是二元一次方程组,不符合题意.故选:A .7.D【分析】观察方程组,及条件,将方程组两式相加,即可得到关于等式,进而求得的值,本题考查了二元一次方程组的解法,解题的关键是:观察已知条件,灵活求解.0c ≠a b c c=2c 11+≥x ()8x -()64838x x +-=357x y x y +=⎧⎨-=⎩261x y xy +=⎧⎨=⎩1xy =3120x y x z -=⎧⎨+=⎩35126x y y x-=⎧⎪⎨+=⎪⎩126y x +=2023x y +=x y +k k【详解】解:两式相加可得:,即,,故选:.8.C【分析】本题考查了二元一次方程组的解,根据加减法,可得的解,再根据解方程,可得答案,解决本题的关键是先求的解,再求的值.【详解】解:∵方程组的解是,∴方程组的解是,解得,故选:C .9.5【分析】本题考查了已知代数式的值求字母的值,解一元一次方程,先根据题意列式,再解出的值,即可作答.【详解】解:依题意,得,去分母,得,解得,故答案为:5.10.【分析】本题考查算术平方根的非负性,熟练掌握非负数的性质是解题的关键.根据非负数之和等于0,则每一个非负数都等于0,可求出a ,b 的值,再计算即可.【详解】解∶∵,32232732x y k x y k -=-⎧⎨+=-⎩5555x y k +=-1x y k +=-2023x y += 12023k ∴-=2024k ∴=D ()()2 ,1x y +-()()2 ,1x y +-x y 、23133530.9a b a b -=⎧⎨+=⎩8.31.2a b =⎧⎨=⎩2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩28.31 1.2x y +=⎧⎨-=⎩6.32.2x y =⎧⎨=⎩4553m -=m 4553m -=4515m -=5m =8-b a ()21270a b a b +-+-+=∴,解得,∴.故答案为∶ .11.2【分析】本题考查了同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程.先解一次方程得,根据同解方程的定义得方程的解为,然后把代入此方程求出n .【详解】解:,方程的解也是关于的方程的解,是方程的解,,故答案为:212.【分析】本题主要考查了一元一次方程的定义,先根据一元一次方程的定义得出关于m 的式子,再求值即可.【详解】因为是一元一次方程,所以且,解得且,所以.故答案为:.10270a b a b +-=⎧⎨-+=⎩23a b =-⎧⎨=⎩()328b a =-=-8-564x x -=6x =()234x n --=6x =6x =564x x-=546x x -=6x = 564x x -=x ()234x n --=6x ∴=()234x n --=2(63)4n ∴⨯--=234n ⨯-=64n -=2n =3-2(3)5m m x --=21m -=30m -≠3m =±3m ≠3m =-3-13.【分析】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.把m 看作已知数表示出x 与y ,代入计算即可求出m 的值.【详解】解:得:,解得:,将代入②得:,解得:,∵x 与y 互为相反数,∴,即,解得:.故答案为:.14.9【分析】本题考查了一元一次方程的应用,由题意知,锻造后的圆钢与锻造前的圆钢的体积相同,则可以设锻造后的圆钢的长为x ,从而列出方程求出锻造后的圆钢的长.【详解】解:设锻造后的圆钢的长为,则,,,故答案为:9.15.(1)(2)【分析】本题考查了解一元一次方程:(1)先去括号,再移项,合并同类项,系数化1,即可作答.(2)先去分母,去括号,再移项,合并同类项,系数化1,即可作答.1-0x y +=321x y m x y +=+⎧⎨-=-⎩①②-①②43y m =+34m y +=34m y +=314m x +-=-14m x -=0x y +=31044m m +-+=1m =-1-cm x 223164x ππ⋅⨯=⋅⨯16169x ∴=⨯9x ∴=9x =-14x =-【详解】(1)解: 去括号,得移项,得合并同类项,得两边都除以,得;(2)解:去分母,得去括号,得移项,得合并同类项,得两边都除以4,得.16.(1)(2)【分析】本题考查了解二元一次方程组,熟练掌握加减消元法是解此题的关键.(1)利用加减消元法解二元一次方程组即可;(2)利用加减消元法解二元一次方程组即可.【详解】(1)解:,得:,解得:,将代入②可得:,解得:,原方程组的解为:;()2123x x -=++2126x x -=++2162x x -=++9x -=1-9x =-122123x x +--=()()312226x x +--=36246x x +-+=62634x x -=--41x =-14x =-44x y =⎧⎨=⎩122x y ⎧=-⎪⎨⎪=-⎩248x y x y -=⎧⎨+=⎩①②+①②312x =4x =3x =48y +=4y =∴44x y =⎧⎨=⎩(2)解:,由得:,解得:,将代入①得:,解得:,原方程组的解为:.17.k=218.1【分析】本题考查方程组的解,根据方程组的解满足方程代入得到新方程组,求出a 、b 的值,再代入所求代数式即可得到答案.【详解】解:将代入原方程组得, ,即:,由得:,∴;将代入②得:,解得:,∴∴.19.(1)(2)【分析】本题考查了有理数的混合运算,解题关键在于理解新定义.422237x y x y -=⎧⎨+=-⎩①②2-⨯①②816y -==2y -=2y -()4222x -⨯-=12x =-∴122x y ⎧=-⎪⎨⎪=-⎩32x y =⎧⎨=⎩32133()29a b a b a +=⎧⎨+-=⎩321339a b a b +=⎧⎨+=⎩①②3⨯-②①714b =2b =2b =329a +⨯=3a =32a b =⎧⎨=⎩20302030()(23)1a b -=-=7245(1)根据新定义进行计算,一个变负数,一个变倒数计算即可,(2)首先根据新定义分别表示出等号两边的,然后在求出m 即可;【详解】(1)(2),,,.20.(1)①(2)【分析】本题主要考查解一元一次方程,(1)根据解一元一次方程的步骤求解即可;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.【详解】(1)第①步去分母时,方程右边的1没有乘以6,∴欣欣的解答过程从第①步开始出错;(2)去分母得,去括号得,移项,合并同类项得,系数化为1得,.21.,【分析】本题主要考查解方程,熟悉相关的解题步骤是解题的关键,先根据错误的做法:“方程右边的没有乘以6”而得到,代入错误方程,求出a 的值,再把a 的值代入原方程, 1*a b a b=-+()173*2322∴-=+=()()2*12112m m m =-+=-1*55m m =-+ ()2*1*5m m =∴1125m m -=-+45m ∴=14x =221132x x +--=()()223216x x +--=24636x x +-+=41x -=-14x =1a =13x =-3-2x =求出正确的解.【详解】解:去分母时方程右边的漏乘了6;此时变形为;将代入,得;解得:; 则原方程应为: ;去分母得: ;去括号得:,解得:.22.1【分析】本题考查了二元一次方程组的错解问题,求代数式的值,正确审题,清楚方程组的解是哪一个方程的正确解,代入计算即可.【详解】解:由题意,是的解,得,解得:,又是的解,得,解得:,.23.(1)13,20,27;(2)12;(3)不存在,理由见解析.【分析】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.(1)设这三个数中间的数为,则另外两个数分别为,,根据被框住的三个数的和为60,可列出关于的一元一次方程,解之即可得出结论;(2)根据各数之间的关系,可得出,,, ,结合3-()()22133x x a -=+-2x =()()2221323a ⨯-=+-1a =211332x x -+=-()()2213118x x -=+-423318x x -=+-13x =-52x y =⎧⎨=⎩12bx y +=5212b +=2b =32x y =⎧⎨=⎩5x ay +=325a +=1a =5251221a b ∴-=⨯-⨯=x 7x -7x +x 7a e =-1b e =-7c e =+1d e =+,可得出关于的一元一次方程,解之即可得出结论;(3)假设存在,根据,可得出关于的一元一次方程,解之可得出的值,再利用求出该值大于31,即可得出假设不成立,即不存在的值,使得.【详解】(1)解:设这三个数中间的数为,则另外两个数分别为,.根据题意得,解得.所以,.故答案为:13,20,27.(2)观察图1可知:,,,所以..故答案为:12.(3)不存在.理由如下:假设存在,由(2)得,解得.所以.因为,所以假设不成立.所以不存在的值,使得.24.(1)甲250件;乙200件(2)【分析】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.(1)设种服装购进件,种服装购进件,由总价单价数量,总件数甲的数量+乙的数量,建立方程组求出其解即可;(2)分别求出打折后的价格,总利润=打折后种服装的利润+打折后中服装的利润,求出其解即可.【详解】(1)解:设种服装购进件,种服装购进件,由题意,得48a b c d +++=e 100a b c d +++=e e 7c e =+e 100a b c d +++=x 7x -7x +7760x x x -+++=20x =713x -=727x +=7a e =-1b e =-7c e =+1d e =+()()()()7171448a b c d e e e e e +++=-+-++++==12e ∴=4100a b c d e +++==25e =732e +=3231>e 100a b c d +++=3200A xB y =⨯=A B A x B y,解得:.答:种服装购进250件,种服装购进200件;(2)由题意,得:(元).答:全部售完后,服装店共盈利3200元.450405020000x y x y +=⎧⎨+=⎩250200x y =⎧⎨=⎩A B 250(600.840)200(800.750)⨯⨯-+⨯-25082006=⨯+⨯3200=)。
湖南省长沙市立信中学2023-2024学年七年级下学期第三次月考数学试题一、单选题1.在227π,2023这五个数中无理数的个数为( ) A .2 B .3 C .4 D .52.如果x y <,那么下列不等式正确的是( )A .22x y <B .22x y -<-C .11x y ->-D .11x y +>+3.在坐标平面内,有一点()20P -,,则P 点的位置在( ) A .原点 B .第二象限 C .x 轴上 D .y 轴上 4.如图,在ABC V 中,画出AC 边上的高( )A .B .C .D .5.某中学为了解本校1500名学生的睡眠情况,从中随机抽查了300名学生的睡眠时间进行调查,下列说法正确的是( )A .总体是本校1500名学生B .样本是300名学生C .个体是每名学生的睡眠时间D .样本容量是300名学生6.若等腰三角形的两边长分别为4和9,则它的周长为( )A .22B .17C .13D .17或227.已知方程组2527x y x y +=⎧⎨+=⎩,则x y -的值为( ) A .2 B .1 C .0 D .1-8.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x 页,所列不等式为( )A .21087x +≥B .21087x +≤C .10887x +≤D .10887x +≥ 9.如图,ABC V 中,D 在BC 的延长线上,过D 作DF AB ⊥于F ,交AC 于E .已知33A ∠=︒,85ECD ∠=︒,则D ∠=( )A .52︒B .43︒C .33︒D .38︒10.如图,ABC V 中,BD BE 、分别是高和角平分线,点F 在CA 的延长线上,FH BE ⊥,交BD 于点G ,交BC 于点H ,下列结论中正确的结论有( )①DBE F ∠=∠; ②()12F BAC C ∠=∠-∠; ③2BEF BAF C ∠=∠+∠;④BGH ABE C ∠=∠+∠.A .①②③B .①③④C .①②④D .①②③④二、填空题11.916的算术平方根是. 12.把方程310x y +-=改写成用含x 的式子表示y 的形式,则y =.13.不等式()4223x x -<-的最大整数解为.14.如图,AB CD ∥,若65A ∠=︒,38E ∠=︒,则C ∠=.15.有30个数据,其中最大值为40,最小值为19,若取组距为4,则应该分成组.16.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是13x y =-⎧⎨=⎩,则方程组()()1112222222a x b y c a x b y c ⎧-+=⎪⎨-+=⎪⎩的解是.三、解答题17()232+-18.解方程组322231922x y x y +=⎧⎪⎨-+=⎪⎩①②. 19.六一儿童节当天,小玉给小玲打电话,相约去五一广场看书,但是她忘了电话号码中的一个数字,依稀记得号码是1398249456W (“□”表示忘记的数字,若“□”位置上的数字是不等式组2130142x x x ->⎧⎪⎨≤+⎪⎩的一个解,求“□”可能表示的数字. 20.已知关于x 、y 的方程组244x y a x y a+=⎧⎨-=⎩. (1)若方程组的解也是方程3210x y +=的一个解,求a 的值;(2)若方程组的解满足5x y ->,请化简2a a +-.21.某校组织全校学生进行了一场党史知识竞赛活动根据竞赛结果,抽取了200名学生的成绩(得分均为正整数,满分为100分,大于80分的为优秀)进行统计,绘制了如图所示尚不完整的统计图表.请结合图表解决下列问题:(1)频数表中=a ,b =;(2)请将频数分布直方图补充完整;(3)若该校共有1000名学生,请估计本次党史知识竞赛成绩为“优秀”的学生人数. 22.为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知B 型充电桩比A 型充电桩的单价多0.2万元,且用24万元可购买A 型充电桩12个和与B 型充电桩10个.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划购买A ,B 两种型号充电桩共26个,购买总费用不超过28万元,且B 型充电桩的购买数量不少于A 型充电桩购买数量的25.请问有几种购买方案? 23.如图,在ABC V 中,E ,G 分别是AB ,AC 上的点,F ,D 是BC 上的点,连接EF ,AD ,DG ,AB DG ∥,12180∠+∠=︒.(1)求证:AD EF ∥;(2)若DG 是ADC ∠的平分线,2140∠=︒,60C ∠=︒,求AGD ∠的度数;(3)若ABC V 的周长为16cm ,AB BC =,当中线AD 将ABC V 分成周长差为2cm 的两部分,求AC 的长.24.定义:对于立信不等式:()01x x x L a L x b >>≠,,当1x >时,a b >;当01x <<时,a b <. (1)解关于x 的不等式()22523L x L x ->;(2)若关于x 的不等式()1122237L x m L ->的解集是2x <,求不等式()2222L mx L m +>的解集; (3)若关于x 的不等式组()()331133221L x L n L x L n ⎧->⎪⎨>+⎪⎩的解集中有且只有2个整数解,求n 的取值范围. 25.根据以下所给的材料,解答下面的问题.材料一:如图1,ABC V 中,若B C ∠=∠,则AB AC =.材料二:如图2,ABC V 的内角ABC ∠和外角ACD ∠的平分线交于点E ,则有结论:12∠=∠E A .解答问题:如图3,点()0,A m 与点(),0B n 坐标轴上,且m ,n 满足()23240m n -+-=. (1)求点A (,),B (,)的坐标;(2)C 为y 轴正半轴上一动点,D 为BCO V 的外角BCy ∠的平分线与COB ∠的平分线的交点,当14D COB ∠=∠,求C 点坐标; (3)如图4,C 为y 轴正半轴上A 的上方一动点,P 为线段AB 上一动点,连CP 延长交x 轴于E ,CAB ∠和CEB ∠平分线交于F ,在点C 在运动过程中,下列结论:①ABO ECO F ∠-∠∠是定值,②ABO ECO F∠+∠∠是定值;请选择你认为正确的结论,并进行证明;若都不正确,也请说明理由.。
2022—2023学年度下学期七年级数学三月归纳小结一、选择题:(共10小题,每题3分,共30分) 1.实数25的平方根是( )A .5B .±5C.D.2.在平面直角坐标系中,点(3,﹣2)所在的象限是第( )象限. A .一 B .二 C .三 D .四3.实数245,3.14159266-2π,0.21211211121111…,其中无理数的个数有( )个. A .3 B .4 C .5 D .64.下列各组数中,互为相反数的是( ) A.B.与 C.D5.如图,以下说法错误的是( )A .若∠EAD =∠B ,则AD ∥BC B .若∠EAD +∠D =180°,则AB ∥CD C .若∠CAD =∠BCA ,则AD ∥BC D .若∠D =∠EAD ,则AB ∥CD第5题图 第9题图 第10题图6.下列命题中:①对顶角相等;②平行于同一条直线的两条直线互相平行;③如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;④0.01是0.1的一个平方根.其中真命题的个数有( ) A .1个B .2个C .3个D .4个7) A .面积为17的正方形的边长 B .17的算术平方根C .在整数4和5之间D .方程x 2=17中未知数x 的值8.在平面直角坐标系中,若点M 在第二象限,且点M 到x 轴的距离为1,到y 轴的距离为3,则点M 的坐标为( ) A .(3,﹣1) B .(1,﹣3)C .(﹣3,1)D .(﹣1,3)9.实数a 、bb 的结果是( ) A .2a b -B .a -C .aD .2a b -+10. 如图,在长方形纸片ABCD 中,AB =3,BC =4,AC =5,点E 在BC 上,沿直线AE 折叠矩形纸片,点B 落在点F 处,连接CF ,当AF +CF 取最小值时,BE 的长为( ) A.32 B. 2 C. 3 D. 23二、填空题:(共6小题, 每小题3分, 共18分) 11的结果是_________.12.在平面直角坐标系中,点A (a -2,a +1)在x 轴上,则点A 的坐标为_________.13.已知1y ,则x=_________.FEDCBAEDCBA b a14. 如图,平面直角坐标系中,线段AB 端点坐标分别为A (﹣5,0),B (0,﹣3),若将线段AB 平移至线段A 1B 1,A 点的对应点为1A ,且A 1(﹣3,m ),B 1(n ,1),则mn 的值为 .第14题图 第15题图15.如图,AF ∥CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠CBE +∠D =90°;④∠DEB =3∠ABC . 其中结论正确的有______________.16.在平面直角坐标系中,点A (m ﹣1,2m ﹣2),B (m +1,2m +2),点P 在x 轴上,且三角形P AB 的面积为6,则P 点坐标为 .三、解答题:(共8小题, 共72分)17.计算:(12 (21)218.求下列各式中的x 的值.(1)2(2)16x += (2)3(1)270x -+=19.如图,BD 平分∠ABC ,F 在AB 上,G 在AC 上,FC 与BD 相交于点H ,∠3+∠4=180°,试说明∠1=∠2.(请通过填空完善下列推理过程) 解:∵∠3+∠4=180°(已知)∠FHD =∠4( ). ∴ ∠3+ =180°.∴ FG ∥BD ( ). ∴ ∠1= ( ). ∵ BD 平分∠ABC .∴ ∠ABD = ( ). ∴ . F EDCB A4321GHFDCBA20.已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D 40°=∠3,∠CBD =80°. (1)求证:AB ∥CD ; (2)求∠C 的度数.21.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点均在格点上.(1)请建立合适的平面直角坐标系,使点A ,点B 的坐标分别为A (﹣3,-1),B (-1,3),并写出点C 的坐标; (2)在(1)的条件下.①若△ABC 中任意一点P (a ,b )平移后对应点为P 1(a +5,b +2),将△ABC 作同样的平移得到△A 1B 1C 1,请画出平移后的△A 1B 1C 1,并直接写出△A 1B 1C 1的面积;②连接1BB 交y 轴于点Q ,直接写出点Q 的坐标.22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来900 m 2的正方形场地改建成765 m 2的长方形场地,且其长、宽的比为5:3. (1)求原来正方形场地的周长;(2)如果把原来正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由. 321N MGF E DCBA23.如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,点F ,EM 平分∠AEF 交CD 于点M ,且∠FEM =∠FME .(1)判断直线AB 与直线CD 是否平行,并说明理由;(2)点G 是射线MD 上一动点(不与点M ,F 重合),EH 平分∠FEG 交CD 于点H ,N 是线段EM 上一点且∠ENH =60°,设∠EHN =α,∠EGF =β. ①如图2,若α=54°,求β的度数;②当点G 在运动过程中,请探究α和β之间的数量关系并直接写出你的结论.图1 图224.已知平面直角坐标系中,A (0,a ), B (b ,3b ),C (c ,02(4)0c +-=,连接AB ,AC . (1)求A 点,B 点,C 点的坐标.(2)如图1,动点E 从B 点开始,以每秒m 个单位长度的速度向右移动,连接CE ,3秒后 CE ∥AB ,求m 的值. (3)如图2,在(2)的条件下,连接BC ,平移线段BC ,使得B 点的对应点M 在y 轴上,C 点的对应点为N ,连接CN ,直线CN ,BE 交于点P ,且53NP CP =,直接写出M 点的坐标.图1图2M F E DC B AH NG M ABC DE F。
广东省江门市实验中学2023-2024学年七年级下学期第三次月考数学试题一、单选题1.64的平方根是( )A .8B .8-C .8±D .42.下列调查中,调查方式选择合理..的是( ) A .为了了解某一品牌家具的甲醛含量,选择普查;B .为了了解神舟飞船的设备零件的质量情况,选择抽样调查;C .为了了解一批袋装食品是否含有防腐剂,选择普查;D .为了了解某公园全年的游客流量,选择抽样调查.3.不等式435x x ≤-的解集在数轴上表示正确的是( )A .B .C .D .4.把方程321x y +=改写成用含x 的式子表示y 的形式,其中正确的是( ) A .132x y -= B .132x y += C .123y x -= D .123y x += 5.如图,已知AB CD P ,下列结论正确的是( )A .14∠=∠B .12∠=∠C .23∠∠=D .34∠∠=6.已知12x y =-⎧⎨=⎩是关于x ,y 的方程32x ky -=的一组解,那么k 的值为( )A .25B .52-C .12-D .27.已知a b >,则下列结论中正确的是( )A .22a b +<+B .33a b -<-C .44a b -<-D .22a b < 8.下列语句正确的是( )A .平行于x 轴的直线上所有点的横坐标都相同B .点()3,a --与点()3,2a --之间的距离为2C .若点(),P a b 在y 轴上,则0b =D .若点()3,4P -,则P 到x 轴的距离为39.古书中有一个“隔沟计算”的问题:“甲乙隔沟牧放,二人暗里参详.甲云得乙九只羊,多乙一倍之上,乙说得甲九只,两家之数相当.”翻译成现代文,其大意如下:甲乙两人隔一条沟放牧,二人心里暗中合计.甲对乙说:“我得到你的九只羊,我的羊就比你多一倍.”乙对甲说:“我得到你的九只羊,咱俩的羊一样多.”设甲有羊x 只,乙有羊y 只,则符合题意的方程组是( )A .929x y y x +=⎧⎨+=⎩B .()29999x y x y ⎧+=-⎨-=+⎩C .()92999x y x y ⎧+=-⎨-=+⎩D .()92999x y x y ⎧-=-⎨+=-⎩ 10.如图,一个粒子从原点出发,每分钟移动一次,依次运动到()()()()()()1,11,02,13,23,13,0→→→→→→⋅⋅⋅,则2023分钟时粒子所在点的坐标为( )A .()990,43B .()1033,43C .()1078,45D .()990,45二、填空题11.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成组.12.如图,把小河里的水引到田地C 处,作CD 垂直于河岸,沿CD 挖水沟,则水沟最短,其理论依据是13.如果一个数的平方根为2和m ,那么m 的值为.14.如图,直线DE 经过点A ,DE BC ∥,42B ∠=︒,56C ∠=︒,则BAC ∠=度.15.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D C '',的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=.16.若关于x 的不等式组11123x a x x ≤⎧⎪-+⎨+>⎪⎩至少有4个整数解,则a 满足的条件是.三、解答题17.计算:218.解方程组:29321x y x y +=⎧⎨-=-⎩. 19.解不等式组2236x x x +>-⎧⎨-≤⎩①②,请按下列步骤完成解答: (1)解不等式①,得___________;(2)解不等式②,得___________;(3)将不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为___________20.如图,1EAB ∠=∠,2180E ∠+∠=︒.(1)判断EF 与AC 的位置关系,并证明;(2)若AC 平分EAB ∠,BF EF ⊥于点F ,54EAB ∠=︒,求BCD ∠的度数.21.校学生会对七年级部分学生的课外阅读量进行了随机调查,整理调查结果,并根据调查结果绘制了不完整的图表,如图所示:(1)统计表中的b = ,c = ;请将频数分布直方图补充完整.(2)所有被调查学生课外阅读的平均本数为 本,课外阅读书本数的中位数为 本. (3)若该校七年级共有1200名学生,估计该校七年级学生课外阅读6本及以下的人数为 人.22.如图,在平面直角坐标系xOy 中,(4,3)A ,(3,1)B ,(1,2)C ,将三角形ABC 向左平移4个单位长度,再向上平移1个单位长度,可以得到三角形,其中点1A 、1B 、1C 分别与点A 、B、C对应.(1)画出平移后的移后的三角形111A B C;(2)直接写出1C的坐标;(3)若点P在y轴上,以1A、1B、P为顶点的三角形面积为1,求点P的坐标.23.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5t,5辆大货车与6辆小货车一次可以运货35t.(1)3辆大货车与5辆小货车一次可以运货多少吨?(2)计划用两种货车共12辆运输一批货物,大货车每次需运费3000元,小货车每次需运费1800元,若运输的总货物不少于38t,且总费用不超过32000元,请列出所有运输方案,并计算说明哪种方案所需费用最少,最少费用是多少?24.对于一个三位数,若其十位上的数字是3、各个数位上的数字互不相等且都不为0,则称这样的三位数为“太极数”;如235就是一个太极数.将“太极数”m任意两个数位上的数字取出组成两位数,则一共可以得到6个两位数,将这6个两位数的和记为D(m)例如:D (235)=23+25+32+35+52+53=220.(1)最小的“太极数”是,最大的“太极数”是;(2)求D(432)的值;(3)把D(m)与22的商记为F(m),例如F(235)=(235)2202222D=10.若“太极数”n满足n=100x+30+y(1≤x≤9,1≤y≤9,且x,y均为整数),即n的百位上的数字是x、十位上的数字是3、个位上的数字是y ,且F (n )=8,请求出所有满足条件的“太极数”n . 25.已知射线AB ⊥射线AC 于点A ,点D ,F 分别在射线AB ,AC 上,过点D ,F 作射线DE ,FG ,使90BDE AFG ∠+∠=︒,如下图所示.(1)试判断直线DE 与直线FG 的位置关系,并说明理由.(2)如下图,已知ADE ∠的角平分线与AFG ∠的角平分线相交于点P .①当60BDE ∠=︒时,则DPF ∠=______;②当BDE α∠=(60α∉︒)时,DPF ∠的大小是否保持不变?若不变,请说明理由;若改变,请求出DPF ∠的度数.(3)当BDE ∠沿射线AB 平移且BDE α∠=时,请直接写出ADE ∠的角平分线与AFG ∠的角平分线所在直线相交形成的DPF ∠的度数.。
2023-2024学年七年级下学期3月月考数学模拟试题一.选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案填写在答题纸相应位置)1.下列现象是数学中的平移的是( )A .树叶从树上落下B .电梯从底楼升到顶楼C .碟片在光驱中运行D .卫星绕地球运动2.∠1与∠2是内错角,∠1=30°,则∠2的度数为( )A .30°B .150°C .30°或150°D .不能确定3.下列运算正确的是( )A .B .C .D .4.“冠状病毒”是一个大型病毒家族,科学家借助电子显微镜研究发现,某冠状病毒的直径约为0.00000012米,0.00000012用科学记数法表示为( )A .B .C .D .5.如图,小亮从A 点出发,沿直线前进向左转再沿直线前进,又向左转,照这样走下去,他第一次回到出发地A 点时,一共走了( )A .B .C .D .6.若,,则的值为( )A .13B .28C .30D .757.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有( )A .1个B .2个C .3个D .4个8.一张△ABC 纸片,点M 、N 分别是AB 、AC 上的点,若沿直线MN 折叠后,点A 落在AC 边的下面A ′的位置,如图所示.则∠1,∠2,∠A之间的数量关系是( )236a a a = ()326a a -=-22423a a a +=632a a a ÷=61.210-⨯71.210-⨯81.210-⨯91.210-⨯10m 30︒10m 30︒100m 110m 120m 130m25x =23y =22x y +A .∠l =∠2+∠AB .∠l =2∠2+∠AC .∠l =∠2+2∠AD .∠l =2∠2+2∠A二.填空题(本大题共10小题,每小题3分,共30分,请把你认为正确的答案填写在答题纸相应位置)9.计算:a 2• =a 6.10.小明同学在百度搜索引擎中输入“中国梦,我的梦”,引擎搜索耗时0.000175秒,将这个数字用科学记数法表示为 .11.若一个多边形的每个外角都等于,则这个多边形的边数为 .12.若,,则的值 .13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23°,那么∠2= °.14.已知x 2+mx +16能用完全平方公式因式分解,则m 的值为 .15.已知,则 (填“”、“”或“”)16.计算: .17.如图,在中,已知点分别为边的中点,且,则 .18.如果三角形的两个内角与满足,那么我们称这样的三角形为“奇妙互余三角形”,关于“奇妙互余三角形”,有下列结论:①在中,若,,,则是“奇妙互余三角形”;②若是“奇妙互余三角形”,,,则;③“奇妙互余三角形”一定是钝角三角形,其中,结论正确的有 .(填写序号)三.解答题(本大题共10小题,共96分,解答应写出必要的文字说明、证明过程或演算步骤,请30︒=2m x 5n x =m n x +332a =223b =a b ><=2202320212022⨯-=ABC ,,D E F ,,BC AD CE 2=4cm BEF S ABC S = 2cm αβ290αβ+=︒ABC 130A ∠=︒40B ∠=︒10C ∠=︒ABC ABC 90C ∠>︒60A ∠=︒20B ∠=︒把答案填写在答题纸相应位置)19.计算:(1)(2)20.先化简,再求值,其中.21.完成下面推理填空:如图,已知:于D ,于G ,.求证:AD 平分.解:∵于D ,(已知),∴(____①_____),∴(同位角相等,两直线平行),∴_____②___(两直线平行,同位角相等)∠1=∠2(____③_____),又∵(已知),∴∠2=∠3(_____④______),∴AD 平分(角平分线的定义).22.如图,在每个小正方形边长为1的方格纸中,的顶点都在方格纸格点上.1201232-⎛⎫+- ⎪⎝⎭243()a a a -⋅÷()3233212a b ab ⎛⎫⋅-+- ⎪⎝⎭21a b =-=,AD BC ⊥EG BC ⊥1E ∠=∠BAC ∠AD BC ⊥EG BC ⊥90ADC EGC ∠=∠=︒EG AD ∥1E ∠=∠BAC ∠ABC(1)将经过平移后得到,图中标出了点的对应点,补全;(2)在图中画出的高;(3)若连接、,则这两条线段之间的关系是______;四边形的面积为______.23.已知的三边长是a ,b ,c.(1)若,,且三角形的周长是小于18的偶数.求c 边的长;(2)化简24.如图,已知∠1=∠ACB ,∠2=∠3,FH ⊥AB 于H ,试说明CD 与AB 的位置关系,并证明你的结论.25.规定两数a ,b 之间的一种运算,记作【a ,b 】:如果,那么【a ,b 】.例如:因为,所以【2,8】.(1)根据上述规定,填空:【4,64】=________,【5,1】=________,【________,81】.(2)小明在研究这种运算时发现一个现象:【,】=【3,4】,小明的理由如下:设【,】,则,即,所以,即【3,4】,所以【,】=【3,4】.请你尝试运用这种方法解决下列问题:①试说明:【7,5】+【7,9】=【7,45】;②猜想:【,】+【,】=【________,________】.26.综合与实践:问题情境:已知,中,,,点D ,E 分别在BC ,AC 边上,.(1)如图1,若,且恰好平分,则的度数为______°.类比思考:(2)如图2,若,且点是边上的任意一点,小颖发现的度数为定值.求的度数;联系拓广:(3)如图3,将问题情境中的“点D ,E 分别在BC ,AC 边上”改为“点D ,E 分别在BC 、AC 的延长线上”,其余条件不变.ABC A B C ''' B B 'A B C ''' ABC AD AA 'BB 'AA B B ''ABC 4a =6b =a b c c a b+---+c a b =c =328=3=4=3n 4n 3n 4n x =()34x n n =()34n x n =34x =x =3n 4n ()1n x +()1n y -()1n x +()2ny +()1,1x y >->ABC BAC α∠=B C ∠=∠BAD CDE ∠=∠40α=︒AD BAC ∠ADE ∠50α=︒D BC ADE ∠ADE ∠请从下面A ,B 两题中任选一题作答.我选择______题.A .若,直接写出此时的度数.B .直接写出的度数(用含的式子表示).27.【问题背景】太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关,如图,从点O 照射到抛物线上的光线、等反射以后沿着与平行的方向射出.(1)若,则________°;【类比发现】如图1、2、3,把呈抛物线的曲面镜改成两平面镜、,且,点O 在的角平分线上,从点O 照射到平面镜上的光线,经过平面镜与反射若干次.某创新兴趣小组的成员发现,当光线和平面镜的夹角(记为)与反射的总次数n (n 是正整数)满足某种数量关系时,反射光线可以沿着与平行的方向射出.(2)当光线经过平面镜与反射n 次后,沿平行的方向射出,根据反射的次数,填写下表中角的度数:经平面镜反射的总次数n 1次2次3次(3)当光线经过平面镜与反射n 次后,沿平行的方向射出,则与n 的数量关系为________;【拓展延伸】若两平面镜、的夹角(),其他条件不变,当光线经平面镜与反射n 次后,沿着与平行的方向射出时,请直接写出α、θ与n 之间的数量关系为________.50α=︒ADE ∠ADE ∠αOB OC POQ 90QOC ∠=︒DCO ∠=PA PC 32APC ∠=︒APC ∠PQ PA OB PA PC OB PA PBO ∠PBO ∠θPOQ OB PA PC POQ θθOB PA PC POQ θPA PC APC α∠=090α︒︒<<OB PA PC POQ28.我们在小学已经学习了“三角形内角和等于”,在三角形纸片中,点D ,E 分别在边上,将沿折叠,点C 落在点的位置.(1)如图1,当点C 落在边上时,若,则________,可以发现与的数量关系是________;(2)如图2,若,,作的平分线,与的外角平分线交于点N ,求的度数;(3)如图3,若点落在内部,作,的平分线交于点,此时,,满足怎样的数量关系?并给出证明过程.180︒AC BC 、C ∠DE C 'BC 62ADC '∠=︒C ∠=ADC '∠C ∠1130∠=︒270Ð=°ABC ∠BN ACB ∠CN BNC ∠1A ABC ABC ∠ACB ∠1A 1∠2∠1BA C ∠参考答案与解析1.B 【分析】若一个图形上的所有点都按照同一方向移动相同的距离,这种变换称为平移,根据此定义即可作出判断.【解答】A 、树叶从树上落下不沿直线运动,不符合平移定义,故错误;B 、电梯从底楼升到顶楼沿直线运动,符合平移定义,故正确;C 、碟片在光驱中运行是旋转,故错误;D 、卫星绕地球运动不按直线运动,故错误.故选:B .【点拨】本题考查了平移的概念,掌握平移两个相同:同方向同距离是关键.2.D【分析】两直线平行时内错角相等,不平行时无法确定内错角的大小关系,据此分析判断即可得.【解答】内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等,故选D .【点拨】本题考查了三线八角,明确同位角、内错角、同旁内角只是两个角的一种位置关系,而没有一定的大小关系是解此类问题的关键.3.B【分析】利用同底数幂的乘法法则、幂的乘方法则、合并同类项法则、同底数幂的除法法则逐项计算即可判断.【解答】、,故此选项错误,不符合题意;、,故此选项正确,符合题意;、,故此选项错误,不符合题意;、,故此选项错误,不合题意;故选:B .【点拨】此题考查同底数幂的乘除运算、幂的乘方运算、合并同类项,熟练掌握各运算法则是解题的关键.4.B【分析】科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【解答】解:.故选:B .【点拨】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为的形式,其中,n 为整数是关键.A 33522a a a a +⋅==B ()()()333226-=-⋅=-a a a C ()22222213a a a a +=+=D 63633a a a a -÷==n 10a ⨯1||10a ≤<70.00000012 1.210-=⨯n 10a ⨯1||10a ≤<5.C【分析】根据多边形的外角和,求出多边形边数,然后再求周长即可.【解答】解:∵多边形的外角和为,∴,∴照这样走下去,他第一次回到出发地A 点时,一共走了,故C 正确.故选:C .【点拨】本题主要查了多边形的外角和,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和等于.6.D【分析】根据同底数幂相乘以及幂的乘方的逆用,求解即可.【解答】解:,故选:D【点拨】此题考查了同底数幂相乘以及幂的乘方的逆用,解题的关键是熟练掌握同底数幂相乘以及幂的乘方的运算法则.7.A【分析】根据平行公理,点到直线距离,垂线的性质逐个判断即可得到答案;【解答】解:过直线外一点有且只有一条直线与已知直线平行,故①错误;在同一平面内,过一点有且只有一条直线与已知直线垂直,故②正确;两直线平行同旁内角互补,故③错误;直线外一点到已知直线的垂线段长度就是点到直线的距离,故④错误;故选A ;【点拨】本题考查平行公理,点到直线距离,垂线的性质,解题的关键是熟练掌握几个知识点.8.C【分析】本题可根据四边形的内角和为360°及翻折的性质,就可求出∠1=∠2+2∠A 这一始终保持不变的性质.【解答】 在四边形BCNM 中, ,则(180°-∠A)+(∠ANM-∠2)+(∠1+∠AMN )=360°变形得:2(180°-∠A )-∠2+∠1=360°可得,故选C.【点拨】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.9.a 4【分析】直接利用同底数幂的乘法运算法则计算得出答案.360︒360︒3601230︒=︒()1210120m ⨯=360︒2222222(2)25375x y x y x y +=⨯=⨯=⨯= 360B C CNM BMN ∠+∠+∠+∠=︒∴122A ∠=∠+∠【解答】解:a 2•a 4=a 6.故答案为:a 4.【点拨】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数0.000175用科学记数法表示正确的是,故答案为:.【点拨】本题考查用科学记数法表示较小的数,一般形式为,其中,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.12##十二【分析】本题考查多边形的外角.根据多边形的外角和为,列式计算即可.【解答】解:由题意,得:这个多边形的边数为;故答案为:12.12.10【分析】直接利用同底数幂的乘法运算法则化简求出答案.【解答】解:∵xm =2,xn =5,∴xm +n =xm •xn =2×5=10.故答案为:10.【点拨】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.13.67【解答】解:∵∠1=23°,∴∠3=90°-23°=67°.∵a ∥b ,∴∠1=∠3=67°.14.【分析】利用完全平方公式的结构特征判断,确定出m 的值即可得到答案.【解答】解:∵要使得能用完全平方公式分解因式,41.7510-⨯10n a -⨯41.7510-⨯41.7510-⨯10n a -⨯110a ≤<360︒3601230︒=︒8±216x mx ++∴应满足,∵,∴,故答案为:.【点拨】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.15.【分析】求出,可知.【解答】解:由题意可知:∴,故答案为:【点拨】本题考查不等式性质,幂的乘方的逆运算,解题的关键是将式子变形与1比较大小:.16.-1【分析】利用平方差公式进行计算,即可得出结果.【解答】解:,故答案为:.【点拨】本题考查了平方差公式,掌握平方差公式的特点是解决问题的关键.17.【分析】本题主要考查了三角形中线的性质,根据三角形中线平分三角形面积进行求解即可.【解答】解:∵F 是的中点,,∴,∵D 为的中点,∴,∵为的中点,()22164x mx x ++=±()224816x x x ±=±+8m =±8±<118=9a b ⎛⎫ ⎪⎝⎭<1a b <()()1131133112222281393a b ⎛⎫=== ⎪⎝⎭<a b <<()()1131133112222281393a b ⎛⎫=== ⎪⎝⎭<2202320212022⨯-220221202212022=+⨯--()()22202212022=--1=-1-16CE 2=4cm BEF S 28cm =BCE BEF S S = △2BC 214cm 2BDE CDE BCE S S S ===△△△E AD∴,∵D 为的中点,∴,故答案为:.18.①③##③①【分析】①由,,而,,,则是“奇妙互余三角形”,可判断①正确;②若是“奇妙互余三角形”,且,则或,而,,所以,,显然与是“奇妙互余三角形”相矛盾,可判断②错误;③三角形为“奇妙互余三角形”的条件是它的两个内角与满足,则,则它的第三个内角一定大于,即“奇妙互余三角形”一定是钝角三角形,可判断③正确.【解答】解:①,,,,,是“奇妙互余三角形”,故①正确;②,,,,,若是“奇妙互余三角形”,只能是或,,,,,,,则作为条件,与是“奇妙互余三角形”相矛盾,故②错误;③三角形为“奇妙互余三角形”,则它的两个内角与满足,,设它的第三个内角为,,一定是钝角,“奇妙互余三角形”一定是钝角三角形,故③正确,故答案为:①③.【点拨】本题重点考查三角形内角和定理及其推论、角平分线的定义、数形结合与分类讨论数学思想的运用、新定义问题的求解等知识与方法,准确地把握新定义的内涵并且正确地画出图形是解题的关键.19.(1)3(2)228cm ABD BDE S S ==△△BC 2216cm ABC ABD S S ==△△16130A ∠=︒50C B ∠+∠=︒40B ∠=︒10C ∠=︒290B C ∠+∠=︒ABC ABC 90C ∠>︒290A B ∠+∠=︒290B A ∠+∠=︒60A ∠=︒20B ∠=︒214090A B ∠+∠=︒≠︒210090B A ∠+∠=︒≠︒ABC αβ290αβ+=︒9090αβα+=︒-<︒90︒130A ∠=︒ 18013050C B ∴∠+∠=︒-︒=︒40B ∠=︒ 10C ∠=︒290B C ∴∠+∠=︒ABC ∴ 90C ∠>︒ 290C A ∴∠+∠≠︒290C B ∠+∠≠︒290A C ∠+∠≠︒290B C ∠+∠≠︒ABC 290A B ∠+∠=︒290B A ∠+∠=︒60A ∠=︒ 20B ∠=︒214090A B ∴∠+∠=︒≠︒210090B A ∠+∠=︒≠︒90C ∴∠>︒60A ∠=︒20B ∠=︒ABC αβ290αβ+=︒90αβα∴+=︒-γ180()180(90)90γαβαα∴=︒-+=︒-︒-=︒+γ∴∴3a【分析】(1)先计算乘方,零指数幂和负整数指数幂,再进行加减运算即可;(2)先算乘方,再根据同底数幂的乘法和除法法则进行计算即可.【解答】(1)(2)【点拨】本题考查了实数的混合运算,整式的混合运算,同底数幂乘法法则:,同底数幂除法法则:,零指数幂:,负整数指数幂:,熟练掌握以上运算法则是解题的关键.20.,【分析】先计算积的乘方,再计算同底数幂乘法,接着合并同类项化简,最后代值计算即可.【解答】解:当时,原式.【点拨】本题主要考查了整式的化简求值,熟知相关计算法则是解题的关键.21.垂直的定义;∠E =∠3;两直线平行,内错角相等;等量代换【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD ⊥BC 于D ,EG ⊥BC (已知),∴∠ADC =∠EGC =90°(垂直的定义),∴EG ∥AD (同位角相等,两直线平行),∴∠E =∠3(两直线平行,同位角相等)∠1=∠2(两直线平行,内错角相等),又∵∠E =∠1(已知),∴∠2=∠3(等量代换),1201232-⎛⎫+- ⎪⎝⎭412=+-3=()243a a a -⋅÷243a a a =⋅÷63a a =÷3a =m n m n a a a +⋅=m n m n a a a -÷=()010a a =≠()10p pa a a -=≠3678a b 7-()3233212a b ab ⎛⎫⋅-+- ⎪⎝⎭363618a b a b =⋅-3678a b =⋅21a b =-=,()3672178=⨯-⨯=-∴AD 平分∠BAC (角平分线的定义).故答案为:垂直的定义;∠E =∠3;两直线平行,内错角相等;等量代换.【点拨】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.22.(1)见解析(2)见解析(3)平行且相等,14【分析】本题主要考查了平移作图、平移的性质、不规则图形的面积,画三角形的高等知识点,掌握几何图形平移的特征以及运用割补法求面积成为解答本题的关键.(1)根据网格结构找出点的位置,然后顺次连接即可;(2)根据三角形的高线的定义,利用网格的特点作出即可;(3)根据平移的性质,对应点的连线互相平行且相等解答;利用割补法即可求出四边形的面积.【解答】(1)解:如图:为所求;(2)解:的高如图所示,(3)解:由平移的性质可得:与关系是平行且相等;解:四边形的面积为:. ;故答案为:平行且相等,14.A C ''、AAB B ''A BC ''' ABC AD AA 'BB 'AA B B ''11116423142314142222⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=23.(1)4或6(2)【分析】(1)先根据三角形三边关系确定c 边的范围,再根据三角形的周长是小于18的偶数确定c 边的长;(2)根据三角形三边关系确定,再根据绝对值的意义,化简绝对值的即可.【解答】(1)解:∵的三边长是a ,b ,c ,,,∴,即,∵三角形的周长是小于18的偶数,∴或;(2)解:∵的三边长是a ,b ,c ,∴,∴,,∴.【点拨】本题主要考查了三角形的三边关系,化简绝对值,解题的关键是熟练掌握三角形任意两边之和大于第三边,任意两边之差小于第三边.24.CD ⊥AB ,见解析【分析】根据∠1=∠ACB ,得,从而得到∠2=∠DCB ,结合∠2=∠3,得∠3=∠DCB ,得,根据FH ⊥AB ,得证CD ⊥AB .【解答】CD 与AB 的位置关系是CD ⊥AB ,理由如下:因为∠1=∠ACB ,所以,所以∠2=∠DCB ,因为∠2=∠3,所以∠3=∠DCB ,所以,因为FH ⊥AB ,所以CD ⊥AB .222a b c+-a b c +>ABC 4a =6b =6464c -<<+210c <<4c =6c =ABC a b c +>0a b c +->0c a b --<a b c c a b+---+()a b c c a b ⎡⎤=+-+---⎣⎦()a b c c a b =+----a b c c a b=+--++222a b c =+-DE BC ∥FH DC ∥DE BC ∥FH DC ∥【点拨】本题考查了平行线的判定和性质,熟练掌握平行线的性质是解题的关键.25.(1),,(2)①证明见解析;②,【分析】(1)根据乘方的意义即可得出答案;(2)①模仿题目中例子的证明方法设【7,5】,【7,9】,再根据乘方的意义即可得出答案;②根据【,】=【3,4】和【7,5】+【7,9】=【7,45】的证明过程和结论猜想证明即可.【解答】(1)∵,∴【4,64】.∵,∴【5,1】.∵,∴【,81】.故答案是,,;(2)①设【7,5】,【7,9】,则,,∴.∴【7,45】.∴【7,5】+【7,9】=【7,45】.②设【,】,则,即,∴,即【,】.∴【,】【,】.同理可得:【,】【,】,∴【,】+【,】【,】+【,】.设【,】,【,】,则,,∴.∴【,】.∴【,】+【,】【,】.302±()1x +()()12y y -+x =y =3n 4n 3464=3=051=0=()4281±=2±4=302±x =y =75x =79y =75945x y +=⨯=x y =+()1n x +()1n y -m =()()11m n n x y ⎡⎤+=-⎣⎦()()11nm n x y ⎡⎤+=-⎣⎦()11mx y +=-()1x +()1y -m =()1n x +()1ny -=()1x +()1y -()1n x +()2ny +=()1x +()2y +()1n x +()1n y -()1n x +()2ny +=()1x +()1y -()1x +()2y +()1x +()1y -a =()1x +()2y +b =()11a x y +=-()12b x y +=+()()()112a b x y y ++=-+()1x +()()12y y -+a b =+()1n x +()1n y -()1n x +()2ny +=()1x +()()12y y -+故答案是,.【点拨】本题主要考查了乘方的灵活运用,观察和猜想能力,正确理解题中规定的新的运算是解题的关键.26.(1)(2)(3)A .;B .【分析】(1)根据等腰三角形的判定与性质结合三角形内角和定理进行求解即可;(2)根据等腰三角形的判定与性质结合三角形内角和定理进行求解即可(3)A .根据等腰三角形的性质可得,然后根据,进而得出答案;B .由A 得.【解答】(1)解:∵,且恰好平分,∴,∵,∴,∴,∴,∵,∴,故答案为:;(2)∵,∴,∵,∴;(3)A .∵,∴,∵,∴()1x +()()12y y -+7065ADE ∠=︒115︒1902ADE α∠=︒+65ABC ACB ∠=∠=︒ADE ADC CDE ∠=∠+∠ACB BAC =∠+∠ADE ADC CDE ∠=∠+∠1902α=︒+40α=︒AD BAC ∠20BAD CAD ∠∠︒==B C ∠=∠AB AC =AD BC ⊥90ADC ∠=︒20BAD CDE ∠=∠=︒902070ADE ADC CDE ∠=∠-∠=︒-︒=︒7050α=︒18050652B C ︒-︒∠=∠==︒BAD CDE ∠=∠65ADE ADC CDE B BAD CDE B ∠=∠-∠=∠+∠-∠=∠=︒50α=︒18050652ABC ACB ︒-︒∠=∠==︒BAD CDE ∠=∠ADE ADC CDE∠=∠+∠ACB CAD BAD=∠-∠+∠=ACB CAD BAC CAD∠-∠+∠+∠ACB BAC=∠+∠,故答案为:;B .由A 得.【点拨】本题考查了等腰三角形的判定与性质,三角形外角的性质以及三角形内角和定理,熟练掌握相关基础知识是解本题的关键.27.(1);(2);(3);【分析】(1)根据两直线平行同旁内角互补,计算即可.(2)利用两直线平行,同位角相等,三角形外角性质,光的反射原理,依次计算即可.(3)根据(2)中的计算结果,探索出其中蕴含的基本规律即可;将探索的规律一般化即可.【解答】(1)∵,∴,∵,∴.故答案为:.(2)如图1,当一次反射平行时,∵,∴,根据反射角等于入射角,∴.∵,点O 在的角平分线上,6550=︒+︒115=︒115︒ADE ADC CDE∠=∠+∠ACB CAD BAD=∠-∠+∠=ACB CAD BAC CAD∠-∠+∠+∠ACB BAC=∠+∠1802αα︒-=+1902α=︒+90︒16,48,80︒︒︒()θ=-⨯︒2116n αθα=-2n DC PQ 180QOC DCO ∠+∠=︒90QOC ∠=︒90DCO ∠=︒90︒POQ BN PQ ABN APQ ∠=∠ABN PBO APQ ∠=∠=∠32APC ∠=︒APC ∠PQ∴.∴.如图2,当二次反射平行时,∵,∴,根据反射角等于入射角,∴.∵,点O 在的角平分线上,∴,∴,根据反射角等于入射角,∴.如图3,当三次反射平行时,∵,∴,根据反射角等于入射角,∴.1162APQ APC ∠=∠=︒16PBO ∠=︒POQ DE PQ ∥CDE CPQ ∠=∠CDE PDB CPQ ∠=∠=∠32APC ∠=︒APC ∠PQ 1162CDE PDB CPQ APC ∠=∠=∠=∠=︒163248ABD PDB APC ∠=∠+∠=︒+︒=︒48PBO ABD ∠=∠=︒POQ EF PQ ∥HEF APQ ∠=∠HEF PED APQ ∠=∠=∠∵,点O 在的角平分线上,∴,∴,根据反射角等于入射角,∴.∴,根据反射角等于入射角,∴.故答案为:.(3)根据(2)得,当时,;当时,;当时,;故当时,,故答案为:.∵,且∴故答案为:.【点拨】本题考查了跨学科综合,平行线的性质,三角形外角性质,光的反射原理即反射角等于入射角,规律探索,熟练掌握三角形外角性质,光的反射原理即反射角等于入射角,规律探索是解题的关键.28.(1),(2)(3),理由见解析【分析】(1)根据折叠的性质和三角形外角的性质即可推出结论;(2)根据折叠的性质和三角形内角和定理求出,再根据角平分线定义和三角形内角和定理求出;(3)先根据折叠的性质和三角形内角和定理求出,再根据角平分线定义和三角形内角和定理求出,即可得出.【解答】(1)由折叠的性质可知:,32APC ∠=︒APC ∠PQ 16HEF PED APQ ∠=∠=∠=︒163248CDE PED APC ∠=∠+∠=︒+︒=︒48CDE PDB ∠=∠=︒483280ABD PDB APC ∠=∠+∠=︒+︒=︒80PBO ABD ∠=∠=︒16,48,80︒︒︒1n =()1621116θ=︒=⨯-⨯︒2n =()4822116θ=︒=⨯-⨯︒3n =()8023116θ=︒=⨯-⨯︒n n =()θ=-⨯︒2116n ()θ=-⨯︒2116n 1162APC ︒=∠APC α∠=()112122n n θααα=-⨯=-12n θαα=-31︒12C ADC '∠=∠15︒1124360BAC +=-︒∠∠∠30A ∠=︒1152BNC A ∠=∠=︒122A ∠+∠=∠12180A BA C ∠=∠-︒11224360A BA C ∠+∠=∠=∠-︒C CC D '∠=∠∵,∴.故答案是,;(2)由折叠的性质可知:,,∵,∴.∵,∴.∴.∵的平分线,与的外角平分线交于点N ,∴,.∴.(3),理由如下:由折叠的性质可知:,,∴,.∴.∵,的平分线交于点,,∴,.∴.∴.∴.∴.【点拨】本题主要考查了折叠的性质,角平分线的定义,三角形内角和定理,三角形外角的性质,熟知三角形内角和定理和三角形外角的性质是解题的关键.62ADC C CC D ''∠=∠+∠=︒1312C ADC ∠'=∠=︒31︒12C ADC '∠=∠1ADE A DE ∠=∠1AED A ED ∠=∠1130∠=︒()111801252ADE A DE ∠=∠=︒-∠=︒1180218070250AED A ED ∠+∠=︒+∠=︒+︒=︒1125AED A ED ∠=∠=︒18030A ADE AED ∠=︒-∠-∠=︒ABC ∠BN ACB ∠CN 12NBC ABC ∠=∠12NCH ACH ∠=∠()111522BNC NCH NBC ACH ABC A ∠=∠-∠=∠-∠=∠=︒1124360BAC +=-︒∠∠∠1ADE A DE ∠=∠1AED A ED ∠=∠111801802ADE A DE ADE ∠=︒-∠-∠=︒-∠121801802AED A ED AED ∠=︒-∠-∠=︒-∠()()12360236021802ADE AED A A ∠+∠=︒-∠+∠=︒-︒-∠=∠ABC ∠ACB ∠1A 112A BC ABC ∠=∠112A CB ACB ∠=∠()()11111111809022222A BC ACB ABC ACB ABC ACB A A ∠+∠=∠+∠=∠+∠=︒-∠=︒-∠()11111180180909022BA C A BC A CB A A ⎛⎫∠=︒-∠+∠=︒-︒-∠=︒+∠ ⎪⎝⎭12180A BA C ∠=∠-︒()11122221804360A BAC BAC ∠+∠=∠=∠-︒=∠-︒。
黑龙江省哈尔滨市2023-2024学年七年级下学期月考数学模拟试题温馨提示:亲爱的同学们,这份试卷将记录下你的自信、沉着、智慧和收获!请认真审题,看清要求,仔细答卷,规范书写,祝你取得优异的成绩!第Ⅰ卷选择题(共30分)(涂卡)一、选择题(每题3分,共30分)1.下列方程中,是二元一次方程的是()A .B .C .D .32x y -=3x y z+=121y x+=238x y +=2.在下列长度的四根木棒中,能与3cm 、7cm 长的两根木棒钉成一个三角形的是()A .3cmB .4cmC .9cmD .12cm3.若,则下列各式中不成立的是()a b >A .B .C .D .33a b +>+66a b->-22a b>22a b ->-4.已知甲、乙两名同学在四次模拟测试中的数学平均成绩都是112分,但他们的方差不同,分别是,,那么成绩比较稳定的是()25s =甲212s =乙A .甲B .乙C .甲和乙一样D .无法确定5.满足的数在数轴上表示为()12x -≤≤A .B .C .D .6.如图,“花影遮墙,峰峦叠窗.”苏州园林空透的窗中蕴含着许多的数学元素,图①中的窗棂是冰裂纹窗棂,图②是这种窗棂中的部分图案.若,,则1275∠=∠=︒3465∠=∠=︒的度数是()5∠A .80°B .75°C .65°D .60°7.不等式的最小整数解为()71245x x ->-A .0B .1C .2D .38.如图,若,则下列结论中不一定成立的是()ABC ADE△≌△A .B .C .D .BC DE =AC AE =BAD CAE ∠=∠ACB DAC∠=∠9.《孙子算经》中有一道名题:“今有木,不知长短.引绳度之,余绳四尺五寸,屈绳量之,缺乏一尺,木长几何?”意思是:用绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?设长木的长为x 尺,绳子长为y 尺,则可列方程为()A .B .C .D .4.5112y xx y +=⎧⎪⎨-=⎪⎩ 4.5112x yx y +=⎧⎪⎨-=⎪⎩()4.5112x yx y +=⎧⎪⎨-=⎪⎩ 4.5112x yx y +=⎧⎪⎨+=⎪⎩10.如图,在四边形ABCD 中,,,连接BD ,,90A ∠=︒3AD =BD CD ⊥,若P 是BC 边上一动点,则DP 长的最小值为()ADB C ∠=∠A .1B .6C .3D .12第Ⅱ卷非选择题(共90分)二、填空题(每题3分,共30分)11.已知,______.(请用含有x 的式子表示)26x y +=y =12.“n 与4的和是正数”用不等式表示为______.13.正五边形每个内角的度数是______.14.在△ABC 中,已知,,则______.75A ∠=︒60B ∠=︒C ∠=15.有一组数据:x 、3、4、6、7,它们的平均数是5,这组数据的中位数是______.16.已知,是方程的解,则m 的值为______.1x =5y =21mx y -=-17.如图,图1是一路灯的实物图,图2是该路灯的平面示意图,若,50MAC ∠=︒,则图2中的度数为______.20ACB ∠=︒CBA ∠18.某次数学竞赛中,共有20道题,评分标准是:答对一题得5分,答错或不答1题扣一分,某同学想要超过72分,他至少要答对______道题.19.已知点A 、B 的坐标分别为,,点P 为坐标轴上一点(P 点异于O 点),若()2,0()2,4以A 、B 、P 为顶点的三角形与△ABO 全等,则点P 的坐标为______.20.如图,在四边形ABCD 中,,连接AC 、BD ,点E 在BA 边延45ABC DCB ∠=∠=︒长线上,连接DE ,,,若,45BED ∠=︒EAC DBC ABC ∠=∠+∠ 4.5ABC BDES S +=△△则线段BD 的长为______.三、解答题(21、23、24题各8分;22题6分;25、26、27各10分,共60分)21.(本题8分)解方程(不等式)组(不等式组的解集需在数轴上表示出来)(1)(2)34225x y x y +=⎧⎨-=⎩()5131131722x x x x ⎧->+⎪⎨-≤-⎪⎩22.(本题6分)如图,△ABC 的顶点A 、B 、C 都在小正方形的格点上,这样的三角形叫做格点三角形,试在方格纸上画出相应的格点三角形:(1)在图1中画出一个格点三角形与△ABC 全等且有一条公共边AB ;(2)在图2中画出一个格点三角形与△ABC 全等且有一个公共角.C ∠23.(本题8分)我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)在不等式:①②③中,不等式的“云不等式”是210x -<2x ≤()310x x --<2x ≥______;(填序号)(2)若关于x 的不等式不是的“云不等式”,求m 的取值范围.20x m +≥23x x m -<+24.(本题8分)如图,,,垂足分别为D ,E ,BE ,CD 相交于点O ,CD AB ⊥BE AC ⊥连接AO ,若.OB OC=(1)求证:;BAO CAO ∠=∠(2)在不添加任何辅助线的情况下,请直接写出图中所有成对的全等三角形.25.(本题10分)哈69中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买4个足球和3个篮球共需750元,购买3个足球和5个篮球共需920元.(1)求购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需从体育用品商店一次性购买足球和篮球共90个,要求购买足球和篮球的总费用不超过8980元,这学校最多可以购买多少个篮球?26.(本题10分)如图1,在△ABC 中,,AD 平分.AB AC =BAC ∠(1)求证:;AD BC ⊥(2)如图2,点E 为△ABC 内一点,连接AE 、DE ,点F 为AE 上一点,连接DF 并延长至点G ,使得,若,求证:;AG DE =180EDG AGF ∠+∠=︒AF EF =(3)在(2)的条件下,,,,若12DF AB =EDF BAD ∠=∠45FDA CAD ∠+∠=︒CD 的长.AD =27.(本题10分)如图1,在△ABC 中,,,若点A 的坐标为90ACB ∠=︒AC BC =,且满足,点.(),x y 2320x y -+=()1,3B -(1)求点A 的坐标;(2)如图2,点F 为x 轴上一点,连接FA 并延长,交y 轴于点G ,若,求线段AE AF =OF 的长;(3)在(2)的条件下,点M 为y 轴上一点,,连接MA 并延长,交x 轴于点N ,1GM =点K 为AN 上一点,连接OK ,,过点K 作OK 的垂线,交过点M 平行于x 轴的OK BC =直线于点T ,连接OT ,若,求线段OT 的长.AB =数学答案一、选择题(每题3分,共30分)12345678910ACBACADDBC二、填空题(每题3分,共30分)1112131415161718192062x -40n +>45°5230°16或()4,0()0,43三、解答题(21、23、24题各8分,22题6分,25、26、27题各10分,共30分)21.(1)解:②.得③4⨯8420x y -=①③,得+2x =将代入②,得:2x =1y =-∴原方程组的解为21x y =⎧⎨=-⎩(2)解:解不等式①得:2x >解不等式②得:4x ≤∴原不等式组的解集为:24x <≤22.每图3分,共6分23.(1)②③(2)解:由得20x m +≥2x m ≥-由得23x x m -<+3x m <-∵不是的“云不等式”。
人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D . 2.点P(-2,-5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 4.下列方程组不是二元一次方程组的是( )A .43624x y x y +=⎧⎨+=⎩B .44x y x y +=⎧⎨-=⎩C .141y x x y ⎧+=⎪⎨⎪-=⎩D .35251025x y x y +=⎧⎨+=⎩ 5.在311.41407π-,,, 1.14,3.212212221(每两个1之间多一个2),这些数中无理数的个数为( )A .3B .2C .5D .46.若点P ()31m m ,+-在x 轴上,则点P 的坐标为( )A .(0,-2)B .(4,0)C .(2,0)D .(0,-4) 7.如图,由下列条件不能得到AB ∥CD 的是( )A .∠B +∠BCD =180° B .∠1=∠2C .∠3=∠4D .∠B =∠5 8.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(-3,4)B .(4,-3)C .(3,-4)D .(-4,3) 9.下列说法中正确的是( )A .9的平方根是3B .4平方根是2±C 4D .-8的立方根是2± 10.已知x y 、是二元一次方程组31238x y x y +=⎧⎨+=⎩的解,那么x y +的值是( ) A .0 B .5 C .-1 D .111.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为( )A .50°B .60°C .40°D .30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是( )A .(5,6)B .(6,0)C .(6,3)D .(3,6)二、填空题 13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知x y 、()230y -=,则xy 的值是_______.15 1.732 5.477≈≈,≈_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(−1,−2),“马”位于点(2,−2),则“兵”位于点__________.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题19.计算:(1)(2)已知(x –2)2=16,求x 的值.20.已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111A B C △;(3)计算111A B C △的面积.21.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=20°,求∠BOE 和∠AOG 的度数.22.若关于x y 、的方程组59x y k x y k +=⎧⎨-=⎩的解满足236x y +=,求k 的值.23.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.如图,△ABO 的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB 的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的25,求点M的坐标.参考答案1.B【分析】对顶角是两条直线相交,其中一个角是另一个角的边的反向延长线,据定义即可判断.【详解】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故选B【点睛】本题主要考查对顶角的定义,是一个基础题.理解定义是关键.2.C【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点在平面直角坐标系中,点P(−2,−5)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.B【解析】【分析】<<,推出23即可.【详解】解:<<,∴23,2和3之间.【点睛】.4.C【解析】【分析】根据二元一次方程组的定义对各选项分析判断后利用排除法求解.【详解】解:A、是二元一次方程组,故本选项错误;B、是二元一次方程组,故本选项错误;C、第一个方程x在分母上,不是二元一次方程组,故本选项正确;D、是二元一次方程组,故本选项错误.故选:C.【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项的最高次数都应是一次的整式方程.5.A【解析】【分析】根据无理数是无限不循环小数,直接判定即可.【详解】,π,3.212212221(每两个1之间多一个2),共3个;故选:A.【点睛】本题主要考查无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.6.B【解析】【分析】根据点P在x轴上,即m-1=0,可得出m的值,从而得出点P的坐标.【详解】解:∵点P(m+3,m-1)在x轴上,∴m-1=0,解得:m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.7.B【解析】【分析】根据平行线的判定(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【详解】解:A、∵∠B+∠BCD=180°,∴AB∥CD,正确,故本选项不选;B、∵∠1=∠2,∴AD∥BC,不能推出AB∥CD,错误,故本选项选;C、∵∠3=∠4,∴AB∥CD,正确,故本选项不选;D、∵∠B=∠5,∴AB∥CD,正确,故本选项不选;故选:B.【点睛】本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.8.A【解析】【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【详解】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:−3,∴P(−3,4),故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.B【解析】【分析】根据算术平方根的定义、平方根的定义、立方根的定义即可作出判断.【详解】解:A、9的平方根是±3,故选项错误;B、4的平方根是±2,故选项正确;C2,故选项错误;D、-8的立方根是-2,故选项错误.故选:B.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作(a≥0);也考查了立方根的定义.10.B【解析】【分析】两个二元一次方程相加可得4x+4y=20,两边同时除以4即可得到结果. 【详解】解:31238x yx y+=⎧⎨+=⎩①②,①+②得:4x+4y=20,∴x+y=5,故选:B.【点睛】本题考查了二元一次方程组的解,理解方程组解的定义是解题关键.11.D【解析】【分析】反向延长DE交BC于M,根据平行线的性质求出∠BMD的度数,由补角的定义求出∠CMD 的度数,根据三角形外角的性质即可得出结论.【详解】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=60°,∴∠CMD=180°−∠BMD=120°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE−∠CMD=150°−120°=30°.故选:D.【点睛】本题考查的是平行线的性质和三角形外角的性质,用到的知识点为:两直线平行,内错角相等.12.D【解析】【分析】根据题目中所给点运动的特点,从中找出规律,即可得出答案.【详解】解:由图可得,4秒后跳蚤所在位置的坐标是(2,0);16秒后跳蚤所在位置的坐标是(4,0);36秒后跳蚤所在位置的坐标是(6,0);∴42秒时根据跳蚤向上跳动6个单位可以到达(6,6),45秒时根据跳蚤向左跳动3个单位可以到达(3,6),故选:D.【点睛】本题主要考查点的坐标问题,解决本题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.13.如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行【解析】【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:“同位角相等,两直线平行”的条件是:“同位角相等”,结论为:“两直线平行”,所以写成“如果…,那么…”的形式为:“如果同位角相等,那么两直线平行”.14.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.15.17.32【解析】【分析】根据题目中的数据和算术平方根的求法可以解答本题.【详解】==≈,17.32故答案为:17.32.【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出所求数据的算术平方根.16.3【解析】【分析】BE 即是平移的距离,根据线段和差求出即可.【详解】解:根据题意可知BE即为平移的距离,BE=BC-EC=3cm,故答案为:3.【点睛】本题考查平移的性质,根据题意找到平移的的方向和距离是解题关键.17.(−3,1)【解析】试题分析:根据帅的坐标,建立坐标系,如图所示,然后判断得(-3,1).考点:平面直角坐标系18.17【解析】【分析】设晴天工作x 天,雨天工作y 天,根据题意列出二元一次方程组求解即可.【详解】解:设晴天工作x 天,雨天工作y 天, 根据题意得:()()1130%1141411120%11515x y x y ⎧+⨯-=⎪⎪⎨⎪+⨯-=⎪⎩, 解得:710x y =⎧⎨=⎩, ∴两个工程队各工作了x+y=17天,故答案为:17.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.19.(1)原式=4;(2)x=-2或x=6.【解析】【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=-+=+(2)()2216x -=,24x -=±,1262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.20.(1)见解析;(2)见解析;(3)面积为5.【解析】【分析】(1)找到点A 、B 、C 的位置,连接即可;(2)根据平移的性质找到A 1、B 1、C 1的位置,连接即可;(3)用111A B C △所在矩形的面积减去周围直角三角形的面积进行计算.【详解】解:(1)如图,△ABC 即为所求;(2)如图,111A B C △即为所求;(3)111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查平面直角坐标系和平移,熟练掌握平移的性质是解题关键.21.∠BOE=70°;∠AOG=55°. 【解析】【分析】先求出∠AOF ,根据对顶角的性质得出∠BOE ,再根据邻补角的性质求出∠AOE ,由角平分线即可求出∠AOG .【详解】解:∵AB ⊥CD ,∴∠AOD=∠AOC=90°,∵∠FOD=20°,∴∠AOF=90°-20°=70°,∴∠BOE=70°;∴∠AOE=180°-70°=110°,∵OG 平分∠AOE ,∴∠AOG=110°÷2=55°.【点睛】本题考查了垂线、对顶角、邻补角的定义,弄清各个角之间的数量关系是解决问题的关键. 22.34【解析】分析:先利用加减消元法解二元一次方程组,可得72x k y k=⎧⎨=-⎩,然后根据2x+3y=6可得:1466k k -=,解得34k =. 详解:解59x y k x y k +=⎧⎨-=⎩①②, 由①+②可得:214x k =,解得7x k =,把7x k =代入②可得:2y k =-, 因为2x+3y=6可得:1466k k -=,解得34k =. 点睛:本题主要考查含参数的二元一次方程组的解法,解决本题的关键是要熟练掌握加减消元法解二元一次方程组.23.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC=∠EGC=90°,∴AD ∥EG ,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD 平分∠BAC .(角平分线的定义)24.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.【解析】【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;(2)设租甲、乙两种车分别m 辆,n 辆,由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;方案二:甲车3辆,乙车6辆;方案三:甲车5辆,乙车3辆方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.25.(1)10;(2)P 点的纵坐标为8或-8,横坐标为任意实数;(3)M(-2,0),(2,0).【解析】【分析】(1)根据三角形面积公式可直接计算;(2)由于底不变,△OAP 的高是△OAB 的高的二倍即可;(3)分情况讨论,当M 在x 轴上时和当M 在y 轴上时,分别求出OM 即可.【详解】解:(1)∵O(0,0),A(5,0),B(2,4),∴S △OAB =0.5×5×4=10;(2)若△OAP 的面积是△OAB 面积的2倍,O ,A 两点的位置不变,则△OAP 的高应是△OAB 高的2倍,即△OAP 的面积=△OAB 面积×2=0.5×5×(4×2), ∴P 点的纵坐标为8或-8,横坐标为任意实数;(3) △OBM 的面积=21045⨯=, 当M 在x 轴上时,以OM 为底,OM 边上的高为4, ∴1442OM ⨯⨯=,解得OM=2, ∴M(-2,0),(2,0),同理当M在y轴上时,M(0,4),(0,-4).【点睛】本题考查了坐标与图形以及三角形的面积的求解,三角形的底边不变,则三角形的面积与高成正比,高不变,则三角形的面积与底边成正比,需要注意,在平面直角坐标系内,符合长度的点的坐标通常都有两种情况,不要漏解.。
七年级数学(下)第三次月考试题一、选择题(本大题每小题3分,共30分,)1.下列各数无理数有 ( )0 , -3.14 , 3 , 722 , 0.101001…… , π , ..85358.2 A.1个 B.2个 C.3个 D.4个2.方程2x -y 1=0,3x+y=0,2x+xy=1, x2-x+1=0中,二元一次方程的个数是( ) A . 1个 B .2个 C .3个 D .4个3.二元一次方程组的解是 ( )⎩⎨⎧==01.y X A ⎩⎨⎧==12.y X B ⎩⎨⎧==21.y X C ⎩⎨⎧==20.y X D 4.方程2x+y=5的正整数解的个数是 ( )A .1个B .2个C .3个D .4个5.下列运动属于平移的是 ( ) A 、荡秋千 B 、地球绕着太阳转C 、风筝在空中随风飘动 D 、急刹车时,汽车在地面上的滑动6.如果│x+y -1│+(2x+y -3)2=0,那么x ,y 的值为 ( )A .7.若方程(a-2)x-3y=6是二元一次方程,则a 必须满足( )A 、B 、C 、D 、8. 下列命题错误的是( )A 、同位角不一定相等B 、内错角都相等C 、同旁内角可能相等D 、同旁内角互补则两直线平行 9.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠3=∠4B .∠1=∠2C .∠D=∠DCED .∠D +∠ACD=180°10. 如图,直线a 、b 被直线c 所截,a ∥b ,∠2=∠3.若∠1=80°,则∠4等于( )A .20°B .40°C .60°D .80°二、填空题(本大题每小题3分,共24分,)第9题 第10题11. 3的平方根是 , 9的算术平方根是 , 27的立方根是 .12.点P 在第四象限,且P 到x 轴距离为3,到y 轴距离为2,则点P 坐标为13.写出方程x+2y=8的一组正整数解是___.14.任意写出一个解为⎩⎨⎧=-=35y x 的二元一次方程组__________. 15若点M (a -3,a +4)在y 轴上,则a =___________.16.若2x a y b+5与-x 1+2b y 2a 是同类项,则a=_____,b=_____.17.方程是二元一次方程时,则a=_____,b=_____.18. 根据下图提供的信息,可知一件上衣的价格是____元,一条短裤的价格是____元.三、解答题(本大题满分46分)19.解方程组(每小题3分,共12分)⎩⎨⎧=++=9573)1(y x x y ⎩⎨⎧-=-=+253523)1(y x y x⎩⎨⎧=+=+7321255)3(y x y x ⎪⎩⎪⎨⎧=+=+=+4513)4(z x z y y x20. (本题4分)关于x ,y 的二元一次方程组⎩⎨⎧=-=+123532y x y x 的解是二元一次方程x+2y=k 的解,则k 的值是多少?21(本题6分).某企业准备给灾区捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每 顶安置6人,乙种帐篷每顶安置4人,共安置8000人.问该企业捐助甲种帐篷和乙种帐篷各多少顶?22(本题6分).A ,B 两地相距20 km ,甲从A 地向B 地前进,同时乙从B 地向A 地前进,2 h 后两人在途中相遇;如果两人同时从A 地出发到B 地,2h 后两人相距2km ,求甲、乙两人的速度.23.(本题6分)经营户小熊在蔬菜批发市场上了解到以下信息内容:蔬菜品种红辣椒西红柿批发价(元/公斤) 4 1.6零售价(元/公斤) 63.0他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完。
2023年春季学期错题回做练习(二)初一年级数学科目命题人:王飞审题人:刘思敏学生注意:本练习共3道大题,25道小题,满分120分,时量120分钟.一、选择题(本题共10小题,每题3分)1.在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是()A .()3,1B .()1,1-C .()1,3D .()1,1-2.如果x y <,那么下列不等式正确的是()A .11x y +>+B .11x y ->-C .22x y<D .22x y -<-3.在0、0.23、2-、38、227、π、0.1010010001⋯(它的位数无限且相邻两个“1”之间“0”的个数依次加1个)这七个数中,无理数的个数是()A .2B .3C .4D .54.为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是()A .200名学生的视力是总体的一个样本B .200名学生是总体C .200名学生是总体的一个个体D .样本容量是1200名5.如图,下列条件中,不能判定AB CD ∥的是()A .180D BAD ∠+∠=︒B .12∠=∠C .34∠∠=D .B DCE∠=∠6.方程2317x y +=的正整数解的对数是()A .1对B .2对C .3对D .4对7.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是()A .30°B .35°C .45°D .50°8.如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是()A .102m -<<B .12m >-C .0m <D .12m <-二、填空题(本题共6小题,每题3分)11.如果2120a b x y -++=是二元一次方程,则=a ______,b =______.12.点()231A a a --+,在y 轴上,则=a ______.13.若一个正数的平方根是2a -+和21a -,则a=______.14.已知二元一次方程组2425x y x y +=⎧⎨+=⎩,则x y -的值为______.15.如果不等式(2)2a xa ->-的解集是1x <,那么a 必须满足___________.16.如图,把一张长方形纸条ABCD (其中AD BC ∥)沿EF 折叠,若150∠=︒,则AEG ∠=______.三、解答题(本题共9小题)17.(6分)计算:()202311-+-20、(8分)为了解某种小西红柿的挂果情况,科技小组从试验田随机抽取了部分西红柿秧进行了统计,按每株挂果的数量x 分成五组:A .1030x ≤<,B .3050x ≤<,C .5070x ≤<,D .7090x ≤<,E .90110x ≤<.并根据调查结果给制了如下不完整的统计图.请结合统计图解答下列问题:(1)本次调查一共随机抽取了__________株西红柿秧.扇形统计图中D 组所对应的圆心角的度数为______度;(2)补全频数分布直方图;(3)若该试验田共种植小西红柿2000株,请估计挂果数量在E 组的小西红柿株数.21、(8分)甲、乙两人同时解方程组5213mx y x ny +=⎧⎨-=⎩①②,甲解题看错了①中的m ,解得722x y ⎧=⎪⎨⎪=-⎩,乙解题时看错②中的n ,解得37x y =⎧⎨=-⎩,(1)求m ,n 的值;(2)求原方程组的解.22.(9分)如图,在大长方形ABCD 中,放入8个相同的小长方形,求(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分面积为多少平方厘米?23.(9分)为更好的治理水质,保护环境,市治污办事处预购买10台污水处理设备,现有A 、B 两种型号的设备,其中价格及污水处理量如右表.询问商家得知:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元,根据以上条件,(1)求a 、b 的值;A 型B 型价格(万元)a b 处理污水量(吨/月)240200(2)市治污办事处由于资金缺乏,购买污水处理设备的资金最多105万元,你认为该有几种购买方案?(3)在(2)的情况下,若每月污水处理量要求不低于2040吨,为节约资金,请你帮市治污办事处选取一种最省钱的方案?24.(10分)对于数轴上的点A 和正数r ,给出如下定义:点A 在数轴上移动,沿负方向移动r 个单位长度后所在位置点表示的数是x ,沿正方向移动r 个单位长度后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的r 对称数”,记作(,){,}D A r x y =,其中x y <.例如:原点O 表示0,原点O 的1对称数是(,1){1,1}D O =-.(1)若点A 表示2,则点A 的3对称数(,3){,}D A x y =,则x =______,y =______;(2)若(,){2,14}D A r =,求点A 表示的数及r 的值;(3)已知(,5){,}D A x y =,(,3){,}D B m n =,若数轴上还有一点C ,点A 、点B 从点C 同时出发,沿数轴反向运动,点A 的速度是点B 速度的2倍,且满足24y n x m -=-.当2()5()yn x m -=-时,求此时点A 表示的数.25.(10分)在平面直角坐标系中,点(),1A a ,(),6B b ,(),3C c ,且a ,b ,c 满足231321b c a a c b +=+⎧⎨+=+⎩.(1)若1a =,求B ,C 两点的坐标;(2)当实数a 变化时,判断ABC 的面积是否发生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段AB 与y 轴相交于点E ,直线AC 与直线OB 交于点P ,若3PA PC ≤,求实数a 的取值范围.。
七年级数学下册第三次月考试题卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第四章《三角形》班级姓名得分一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.下列运算正确的是()A. (−x)2·x3=x6B. (−x)3÷x=x2C. 3x2yz÷(−xy)=−3xzD. (a−b)6÷(a−b)3=a3−b32.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠43.有一辆汽车储油45升,从某地出发后,每行驶1千米耗油0.1升,如果设剩余油量为(升,行驶的路程为(千米),则与的关系式为A. y=45−0.1xB. y=45+0.1xC. y=45−xD. y=45+x4.已知BD是△ABC的中线,AB=4,AC=3,BD=5,则△ABD的周长为()A.12B. 10.5C. 10D. 8.55.如图,已知△ABC的六个元素,而在图甲、乙、丙中,仅已知甲、乙、丙三个三角形中某些元素,则与△ABC一定全等的三角形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙6.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间关系的大致图象是()A. B. C. D.7.下列说法中正确的是()A. 如果|x|=7,那么x一定是7B. −a表示的数一定是负数C. 射线AB和射线BA是同一条射线D. 一个锐角的补角比这个角的余角大90°8.设a=355,b=444,c=533,则a、b、c的大小关系是()A. c<a<bB. a<b<cC. b<c<aD. c<b<a9. 如果二次三项式x 2−14x +m 2是一个完全平方式,那么m 的值是( ) A. 7 B. ±7 C. 49 D. √1410. 如图,在长方形ABCD 中,AB =6cm ,BC =8cm ,点E 是AB 上的一点,且AE =2BE.点P 从点C 出发,以2cm/s 的速度沿点C −D −A −E 匀速运动,最终到达点E.设点P 运动时间为ts ,若三角形PCE 的面积为18cm 2,则t 的值为( )A. 98或194B. 98或194或274C. 94或6 D. 94或6或274 二、填空题(本大题共5小题,共20.0分)11. 如图,已知BD 是△ABC 的中线,AB =5,BC =3,△ABD 和△BCD 的周长的差是 .12. 某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0 1 2 3 y(升) 120 112 104 96由表格中y 与t 的关系可知,当汽车行驶 小时时,油箱的余油量为0升. 13. 如图,点O 在直线AB 上,OC ⊥OD ,OC ,OF 分别平分∠AOE 和∠BOD.若∠AOC =20∘,则∠BOF 的度数为 .14. 若2x =5,2y =1,2z =6.4,则x +y +z = .15. 如图所示,与∠A 是同旁内角的角共有______个.三、解答题(本大题共10小题,共100.0分)16. (8分)化简(2a +b)(b −2a)−(a −2b)2+4a(a −b)中,其中a =3,b =−217. (10分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC .(1)填空:与∠AOE 互补的角有______;(2)若∠COD =30°,求∠DOE 的度数;(3)当∠AOD =α°时,请直接写出∠DOE 的度数.18.(10分)如图,四边形ABCD中,AB//CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.19.(10分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一直线上,连接BD.(1)△BAD与△CAE全等吗?为什么?(2)试猜想BD,CE有何特殊位置关系,并说明理由.20.(10分)棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层、第二层、…、第n层.第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写下表:n1234…S13…(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?21.(8分)如图,直线AB,CD相交于点O,∠1=35∘,∠2=75∘,求∠EOB的度数.22.(10分)数学课上,老师出了这样一道题:先化简,再求值:(2x+y)(2x−y)−(2x−y)2+2y2,其中xy=2021.小亮一看,题中没有给出x和y的值,只给出了xy的值,所以小亮认为根据题中条件不可能求出题目的值.你认为小亮的说法正确吗⋅请说明理由.23.(10分)陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?24.(12分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,3).(Ⅰ)如图①,三角形AOB的面积为______;(Ⅱ)如图②,将线段AB向右平移2个单位长度,再向上平移1个单位长度,得到线段A1B1,求三角形OA1B1的面积;(Ⅲ)如图①,在x轴上是否存在点C,使三角形ABC的面积等于6.若存在,求点C 的坐标;若不存在,请说明理由.25.(12分)如图,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)判断大小关系:∠AOD______∠BOC(填>、=、<等);(2)若∠BOD=35°,则∠AOC=____________;若∠AOC=135°,则∠BOD=__________;(3)猜想∠AOC与∠BOD的数量关系,并说明理由.答案1.C2.B3.A4.B5.B6.D7.D8.A9.B10.C11.212.1513.35°14.515.416.解:原式=b2−4a2−a2+4ab−4b2+4a2−4ab =−3b2−a2,当a=3,b=−2时,原式=−3×4−9=−12−9=−21.17.解:(1)∠BOE、∠COE;(2)∵OD、OE分别平分∠AOC、∠BOC,∠BOC,∴∠COD=∠AOD=30°,∠COE=∠BOE=12∴∠AOC=2×30°=60°,∴∠BOC=180°−60°=120°,∠BOC=60°,∴∠COE=12∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=α°时,∠DOE=90°.18.(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∵AB//CD,∴∠ACD=60°,∴∠BAC=∠ACD=60°;(2)证明::在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC=∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.19.解:(1)全等.因为∠BAC=∠DAE=90°,所以∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△BAD和△CAE中,所以△BAD≌△CAE(SAS).(2)BD,CE的特殊位置关系为BD⊥CE.理由:由(1)知△BAD≌△CAE,所以∠ADB=∠E.因为∠DAE=90°,所以∠E+∠ADE=90°.所以∠ADB+∠ADE=90°,即∠BDE=90°.所以BD,CE的特殊位置关系为BD⊥CE.20.解:(1)6,10(2)S=n(n+1).2=55.当n=10时,S=10×(10+1)221.解:因为∠1与∠DOB是对顶角,所以∠DOB=∠1=35∘.又因为∠2=75∘,所以∠EOB=∠2+∠DOB=75∘+35∘=110∘.22.解:不正确.理由如下:因为(2x+y)(2x−y)−(2x−y)2+2y2=4x2−y2−4x2+4xy−y2+2y2=4xy.所以,当xy=2021时,原式=4×2021=8084.23.解:(1)陈杰家到学校的距离是1500米,1500−600=900(米).所以书店到学校的距离是900米.(2)12−8=4(分钟),所以陈杰在书店停留了4分钟.1200+(1200−600)+(1500−600)=2700(米),所以本次上学途中,陈杰一共行驶了2700米.(3)(1500−600)÷(14−12)=450(米/分钟),所以在整个上学的途中12分钟到14分钟时段陈杰骑车速度最快,最快的速度是450米/分钟.(4)1500÷(1200÷6)=7.5(分钟),14−7.5=6.5(分钟),所以陈杰以往常的速度去学校,需要7.5分钟,本次上学比往常多用6.5分钟.答:陈杰以往常的速度去学校,需要7.5分钟,本次上学比往常多用6.5分钟.24.解:(Ⅰ)如图①中,∵A(2,0),点B(0,3),∴OA=2,OB=3,∴S△AOB=12⋅OA⋅OB=12×2×3=3.故答案为3.(Ⅱ)如图②中,过点B1作B1E⊥x轴于E,过点A1作A1F⊥x轴于F.由题意A1(4,1),B1(2,4),∴E(2,0),F(4,0),∴OE=2,EB1=4,EF=2,A1F=1,∴S△OA1B1=S△AB1E+S梯形EFA1B1−S△OFA1=12×2×4+12×(4+1)×2−12×1×4=7.(Ⅲ)如图1−1中,存在点C.设C(m,0),由S△ABC=12×AC×OB=6,可知12×|2−m|×3=6,解得m=−2或6,∴C(−2,0)或C(6,0).25.解:(1)=;(2)145°;45°;(3)猜想:∠AOC+∠BOD=180°,理由:依题意∠AOB=∠DOC=90°,∴∠AOC+∠BOD=(∠AOB+∠BOC)+∠BOD,=∠AOB+(∠BOC+∠BOD),=∠AOB+∠DOC=90°+90°,=180°.。
七年级下学期第三次月考试题一、选择题(每题4分,共48分)1、如图为中华人民共和国国旗上的一个五角星,同学们再熟悉不过了,那么它的每个角的度数为()A.45° B.30° C.36° D.40°2、下列各条件中,不能作出惟一三角形的是()A已知两边和夹角 B.已知两边和其中一边的对角C.已知两角和夹边 D.已知三边3.下列图形中,由AB∥CD,能得到∠1=∠2的是()4.已知点P在第四象限内,且点P到x轴的距离是3,到y轴的距离是4,那么点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)5.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(-2,2)6.在“石头,剪刀,布”的猜拳游戏中,俩人出拳相同的概率的是()A.1/9 B.1/ 6 C.1 /3 D.1 /27.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往.如图,a,b分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则下列判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/小时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地8、一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()9.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.410.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲,乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A.上午8:30 B.上午8:35 C.上午8:40 D.上午8:4511、甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.{100(110%)(140%)100(120%)x yx y+=-+-=⨯+B.{100(110%)(140%)10020%x yx y+=-++=⨯C.{100(110%)(140%)100(120%)x yx y+=-++=⨯+D.{100(110%)(140%)10020%x yx y+=++-=⨯12、一年级学生在会议室开会,每排座位坐12人,则有12人无处坐;每排座位坐14人,则余2人独坐一排,则这间会议室共有座位排数是( )。
月考试卷一、选择题(本大题共8小题,共24.0分)1.现有两根小木棒,它们的长度分别为4cm和5cm,若要钉成一个三角形架,下列长度不可以作为第三根木棒长度的是为()A. 4cmB. 5cmC. 8cmD. 10cm2.已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A. -2<x<2B. x<2C. x≥-2D. x>23.n边形的内角和等于1080°,则n的值是()A. 8B. 7C. 6D. 54.方程组的解为,则被遮盖的前后两个数分别为()A. 1、2B. 1、5C. 5、1D. 2、45.若3m-7和9-m互为相反数,则m的值是()A. 4B. 1C. -1D. -46.用一批相同的正多边形地砖辅地,要求顶点聚在一起,且砖与砖之间不留空隙,这样的地砖是()A. 正五边形B. 正三角形,正方形C. 正三角形,正五边形,正六边形D. 正三角形,正方形,正六边形7.已知关于x的不等式组无解,则m的取值范围是()A. m≤3B. m>3C. m<3D. m≥38.某种服装的进价为240元,出售时标价为360元,由于换季,商店准备打折销售,但要保特利润不低20%,那么至多打()A. 6折B. 7折C. 8折D. 9折二、填空题(本大题共6小题,共18.0分)9.我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的______.10.当代数式2x-2与3+x的值相等时,x=______.11.若,则x-y=______.12.从一个多边形的某顶点出发,连接其余各顶点,把该多边形分成了4个三角形,则这个多边形是______边形.13.关于x的不等式-2x-4≤3的所有负整数解的和是______.14.如图,△ABC是一块直角三角板,∠BAC=90°,∠B=25°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F,若∠CAF=20°,则∠BED的度数为______°.三、计算题(本大题共1小题,共8.0分)15.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2.(1)(-2018)⊕(-2019)=______;(2)若(-3p+5)⊕8=8,求p的负整数值.四、解答题(本大题共9小题,共70.0分)16.解方程:x+=17.已知关于x,y的方程组的解满足x+y<0,求m的取值范围.18.求不等式组的整数解.19.一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.21.随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?22.已知直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,∠C=45°,设∠CBQ=∠a,∠CAN=∠β.(1)如图①,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠a+45°;(2)如图②.当点C落在直线MN的下方时,BC与MN交于点F,请判断∠a与∠β的数量关系,并说明理由.23.已知某中学计划租用、两种型号的客车共辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.24.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.答案和解析1.【答案】D【解析】解:根据三角形三边关系可得:5-4<第三根木棒的长<5+4,即:1<第三根木棒的长<9,故不可以是10cm.故选:D.根据三角形的三边关系得到第三根木棒的长的取值范围,再确定答案即可.此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.2.【答案】D【解析】解:根据数轴图示可知,这两个不等式组成的不等式组的解集为x>2,故选:D.根据数轴图示可知,这两个不等式组成的不等式组的解集为x>2,本题考查了不等式的解集,正确理解数轴上不等式解集的意义是解题的关键.3.【答案】A【解析】解:根据题意得;(n-2)×180°=1080°解得:n=8.故选:A.依据多边形的内角和公式计算即可.本题主要考查的是多边形的内角和公式的应用,掌握多边形的内角和公式是解题的关键.4.【答案】C【解析】解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1故选:C.根据方程组的解满足方程组中的每个方程,代入求值可求出被遮盖的前后两个数.本题考查了解二元一次方程组,利用方程组的解满足每个方程即可.5.【答案】C【解析】解:由题意知3m-7+9-m=0,则3m-m=7-9,2m=-2,m=-1,故选:C.根据相反数的性质得出关于m的方程3m-7+9-m=0,解之可得.本题主要考查解一元一次方程,解题的关键是熟练掌握相反数的性质、等式的基本性质和解一元一次方程的基本步骤.6.【答案】D【解析】解:若是正三角形地砖,正三角形的每个内角是60°,能整除360°,能够铺满地面;若是正四角形地砖,正方形的每个内角是90°,能整除360°,能够铺满地面;若是正五角形地砖,正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能够铺满地面;若是正六角形地砖,正六边形的每个内角是120°,能整除360°,能够铺满地面;故选:D.根据一种正多边形的镶嵌应符合一个内角度数能整除360°求解即可.本题考查了平面镶嵌,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.7.【答案】A【解析】解:解不等式3x-1<4(x-1),得:x>3,∵不等式组无解,∴m≤3,故选:A.先按照一般步骤进行求解,因为大大小小无解,那么根据所解出的x的解集,将得到一个新的关于m不等式,解答即可.主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.【答案】C【解析】解:设打了x折,由题意得360×0.1x-240≥240×20%,解得:x≥8.答:至多打8折.故选:C.设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.9.【答案】稳定性【解析】解:用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性,故答案为:稳定性.当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,根据三角形具有稳定性回答即可.本题考查了三角形的稳定性,解题的关键是了解三角形具有稳定性,四边形不具有稳定性.10.【答案】5【解析】解:根据题意得:2x-2=3+x,移项合并得:x=5,故答案为:5.根据题意列出方程,求出方程的解即可得到x的值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.11.【答案】3【解析】解:,①+②得:4x-4y=12,方程两边同时除以4得:x-y=3,故答案为:3.利用加减消元法解之即可.本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.12.【答案】6【解析】解:设这个多边形为n边形.根据题意得:n-2=4.解得:n=6.故答案为:6.根据n边形从一个顶点出发可引出(n-2)个三角形解答即可.本题主要考查的是多边形的对角线,掌握公式是解题的关键.13.【答案】-6【解析】解:不等式-2x-4≤3的解集是x≥-,故不等式的负整数解为-3,-2,-1.-3-2-1=-6,故答案为:-6.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的负整数即可求解.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.【答案】85【解析】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=65°,∴∠BFA=20°+65°=85°,∴∠BED=85°,故答案为:85.依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+65°=85°,进而得出∠BED=85°.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.15.【答案】-2018【解析】解:(1)∵-2018>-2019,∴(-2018)⊕(-2019)=-2018,故答案为:-2018;(2)∵(-3p+5)⊕8=8,∴-3p+5≤8,解得:p≥-1,∴p的负整数值为-1.(1)根据定义运算可得.(2)先根据题中所给的条件得出关于p的不等式,求出p的取值范围即可.本题考查的是解一元一次不等式,根据题意得出关于p的不等式是解答此题的关键.16.【答案】解:方程两边同时乘以6得:6x+3=2(2-x),去括号得:6x+3=4-2x,移项得:6x+2x=4-3,合并同类项得:8x=1,系数化为1得:x=.【解析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.17.【答案】解:,①+②,得3x+3y=2+2m,∴x+y=,∵x+y<0,∴,解得,m<-1,即m的取值范围是m<-1.【解析】根据题目中的不等式组可以求得x+y的值,从而可以求得m的取值范围.本题考查解一元一次不等式组、二元一次方程组的解,解答本题的关键是明确题意,求出m的取值范围.18.【答案】解:∵解不等式①得:x>-1,解不等式②得:x<5,∴不等式组的解集是:-1<x<5,∴不等式组的整数解是:0,1,2,3,4.【解析】先求出不等式组的解集,再求出不等式组的整数解即可.本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.19.【答案】解:设每个内角度数为x度,则与它相邻的外角度数为180°-x°,根据题意可得x-(180-x)=100,解得x=140.所以每个外角为40°,所以这个多边形的边数为360÷40=9.答:这个多边形的边数为9.【解析】根据内角与相邻外角和为180度、内角比它相邻的外角大100°,构造方程求出外角度数,最后利用外角和360°可求边数.本题主要考查多边形的内角与外角、多边形的外角和360°知识,解题的关键是利用内、外角转化求边数.20.【答案】解:∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长-△ABD的周长=5cm.∴AC-AB=5cm.又∵AB+AC=11cm,∴AC=8cm.即AC的长度是8cm.【解析】根据中线的定义知CD=BD.结合三角形周长公式知AC-AB=5cm;又AC+AB=11cm.易求AC的长度.本题考查了三角形的角平分线、中线和高.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.21.【答案】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:解得:答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1-80%)+100×80×(1-75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.【解析】(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省钱数=甲品牌粽子节省的钱数+乙品牌粽子节省的钱数,即可求出节省的钱数.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.22.【答案】(1)证明:∵∠CDQ是△CBD的一个外角,∴∠CDQ=∠α+∠C,∵PQ∥MN,∴∠CDQ=∠β,∴∠β=∠α+∠C,∵∠C=45°,∴∠β=∠α+45°;(2)解:∠α=∠β+45°,理由如下:∵∠CFN是△ACF的一个外角,∴∠CFN=∠β+∠C,∵PQ∥MN,∴∠CFN=∠α,∴∠α=∠β+∠C,∵∠C=45°,∴∠α=∠β+45°.【解析】(1)由三角形的外角性质得出∠CDQ=∠α+∠C,由平行线的性质得出∠CDQ=∠β,得出∠β=∠α+∠C,即可得出结论;(2)由三角形的外角性质得出∠CFN=∠β+∠C,由平行线的性质得出∠CFN=∠α,得出∠α=∠β+∠C,即可得出结论.本题考查了平行线的性质以及三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解题的关键.23.【答案】解:(1)设租用A型号客车x辆,则租用B型号客车(10-x)辆,依题意,得:600x+450(10-x)≤5600,解得:x≤7.又∵x为整数,∴x的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10-x)辆,依题意,得:45x+30(10-x),≥380,解得:x≥5.又∵x为整数,且x≤7,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.【解析】(1)设租用A型号客车x辆,则租用B型号客车(10-x)辆,根据总租金=600×租用A型号客车的辆数+450×租用B型号客车的辆数结合租车的总费用不超过5600元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最大整数值即可得出结论;(2)设租用A型号客车x辆,则租用B型号客车(10-x)辆,根据座位数=45×租用A 型号客车的辆数+30×租用B型号客车的辆数结合师生共有380人,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合(1)的结论及x为整数,即可得出各租车方案.本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.24.【答案】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°-∠PDC-∠PCD=180°-∠ADC-∠ACD=180°-(∠ADC+∠ACD)=180°-(180°-∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°-∠PDC-∠PCD=180°-∠ADC-∠BCD=180°-(∠ADC+∠BCD)=180°-(360°-∠A-∠B)=(∠A+∠B).【解析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可.本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.。
如意湖中学2012—2013年度第二学期七年级数学第三次月考试题(满分120分,时间100分钟)一、选择题(每小题3分,共24分)1、下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是( )A 、12cm, 3cm, 6cm ;B 、8cm, 16cm, 8cm ;C 、6cm, 6cm, 13cm ;D 、2cm, 3cm, 4cm 。
2、下列运算正确的是( )。
A.1055a a a =+;B.2446a a a =⨯ ;C.a a a =÷-10 ;D.044a a a =-。
3、等腰三角形一边的长是4,另一边的长是8,则它的周长是 。
A.20B.16C.16或20D.无法确定 4、已知等腰三角形的一个内角为70°,则它的顶角..为 度。
A.40° B.55° C.40°或70° D.40°或55° 5、下列运算正确的是( )。
A 1055a a a =+B 2446a a a =⨯C a a a =÷-10D 044a a a =-6、一个角的度数是40°,那么它的余角的度数是( )A 、130°;B 、140°;C .50°;D .90° 7、下列图形中,不是轴对称图形的是( )820cm5cm h t (时)之间的关系图9:310、若a 2+ka +4是一个完全平方式,则k 等于 。
11、计算:计算()-=2324xy z12、如果直线a ⊥b ,且直线c ⊥a ,则直线c 与b 的位置关系 (填“平行”或“垂直”)。
13、如图:AB 、CD 相交于点O ,OB 平分∠DOE ,若∠DOE =60○,则∠AOC 的度数是 14、如图∠AOB =125°,AO ⊥OC ,BO ⊥OD 则∠COD =___________. 第13题 第14题 第15题15、如图:点C 、F 再BE 上,∠1=∠2 ,BC=EF ,请补充条件 (写一个即可)使△ABC ≌△DEF 。
北京市中国人民大学附属中学本部2022-2023学年七年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在“唱响春天,畅想未来”初一年级英语歌曲魅力展演中,参加活动的15个班级按照歌曲的类别被分为了四组依次出场,出场顺序表如下:A .-3B .3C .-4D .44.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为()1,1-,表示点B 的坐标为()3,2,则表示其他位置的点的坐标正确的是( )A .()1,0C -B .()3,1D -C .()2,5E --D .()5,2F 5.在平面直角坐标系xOy 中,已知点(),1A a -,()2,3B b -,()5,4C -.若AB x ∥轴,AC y ∥轴,则a b +=( )A .2B .2-C .1D .1-6.在平面直角坐标系xOy 中,已知点()42A -,,()22B --,,下列说法:①直线AB x ∥轴;②点A 与点B 的距离为6个单位长度;③点B 到两坐标轴的距离相等;④连接OA OB ,,则AOB Ð为钝角;其中错误的说法的个数是( )A .0B .1C .3D .47.如图,已知直线12l l ^,且在某平面直角坐标系中,x 轴1l ∥,y 轴2l ∥,若点A 的(1)坐标原点应为______的位置.(2)在图中画出此平面直角坐标系;(3)校门在第______象限;图书馆的坐标是______;分布在第一象限的是______.20.在平面直角坐标系xOy中,已知点()A,()1,3B--,2,1(1)在坐标系中标出点A,B;(2)求AOBV的面积.21.如图1,在长方形OABC中,O为平面直角坐标系的原点,5OC=,点OA=,3B在第三象限.(1)点的坐标为______;B(2)若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:4两部分,求点的坐标;P(3)如图2,M为x轴负半轴上一点,且CBM CMBÐ=Ð,N是x轴正半轴上一动点,参考答案:1.C【分析】根据用()4,1的班级.2,3作为3班的出场序号,可得出场序号为()【详解】∵用()2,3作为3班的出场序号,∴出场序号为()4,1的班级4班.故选C.【点睛】本题考查了用有序数对确定位置,一对有顺序的数叫做有序数对,理解有序数对是两个有顺序的数是解题的关键.2.D【分析】根据每个象限内点的坐标特点进行求解即可.【详解】解:∵8030,,>-<∴点P在第四象限,故选D.【点睛】本题主要考查了判断点所在的象限,熟知每个象限内点的坐标特点是解题的关键:第一象限()++,;第二象限()+-,.--,;第四象限()-+,;第三象限()3.B【分析】根据点到y轴的距离是点的横坐标的绝对值,可得答案.【详解】解:点(3,4)P--到y轴的距离是3,故选:B.【点睛】本题考查了点的坐标,点到x轴的距离是点的纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值.4.B【分析】根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【详解】根据点A的坐标为(1,1)-,表示点B的坐标为(3,2),可得:∴(0,0),(3,1),(5,2),(5,2)C D E F ----,故选:B .【点睛】此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x ,y 轴的位置及方向.5.D【分析】根据平行x 轴和平行y 轴的坐标特点,求出a 、b 的值,再代入求值即可.【详解】解:∵(),1A a -,()2,3B b -,()5,4C -.若AB x ∥轴,AC y ∥轴,∴13b -=-且5a =-,∴4b =,∴541a b +=-+=-,故D 正确.故选:D .【点睛】本题主要考查了平行x 轴和平行y 轴的坐标特点,解题的关键是熟练掌握平行x 轴的直线上点的纵坐标相同,平行y 轴的直线上点的横坐标相同.6.A【分析】根据平行于x 轴的直线上的点纵坐标相同即可判断①;求出AB 的长即可判断②;根据点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离为横坐标的绝对值即可判断③;在坐标系中画出AOB Ð即可判断④.的关键.10.()34-,【分析】根据关于y 轴对称的点横坐标互为相反数,纵坐标相同进行求解即可.【详解】解:点()34A ,关于y 轴对称的点的坐标是()34-,,故答案为:()34-,.【点睛】本题主要考查了坐标与图形变化——轴对称,熟知关于y 轴对称的点横坐标互为相反数,纵坐标相同是解题的关键.11.()23-,【分析】根据点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离为横坐标的绝对值进行求解即可.【详解】解:∵点A 到x 轴的距离为3,到y 轴的距离为2,∴点A 的横坐标的绝对值为2,纵坐标的绝对值为3,又∵点A 在第二象限,∴点A 的坐标为()23-,,故答案为:()23-,.【点睛】本题主要考查了点到坐标轴的距离,第二象限内点的坐标特点,熟知点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离为横坐标的绝对值是解题的关键.12.(-1,5),(-1,-1)【详解】试题解析:∵AB ∥x 轴,点A 坐标为(−1,2),∴A ,B 的纵坐标相等为2,设点B 的横坐标为x ,则有AB =|x +1|=3,解得:x =−4或2,∴点B 的坐标为(−4,2)或(2,2).故本题答案为:(−4,2)或(2,2).13.()300,或()300-,##()300-,或()300,【详解】(1)解:由题意得,可以建立如下坐标系,∴坐标原点应为高中楼的位置,故答案为:高中楼;(2)解:如图所示,即为所求;(3)解:由坐标系可知,校门在第四象限,图书馆的坐标为()41,,分布在第一象限的是,图书馆和操场,故答案为:四,()41,,图书馆和操场.【点睛】本题主要考查了实际问题中用坐标表示位置,正确建立坐标系是解题的关键.20.(1)见解析(2)2.5【分析】(1)根据点A,B的坐标描点即可;(2)用割补法求解即可.∴当53m-££-时,在线段MN上存在点E,使得点E满足(,)4D E O£远且(,)4D E O³总,综上:14m££或53m-££-时,在线段MN上存在点E,使得点E满足(,)4D E O£远且(,)4D E O³总.【点睛】本题考查坐标系下两点间的距离.理解并掌握D远和D总的定义,是解题的关键.。
人教版七年级数学下册第三次月考试题一、选择题(每小题3分,共36分)1.下列算式正确的是()A .B .C.D.2.在实数3.14,﹣,﹣,1.7,,0,﹣π,4.262262226…(两个6之间一次增加一个“2”)中,无理数的个数是()A.1个B.2个C.3个D.4个3.如果a>b,那么下列不等式中一定成立的是()A.a+m<b+n B.am<bm C.am2>bm2D.m﹣a<m﹣b 4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A.300名学生是总体B.每名学生是个体C.50名学生是所抽取的一个样本D.这个样本容量是505.如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠56.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间7.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限8.方程组的解为,则被遮盖的两个数分别为()A.2,1B.2,3C.5,1D .2,49.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)10.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°11.我区某中学七年级一班40名同学为灾区捐款,共捐款2000元,捐款情况如表:捐款(元)204050100人数108表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y 名同学,根据题意,可得方程组()A.B.C.D.12.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2020的面积是()A .1010m2B.m2C.505m2D.m2二、填空题(每小题3分,满分18分)13.的平方根是.14.如图,直线a、b 被第三条直线c所截,如果a∥b,∠1=50°,那么∠2=.15.已知二元一次方程4x+3y=9,若用含x的代数式表示y,则有y=.16.把命题“等角的余角相等”写成“如果…,那么….”的形式为.17.已知是方程bx﹣2y=10的一个解,则b=.18.将正整数按图所示的规律排列,若用有序数对(n,m)表示第n行从左到右第m个数,如(4,3)表示整数9,则(11,5)表示的整数是.三、解答题(66分)19.(6分)(1)计算(2)解方程组20.(5分)解不等式组,并把它们的解集在数轴上表示出来:.21.(5分)如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.22.(8分)推理填空:如图,已知EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整;解:因为EF∥AD()所以∠2=,()又因为∠1=∠2,而∠2=∠3,所以∠1=∠3(等量代换)所以AB∥,()所以∠BAC+=180°()又因为∠BAC=70°所以∠AGD=.23.(8分)如图,∠ABC=∠ADC,BF平分∠ABC,DE平分∠ADC,∠1=∠2.问AB与CD,AD与BC平行吗?请说明理由.24.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)△ABC的面积是.(2)在图中画出△ABC向下平移2个单位,向右平移5个单位后的△A1B1C1.(3)写出点A1,B1,C1的坐标.25.(8分)体育委员统计了全班同学60秒跳绳的次数,列出了频数分布表和频数分布直方图.如图:60≤x<8080≤x<10080≤x<120120≤x<140140≤x<160160≤x<180180≤x<200 2a1813841(1)频数分布表中a=;补全频数分布直方图.(2)上表中组距是,组数是组,全班共有人.(3)跳绳次数在100≤x<140范围的学生有人,占全班同学的%.(4)从图中,我们可以看出怎样的信息?(合理即可)26.(8分)为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?27.(10分)在平面直角坐标系中,点A的坐标为(m,n),且,点B的坐标为(1,2).(1)求点A的坐标;(2)若存在点M(2,b),使△ABM的面积S△ABM=5.试求出b的值;(3)已知点P的坐标为(7,0),若把线段AB上下平移,恰使△ABP的面积S△ABP=4,直接写出平移方式.人教版七年级数学下册期中试题一、选择题(每小题3分,共30分)1.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.下列各数:,,,﹣1.414,,0.1010010001…中,无理数有()A.1个B.2个C.3个D.4个3.下列命题是真命题的是()A.垂直于同一条直线的两条直线平行B.相等的角是对顶角C.平行于同一条直线的两条直线平行D.内错角相等4.在下面哪两个整数之间()A.5和6 B.6和7 C.7和8 D.8和95.下列结论正确的是()A.64的立方根是±4B.﹣没有立方根C.立方根等于本身的数是0D.=﹣36.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A.∠1=∠2 B.∠3=∠4C.∠D=∠DCE D.∠D+∠ACD=180°7.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣4,1)C.(﹣2,﹣1)D.(1,﹣2)8.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.如果小华在小丽北偏东40°的位置上,那么小丽在小华的()A.南偏西50°B.北偏东50°C.南偏西40°D.北偏东40°10.如图,AB∥EF,∠C=90°,则α、β、γ的关系是()A.β+γ﹣α=90°B.α+β+γ=180°C.α+β﹣γ=90° D.β=α+γ二、填空题(每小题3分,共18分)11.的平方根是.12.若第二象限内的点P(x,y),满足=0.则点P的坐标是.13.如图,AB∥CD,∠B=48°,∠D=29°,则∠BED=°.14.如图,BE平分∠ABC,∠DBE=∠BED,∠C=72°,则∠AED=°.15.如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数是度.16.已知∠A的两边与∠B的两边分别平行,且∠A的度数比∠B度数的2倍少18°,则∠A 的度数为.三、解答题(72分)17.(8分)计算:(1)|﹣5|++(2).18.(8分)求x的值:(1)(x﹣2)3=1 (2)(x﹣1)2=4;19.(8分)填空,将理由补充完整.如图,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求证:FG∥BC证明:∵CF⊥AB,DE⊥AB(已知)∴∠BED=∠BFC=90°(垂直的定义)∴ED∥FC()∴∠2=∠3 ()∵∠1+∠EDC=180°(已知)又∵∠2+∠EDC=180°(平角的定义)∴∠1=∠2 ()∴∠1=∠3(等量代换)∴FG∥BC()20.(8分)如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过怎样的平移得到的?(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标(,).21.(8分)如图,D,E为△ABC边AB上两点,F,H分别在AC,BC上,∠1+∠2=180°(1)求证:EF∥DH;(2)若∠ACB=90°,∠DHB=25°,求∠EFC的度数.22.(10分)天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h 米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?23.(10分)如图已知AB∥CD,P为直线AB,CD外一点,BF平分∠ABP,DE平分∠CDP,BF 的反向延长线交DE于点E.(1)∠ABP,∠P和∠PDC的数量关系为;(2)若∠BPD=80°,求∠BED的度数;(3)∠P与∠E的数量关系为.24.(12分)在平面直角坐标系中,A(0,1),B(5,0)将线段AB向上平移到DC,如图1,CD交y轴于点E,D点坐标为(﹣2,a)(1)直接写出点C坐标(C的纵坐标用a表示);(2)若四边形ABCD的面积为18,求a的值;(3)如图2,F为AE延长线上一点,H为OB延长线上一点,EP平分∠CEF,BP平分∠ABH,求∠EPB的度数.。
山东省 济南市 历城区济南外国语学校2023-2024学年七年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算:2332⨯为( )A .32B .72C .84D .108 2.利用细菌做生物杀虫剂,可以减轻对环境的污染,苏云金杆菌就是其中一种,其长度大约为0.0000046m ,将0.0000046用科学记数法表示应为( )A .74610-⨯B .74.610-⨯C .60.4610-⨯D .64.610-⨯ 3.下列运算正确的是( )A .3362x x x +=B .()264x x =C .246x x x ⋅=D .()3326x x -=- 4.小明去帮妈妈买菜,从家中出发走20分钟到一个离家900米的菜市场,买菜花了10分钟,之后用15分钟返回家里,下面图形表示小明离家距离y (米)与外出时间x (分钟)之间关系图象的是( )A .B .C .D . 5.下列各式中能用平方差公式计算的是( )A .()()22x y x y -+-B .()()1551m m --C .()()3535x y x y -+D .()()a b a b +-- 6.若()02x +无意义,则3x 是( )A .2-B .8-C .2D .8 7.如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形,然后把剩下部分沿图中实线剪开后排成如图②所示的长方形,通过计算图①、图②中阴影部分的面积,可以得到的代数恒等式为( )A .()()22a b a b a b -=+-B .()2a a b a ab -=-C .()2222a b a ab b -=-+D .()2222a b a ab b +=++ 8.如果14,2m n n x x +==,那么2m x 的值是( ) A .4 B .8 C .64 D .169.若关于x 的二次三项式24(1)1x m x +-+是一个完全平方式,则m 的值为( ). A .5m =- B .3m =- C .5m =或3m =- D .5m =-或3m = 10.地铁给人们带来了快捷、便利的生活,同时也是疏导交通、解决拥堵的最佳方式. 现有甲、乙两个工程队分别同时开挖两条600米长的隧道,所挖隧道长度y (米)与挖掘时间x (天)之间的函数关系如图所示,现有下列说法:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前2天完成任务;④当2x =或6时,甲、乙两队所挖隧道长度都相差100米.其中正确的有 ( )A .1个B .2个C .3个D .4个二、填空题11.在球的表面积公式24S r π=中,常量是.12.根据图中的程序计算y 的值,若输入的x 值为3,则输出的y 值为.13.计算:()202320240.254-⨯=.14.某次物理兴趣课上,物理老师介绍了世界上有两种表示温度的单位,分别是摄氏温度(℃)和华氏温度(°F ),两种计量之间有如下的对应表:当摄氏温度为80(℃)时,则此时对应的华氏温度为(°F ). 15.要使()32412x x ax x -+++中不含有x 的四次项,则=a .16.如图,有两个正方形A ,B ,现将B 放在A 的内部如图甲,将A ,B 并排放置后构造新的正方形如图乙.若图甲和图乙中阴影部分的面积分别为310和215,则正方形A 与B 的面积之和为.三、解答题17.计算:(1)()233223?-? (2)()()120240112024π2-骣琪---+琪桫18.计算:(1)()322412627a a a a a -÷+⨯ (2)()()()()222x y x y x y x y +--+-19.先化简后求值:[(a -2b )2-(a +3b )(a -2b )]÷(-5b ),其中|a +2|+(b -1)2=0.20.某校门口道路中间的隔离护栏平面示意图如图所示,假如每根立柱宽为0.2米,立柱间距为3米.(1)根据如图所示,写出表格中的=a ;(2)设有x 根立柱,护栏总长度为y 米,求y 与x 之间的关系式;(3)求护栏总长度为93米时立柱的根数?21.某社区为了提升居民的幸福指数,现规划将一块长()91a -米、宽()35b -米的长方形场地(如图)打造成居民健身场所,具体规划为:在这块场地中分割出一块长()31a +米、宽b 米的长方形场地建篮球场,其余的地方安装各种健身器材.(1)求安装健身器材的区域面积;(2)当10a =,15b =时,每平方米的健身器材地面铺设需100元,求安装健身器材的区域地面铺设的费用共多少钱?22.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费.设小丽家每月用气量为x 立方米,应交煤气费为y 元.(1)分别写出煤气不超过50立方米和超过50立方米时,y 与x 之间的关系式;(2)若小丽家4月份的煤气费为88元,那么她家4月份所用煤气为多少立方米?(3)已知小丽家6月份的煤气费平均每立方米0.95元,那么6月份小丽家用了多少立方米的煤气?23.阅读下列材料:已知实数m ,n 满足2222(21)(21)80m n m n +++-=,试求222m n +的值.解:设222m n t +=,则原方程变为(1)(1)80t t +-=,整理得2180t -=,即281t =,9t ∴=±.2220m n +≥Q ,2229m n ∴+=.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)已知实数x ,y 满足2222(223)(223)27x y x y +++-=,求22x y +的值.(2)在(1)的条件下,若1xy =,求()2x y +和x y -的值.24.已知动点Q 从点F 出发沿图1的边框按F E D C B A →→→→→的路径运动(边框拐角处都互相垂直),相应的QAF △的面积()2cm y 与Q 点移动路程()cm x 的关系图象如图2,根据图象信息回答下列问题:(1)DE =,AB =;当12x =时,点Q 应运动到图1的顶点处;(2)根据以上信息,求m 的值;(3)当24y =时,求x 的值.25.学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A 型卡片,2张C 型卡片,则应取张B 型卡片才能用它们拼成一个新的正方形,此新的正方形的边长是(用含a ,b 的代数式表示);(2)选取4张C 型卡片在纸上按图2的方式拼图,并得到中间正方形作为第四种D 型卡片,由此可写出的等量关系为;(3)选取1张D 型卡片,3张C 型卡片按图3的方式不重复的叠放长方形MNPQ 框架内,已知NP 的长度固定不变,MN 的长度可以变化,且0MN ≠.图中两阴影部分(长方形)的面积分别表示为1S ,2S ,若2123S S b -=,则a 与b 有什么关系?请说明理由.。
1
A
B
C
D
七年级下册数学综合测试卷 03
班级: 姓名 考号: 成绩:
一、精心选一选,相信自己的判断力!【3×10=30分】
1、如图所示,∠1和∠2是对顶角的是( )
2.在正三角形、正方形、正五边形、正六边形中不能单独镶嵌平面的是( ) A 、正三角形 B 、正方形 C 、正五边形 D 、正六边形
3. 方程组1
25
x y x y -=⎧⎨
+=⎩,的解是( )
A 、12x y =-⎧⎨=⎩
B 、21x y =⎧⎨=-⎩
C 、12x y =⎧⎨=⎩
D 、2
1
x y =⎧⎨=⎩
4. 中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”.通过平移,可将图中的吉祥物“海宝”平移到图( )
5、如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )
A .(3,2)
B .(3,1)
C .(2,2)
D .(-2,2)
6、如图所示,已知AC ∥ED ,∠C =26°,∠CBE =37°,则∠BED 的度数
是 ( )
A 、63°
B 、83°
C 、73°
D 、53°
7. 对于下列命题:
①对顶角相等;②同位角相等;③两直角相等; ④邻补角相等; ⑤有且只有一条直线垂直于已知直线; ⑥三角形一边上的中线把原三角形分成面积相等的两个三角形。
其中是真命题的
共有( )
A. 2个
B. 3个
C. 4个
D. 5个 8.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( )
A.43∠=∠
B. 21∠=∠
C. DCE D ∠=∠
D. 180=∠+∠ACD D
9.已知10x y =-⎧⎨=⎩和2
3x y =⎧⎨=⎩都是方程y ax b =+的解,则a 和b 的值是 ( )
A.11a b =-⎧⎨=-⎩
B.1
1a b =⎧⎨=⎩
C.11a b =-⎧⎨=⎩ D. 11a b =⎧⎨=-⎩
所截,请添加一个条件 CD.
12、命题“对顶角相等”的题设是 ,结论是 。
13、已知1
8x y =⎧⎨=-⎩
是方程31mx y -=-的解,则m =___________。
14、十边形的内角和是_________,外角和是__________。
15、在平面直角坐标系内,把点P (-5,-2)先向左平移3个单位长度,再向上平移
2个单位长度后得到的点的坐标是 ____________。
16、把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位
置上,若∠EFG =55°, 则∠2=_______.
17、若等腰三角形的两边长为6cm 和2cm ,则它的周长为 .
18、五洲宾馆准备在大厅楼梯上铺设某种红色地毯,
已知这种红地毯每平方米售价30元,主楼道宽2 m
则购买地毯需多少钱错误!未找到引用源。
19、将一直角三角板与两边平行的硬纸条如图所示放置,下列结论: (1)∠1=∠2;(2)∠3=∠4; (3)∠2+∠4=90°; (4)∠4+∠5=180°. 其中正确的是(填序号):___________
三、专心解一解【本题满分43分】
20. 解方程组(3+3=6分) (1)25211x y x y -=-⎧⎨+=⎩,
(2)
327
413x y x y +=⎧⎨
-=⎩
21.(本题6分)如图,已知1∠=∠B ,CD 是△ABC 的角平分线.
(14题图)
B
A C
D E
F G
M
N
1
2
E
D
C B
A
432
1
2
1
C
求证:425∠=∠.
请在下面横线上填出推理的依据: 证明:∵ 1∠=∠B (已知),
∴ DE ∥BC ( ). ∴ 32∠=∠ ( ). ∵ CD 是△ABC 的角平分线 ( ), ∴ 43∠=∠ ( ). ∴ 24∠=∠ ( ).
∵425∠+∠=∠( ), ∴ 425∠=∠
22、(本题5分)如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标。
23.(本题6分)如图所示的直角坐标系中,三角形ABC 的顶点坐标分别是:A (0,0),B (7,1),C (4,5)。
(1)如果将⊿ABC 向上平移1个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1。
画出平移后的三角形,并求出A 1、B 1、C 1的坐标;
(2)求△ABC 的面积;
24、(本题6分)如图,在ΔABC 中,∠ACB=900
,∠1=∠B. (1)试说明 CD 是ΔABC 的高;
(2)如果AC=8,BC=6,AB=10,求CD 的长.
25、(本题6分)某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话: 李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.” 小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.” 小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.” 根据以上对话,解答下列问题:
(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?
(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?
26. (本题8分)AB ∥CD ,直线a 交AB 、CD 分别于点E 、F ,点M 在EF 上,P 是直线CD 上的一个动点,(点P 不与F 重合) (1)当点P 在射线FC 上移动时,∠FMP+∠FPM=∠AEF 成立吗?请说明理由。
(2)当点P 在射线FD 上移动时,∠FMP+∠FPM 与∠AEF 有什么关系?并说明你的理由。
A
B D
C
P
F
E
M a
A
C
B D P F
E M
a
备用图。