三角形三边关系--北师大版
- 格式:ppt
- 大小:318.00 KB
- 文档页数:25
四年级下册数学教案-第二单元探索与发现(二)三角形三边的关系-北师大版一、教学目标1. 知识与技能:使学生理解和掌握三角形三边的关系,能根据三角形三边关系判断三条线段能否组成三角形。
2. 过程与方法:通过观察、操作、验证,培养学生的观察能力、操作能力和逻辑思维能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
二、教学重点、难点1. 教学重点:理解和掌握三角形三边的关系。
2. 教学难点:能根据三角形三边关系判断三条线段能否组成三角形。
三、教学过程1. 导入新课- 联系生活实际,引导学生观察生活中的三角形,激发学生的学习兴趣。
- 提问:同学们,你们在生活中见过哪些三角形?它们有什么特点?2. 探究新知- 活动1:学生分组操作,用三根小棒尝试组成三角形,观察并记录成功和失败的情况。
- 活动2:学生交流操作结果,总结三角形三边的关系。
- 活动3:教师引导学生用数学语言表述三角形三边的关系。
3. 巩固练习- 练习1:判断下列三根小棒能否组成三角形,并说明理由。
- 练习2:在三角形ABC中,已知AB=10cm,BC=15cm,AC=20cm,判断这个三角形是什么类型的三角形。
4. 课堂小结- 教师引导学生回顾本节课所学内容,总结三角形三边的关系。
5. 课后作业(布置必做题和选做题)- 必做题:完成教材P23页的第1-3题。
- 选做题:探究四边形四边的关系。
四、教学反思本节课通过观察、操作、验证,让学生理解和掌握三角形三边的关系,培养学生的观察能力、操作能力和逻辑思维能力。
在教学中,要注意引导学生用数学语言表述三角形三边的关系,提高学生的数学表达能力。
同时,要关注学生的个体差异,给予不同层次的学生有针对性的指导和帮助,使他们在数学学习中都能得到发展。
重点关注的细节是“探究新知”环节中的活动设计和实施过程。
这个环节是学生理解和掌握三角形三边关系的关键步骤,也是教学难点所在。
以下是对这个重点细节的详细补充和说明:探究新知活动1:学生分组操作,用三根小棒尝试组成三角形在这个活动中,学生通过亲身体验来感知三角形三边关系。
九年级数学第一章直角三角形的边角关系教案一、本章教学的指导意见:本章内容从梯子的倾斜程度说起,引出第一个三角函数——正切。
因为相比之下,正切是生活当中用得最多的三角函数概念,如刻画物体的倾斜程度、山的坡度等。
正弦和余弦的概念,是在正切的基础上、利用直角三角形、通过学生的说理得到的。
接着,又从学生熟悉的三角板引入特殊角30°、45°、60°角的三角函数值的问题。
对于一般包括锐角三角函数值的计算问题,需要借助计算器。
教科书仔细地介绍了如何从角得值、从值得角的方法,并且提供了相应的训练和解决问题的机会。
利用锐角三角函数解决实际问题,也是本章重要的内容之一。
除“船有触礁的危险吗?”“测量物体的高度”两节外,很多实际应用问题穿插于各节内容之中。
直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一,锐角三角函数在解决现实问题中有着重要的作用,如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,一般说来,这些实际问题的数量关系往往归结为直角三角形中边和角的关系问题。
研究图形之中各个元素之间的关系,如边和角之间的关系,把这种关系用数量的形式表示出来,即进行量化,是分析问题和解决问题过程中常用的方法,是数学中重要的思想方法。
通过这一章内容的学习,学生将进一步感受数形结合的思想、体会数形结合的方法。
通过直角三角形中边角之间关系的学习,学生将进一步体会数学知识之间的联系,如比和比例、图形的相似、推理证明等。
直角三角形中边角之间关系的学习,也将为一般性地学习三角函数的知识及进一步学习其它数学知识奠定基础。
(二)教学重点1.使学生经历探索直角三角形中边角之间关系、探索30°、45°、60°角的三角函数值的过程,从中发展学生观察、分析、发现的能力;2.理解锐角三角函数的概念,并能够通过实例进行说明;3.会计算包括30°、45°、60°角的三角函数值的问题;4.能够借助计算器由已知锐角求出它的三角函数值,或由已知三角函数值求出相应的锐角;5.能够运用三角函数,解直角三角形及解决与直角三角形有关的实际问题,培养学生分析问题和解决问题的能力;6.体会数、形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题。
北师大版数学七年级下册《三角形的三边关系》教学设计2一. 教材分析《三角形的三边关系》是北师大版数学七年级下册第7章第1节的内容。
这部分内容是在学生已经掌握了平面图形的知识,以及三角形的基本概念的基础上进行学习的。
本节课的主要内容是让学生了解并掌握三角形的三边关系,即三角形的任意两边之和大于第三边,任意两边之差小于第三边。
这部分内容是学生进一步学习三角形相似、三角函数等知识的基础,对学生来说具有重要的意义。
二. 学情分析学生在学习本节课之前,已经掌握了平面图形的知识,对三角形的基本概念有一定的了解。
但是,对于三角形的三边关系,学生可能还比较陌生。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解和掌握三角形的三边关系。
同时,学生可能对于抽象的数学概念有一定的恐惧心理,教师需要通过生动的教学方式,激发学生的学习兴趣,帮助他们克服恐惧心理。
三. 教学目标1.知识与技能目标:让学生理解并掌握三角形的三边关系,能够运用三角形的三边关系解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的观察能力、动手能力和表达能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 教学重难点1.教学重点:三角形的三边关系。
2.教学难点:三角形的三边关系的证明和运用。
五. 教学方法1.情境教学法:通过具体的例子,引导学生理解和掌握三角形的三边关系。
2.活动教学法:通过观察、操作、交流等活动,培养学生的观察能力、动手能力和表达能力。
3.引导发现法:教师引导学生发现三角形的三边关系,培养学生的探究能力。
六. 教学准备1.教具准备:三角板、直尺、剪刀等。
2.教学课件:制作相关的教学课件,帮助学生更好地理解和掌握三角形的三边关系。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引导学生思考:剪刀的两边之和是否大于第三边?剪刀的两边之差是否小于第三边?让学生初步接触三角形的三边关系。
专题1.4 三角形章末重难点题型【考点1 三角形的边角关系】【方法点拨】解题的关键是了解三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【例1】(2019秋•庐江县期末)已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是()A.1个B.2个C.3个D.4个【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【答案】解:首先任意的三个数组合可以是2,4,6或2,4,8或2,6,8或4,6,8.根据三角形的三边关系:其中4+6>8,能组成三角形.∴只能组成1个.故选:A.【点睛】考查了三角形的三边关系,解题的关键是了解三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式1-1】(2018秋•当涂县期末)若一个三角形的两边长分别为4和7,则周长可能是()A.11B.18C.14D.22【分析】根据第三边的长度应是大于两边的差而小于两边的和,可求出第三边长的范围,从而得出答案.【答案】解:设第三边的长为x,根据三角形的三边关系,得7﹣4<x<7+4,即3<x<11.∴14<周长<22,∴周长可能为18,故选:B.【点睛】此题主要考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.【变式1-2】(2019春•临清市期末)a,b,c为三角形的三边长,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0B.2a+2b+2c C.4a D.2b﹣2c【分析】根据三角形的三边关系去绝对值,即两边之和大于第三边,两边之差小于第三边,进而再化简即可.【答案】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,=a+b+c+a﹣b﹣c﹣a+b﹣c﹣a﹣b+c,=0.故选:A.【点睛】本题主要考查了简单的三角形的三边关系的运用,能够利用其性质求解一些简单的计算问题.【变式1-3】(2019秋•江东区期末)已知等腰三角形的周长为16,且一边长为3,则腰长为()A.3B.10C.6.5D.3或6.5【分析】因为腰长没有明确,所以分边长3是腰长和底边两种情况讨论.【答案】解:(1)当3是腰长时,底边为16﹣3×2=10,此时3+3=6<10,不能组成三角形;(2)当3是底边时,腰长为×(16﹣3)=6.5,此时3,6.5,6.5三边能够组成三角形.所以腰长为6.5.故选:C.【点睛】本题要分情况讨论,注意利用三角形的三边关系判断能否组成三角形,是学生容易出错的题.【考点2 巧用三角形中线求面积】【方法点拨】解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.【例2】(2019秋•长丰县期末)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积是32,则图中阴影部分面积等于()A.16B.8C.4D.2【分析】首先根据D是BC的中点,可得:S△ABD=S△ACD=S△ABC,再根据E是AD的中点,可得:S=S△ABD,S△CDE=S△ACD,所以S△BCE=S△ABC;然后根据F是CE的中点,求出△BEF的面△BDE积是多少即可.【答案】解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC,∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BCE=S△ABC=×32=16,∵F是CE的中点,∴S△BEF=S△BCE=×16=8.答:图中阴影部分面积等于8.故选:B.【点睛】此题主要考查了三角形的面积的求法,以及线段的中点的特征和应用,要熟练掌握.【变式2-1】(2019秋•宁阳县期末)如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD =2:1,若S△ABC=12,则图中阴影部分的面积是()A.3B.4C.5D.6【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【答案】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.故选:B.【点睛】本题考查了三角形的面积,三角形中线的性质,正确的识别图形是解题的关键.【变式2-2】(2019秋•椒江区期末)如图,在△ABC中,AD为BC边上的中线,DE为△ABD中AB边上的中线,△ABC的面积为6,则△ADE的面积是()A.1B.C.2D.【分析】根据三角形的中线的性质,得△ADE的面积是△ABD的面积的一半,△ABD的面积是△ABC 的面积的一半,由此即可解决问题.【答案】解:∵AD是△ABC的中线,∴S△ABD=S△ABC=3.∵DE为△ABD中AB边上的中线,∴S△ADE=S△ABD=.故选:B.【点睛】本题考查三角形的面积,三角形的中线的性质等知识,解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.【变式2-3】(2019秋•温州期中)如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15B.20C.25D.30【分析】根据三角形的中线把三角形分成面积相等的两个三角形即可求解.【答案】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】本题考查了三角形面积,解决本题的关键是利用三角形的中线把三角形分成面积相等的两个三角形.【考点3 三角形内角和之折叠变换】【方法点拨】解题的关键是掌握折叠的性质.【例3】(2019秋•潮州期末)如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.32°B.45°C.60°D.64°【分析】由折叠的性质得到∠D=∠B=32°,再利用外角性质即可求出所求角的度数.【答案】解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故选:D.【点睛】本题考查三角形内角和定理,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式3-1】(2020春•岱岳区期中)如图,将△ABC沿MN折叠,使MN∥BC,点A的对应点为点A',若∠A'=32°,∠B=112°,则∠A'NC的度数是()A.114°B.112°C.110°D.108°【分析】由MN∥BC,可得出∠MNC与∠C互补,由三角形的内角和为180°可求出∠C的度数,从而得出∠MNC的度数,由折叠的性质可知∠A′NM与∠MNC互补,而∠A′NC=∠MNC﹣∠A′NM,套入数据即可得出结论.【答案】解:∵MN∥BC,∴∠MNC+∠C=180°,又∵∠A+∠B+∠C=180°,∠A=∠A′=32°,∠B=112°,∴∠C=36°,∠MNC=144°.由折叠的性质可知:∠A′NM+∠MNC=180°,∴∠A′NM=36°,∴∠A′NC=∠MNC﹣∠A′NM=144°﹣36°=108°.故选:D.【点睛】本题考查平行线的性质、折叠的性质以及三角形的内角和为180°,解题的关键是找出∠MNC 与∠A′NM的度数.本题属于基础题,难度不大,根据平行线的性质找出角的关系,结合图形即可得出结论.【变式3-2】(2020春•江阴市期中)如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为()A.27°B.59°C.69°D.79°【分析】先根据折叠的性质得∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,则∠1=∠2=∠3,即∠ABC=3∠3,根据三角形内角和定理得∠3+∠C=106°,在△ABC中,利用三角形内角和定理得∠A+∠ABC+∠C=180°,则20°+2∠3+106°=180°,可计算出∠3=27°,即可得出结果.【答案】解如图,∵△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,∴∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,∴∠1=∠2=∠3,∴∠ABC=3∠3,在△BCD中,∠3+∠C+∠CDB=180°,∴∠3+∠C=180°﹣74°=106°,在△ABC中,∵∠A+∠ABC+∠C=180°,∴20°+2∠3+(∠3+∠C)=180°,即20°+2∠3+106°=180°,∴∠3=27°,∴∠ABC=3∠3=81°,∠C=106°﹣27°=79°,故选:D.【点睛】此题主要考查了图形的折叠变换及三角形内角和定理的应用等知识;熟练掌握折叠的性质,得出∠ABC和∠CBD的倍数关系是解决问题的关键.【变式3-3】(2019春•繁昌县期中)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【分析】根据三角形的内角和为180°以及四边形的内角和为360°得到几个角之间的等量关系,整理化简即可得到所求角之间的关系.【答案】解:∵在△ABC中,∠A+∠B+∠C=180°①;在△ADE中∠A+∠ADE+∠AED=180°②;在四边形BCDE中∠B+∠C+∠1+∠2+∠ADE+∠AED=360°③;∴①+②﹣③得2∠A=∠1+∠2.故选:B.【点睛】本题考查了三角形的内角和定理,以及翻折变换,解题的关键是求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.【考点4 三角形内角和之角平分线】【例4】(2019秋•顺义区期末)如图,在△ABC中,AD,AE分别是△ABC的角平分线和高线,用等式表示∠DAE、∠B、∠C的关系正确的是()A.2∠DAE=∠B﹣∠C B.2∠DAE=∠B+∠CC.∠DAE=∠B﹣∠C D.3∠DAE=∠B+∠C【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,即可得到∠DAE、∠B、∠C之间的数量关系.【答案】解:∵∠BAC=180°﹣∠B﹣∠C,AD是∠BAC的平分线,∴∠BAD=∠BAC=(180°﹣∠B﹣∠C),∵AE是高,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAE﹣∠CAD=(90°﹣∠C)﹣(180°﹣∠B﹣∠C)=(∠B﹣∠C),故选:A.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.【变式4-1】(2019秋•璧山区期中)如图,BD是∠ABC的角平分线,CD是∠ACB的角平分线,∠BDC=120°,则∠A的度数为()A.40°B.50°C.60°D.75°【分析】根据角平分线的定义得到∠DBC=∠ABC,∠DCB=∠ACB,根据三角形内角和定理和计算即可.【答案】解:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠A=60°;故选:C.【点睛】本题考查的是三角形的内角和,掌握三角形的内角和是解题的关键.【变式4-2】(2020•拱墅区校级期末)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【答案】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC=∠BAC﹣∠BAF=100°﹣72°=28°,故选:B.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式4-3】(2019春•巴州区期末)如图,∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=β,那么∠A等于()A.180°﹣B.180°﹣2βC.90°﹣βD.90°﹣【分析】在△BCD中利用三角形内角和定理可求出∠BCD+∠CBD的度数,由角平分线的定理可得出∠CBE+∠BCF的度数,由邻补角互补可求出∠ABC+∠ACB的度数,再在△ABC中利用三角形内角和定理即可求出∠A的度数.【答案】解:∵∠BCD+∠CBD+∠D=180°,∠D=β,∴∠BCD+∠CBD=180°﹣β.∵BD平分∠CBE,CD平分∠BCF,∴∠CBE+∠BCF=2(∠BCD+∠CBD)=360°﹣2β,∴∠ABC+∠ACB=180°﹣∠CBE+180°﹣∠BCF=360°﹣(∠CBE+∠BCF)=2β.又∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣2β.故选:B.【点睛】本题考查了三角形内角和定理、邻补角以及角平分线的性质,利用三角形内角和定理、角平分线的性质及邻补角互补求出∠ABC+∠ACB的度数是解题的关键.【考点5 全等三角形的判定】【方法点拨】全等三角形的判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【例5】(2019秋•九龙坡区校级期末)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠B=∠C C.CD=BE D.∠ADC=∠AEB【分析】根据全等三角形的判定方法对各选项进行判断.【答案】解:∵AB=AC,∠BAE=∠CAD,∴当添加AE=AD时,可根据“SAS”判断△ABE≌△ACD;当添加∠B=∠C时,可根据“ASA”判断△ABE≌△ACD;当添加∠AEB=∠ADC时,可根据“AAS”判断△ABE≌△ACD.故选:C.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【变式5-1】(2019秋•东阿县期末)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,添加下列条件,不能判定△EAB≌△BCD的是()A.EB=BD B.∠E+∠D=90°C.AC=AE+CD D.∠EBD=60°【分析】由于∠A=∠C=90°,AB=CD,根据直角三角形全等的判定方法对各选项进行判断.【答案】解:∵∠A=∠C=90°,AB=CD,∴当添加EB=BD时,则可根据“HL”判定△EAB≌△BCD;当添加AE=BC,即AC=AE+CD,则可根据“SAS”判定△EAB≌△BCD;当添加∠ABE=∠D时,此时∠D+∠E=90°,∠EBD=90°,则可根据“SAS”判定△EAB≌△BCD,.故选:D.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【变式5-2】(2019秋•正定县期中)一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了()A.带其中的任意两块B.带1,4或3,4就可以了C.带1,4或2,4就可以了D.带1,4或2,4或3,4均可【分析】要想买一块和以前一样的玻璃,只要确定一个角及两条边的长度或两角及一边即可,即简单的全等三角形在实际生活中的应用.【答案】解:由图可知,带上1,4相当于有一角及两边的大小,即其形状及两边长确定,所以两块玻璃一样;同理,3,4中有两角夹一边,同样也可得全等三角形;2,4中,4确定了上边的角的大小及两边的方向,又由2确定了底边的方向,进而可得全等.故选:D.【点睛】本题考查了全等三角形的判定;熟练掌握全等三角形的判定,能够联系实际,灵活应用所学知识.【变式5-3】(2019•鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③【分析】结合已知条件与全等三角形的判定方法进行思考,要综合运用判定方法求解.注意高的位置的讨论.【答案】解:①正确.可以用AAS或者ASA判定两个三角形全等;②正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等;如图,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC=∠B′A′C′,∴△BAC≌△B′A′C′.③不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.故选:A.【点睛】本题考查了全等三角形的判定方法;要根据选项提供的已知条件逐个分析,分析时看是否符合全等三角形的判定方法,注意SSA是不能判得三角形全等的.【考点6 尺规作图】【例6】(2019秋•蜀山区期末)如图,已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)作∠A=∠1;(2)在∠A的两边分别作AM=AN=a;(3)连接MN.【分析】先以A为圆心,a为半径画弧,即可作∠A=∠1,则AM=AN=a;最后连接MN即可.【答案】解:如图所示:【点睛】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图的方法.【变式6-1】(2019春•秦都区期中)如图,已知△ABC中,∠ACB>∠ABC,用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹)【分析】根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;【答案】解:如图所示,射线CM即为所求:【点睛】本题主要考查了基本作图,解题的关键是掌握作一个角等于已知角的尺规作图.【变式6-2】(2019春•平川区期末)已知∠α和线段a,求作△ABC,使∠A=∠α,∠B=2∠α,AB=2α.(保留作图痕迹,不写作法)【分析】先作AB=2a,再作∠A=∠α,然后作∠B=2∠α即可.【答案】解:如图,△ABC为所作.【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).【变式6-3】(2019秋•包河区期末)已知平面内有∠α,如图(1).(1)尺规作图:在图(2)∠AOB的内部作∠AOD=∠α(保留作图痕迹,不需要写作法);(2)已知(1)中所作的∠AOD=40°,OE平分∠BOC,∠AOE=2∠BOE,求∠BOD.【分析】(1)依据基本作图,即可得到∠AOD=∠α;(2)依据角平分线的定义,即可得到∠AOD的度数,进而得出∠BOD的度数.【答案】解:(1)如图2所示,∠AOD即为所求;(2)∵OE平分∠BOC,∴∠COE=∠BOE,又∵∠AOE=2∠BOE,∴∠AOB=∠BOE,∴∠AOB=∠AOC=60°,又∵∠AOD=40°,∴∠BOD=∠AOB﹣∠AOD=60°﹣40°=20°.【点睛】本题主要考查了基本作图以及角的计算,掌握作一个角等于已知角是解决问题的关键.【考点7 全等三角形的证明】【例7】(2019秋•东西湖区期中)如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.【分析】根据角的和差得到∠AOC=∠BOD,根据全等三角形的判定定理即可得到结论.【答案】证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC与△BOD中,,∴△AOC≌△BOD(SAS).【点睛】本题考查了全等三角形的判定,熟练全等三角形的判定定理是解题的关键.【变式7-1】(2019秋•大观区校级期中)如图,△ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.【分析】(1)利用,△ABC的两条高AD、BE相交于点H得出,∠ADC=∠BEC=90°,再利用三角形内角和定理得出答案;(2)因为AD⊥BC,所以∠ADB=∠ADC,又因为AD=BD,∠DBH=∠DAC,故可根据ASA判定两三角形全等.【答案】证明:(1)∵AD⊥BC,BE⊥AC,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴∠DBH=∠DAC;(2)∵AD⊥BC∴∠ADB=∠ADC在△BDH与△ADC中,∴△BDH≌△ADC.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式7-2】(2019春•黄岛区期末)如图,点E在AB上,AC=AD,∠CAB=∠DAB,那么△BCE和△BDE 全等吗?请说明理由.【分析】根据全等三角形的判定定理,观察图形上的已知条件,已知告诉的条件是一角一边分别对应相等,加上公共边就可证两对三角形全等.【答案】解:△BCE≌△BDE,理由如下:在△ACB与△ADB中,∴△ACB≌△ADB(SAS),∴BC=BD,∠ABC=∠ABD,在△BCE与△BDE中,∴△BCE≌△BDE(SAS).【点睛】本题考查了全等三角形的判定;关键是根据全等三角形的判定定理证明.【变式7-3】(2019秋•北碚区校级期末)如图,点D在△ABC外部,点C在DE边上,BC与AD交于点O,若∠1=∠2=∠3,AC=AE.求证:(1)∠B=∠D;(2)△ABC≌△ADE.【分析】(1)由三角形内角和定理可知∠E=∠180°﹣∠3﹣∠ACE,∠ACB=180°﹣∠2﹣∠ACE,再根据∠2=∠3,∠ACE=∠ACE,证明△ABC≌△ADE(ASA),即可证明.(2)只要证明△ABC≌△ADE(ASA)即可.【答案】证明:(1)∵∠1=∠3,∴∠1+∠DAC=∠3+∠DAC,即∠BAC=∠DAE,∵∠E=∠180°﹣∠3﹣∠ACE,∠ACB=180°﹣∠2﹣∠ACE,∵∠2=∠3,∠ACE=∠ACE,∴∠ACB=∠E,在△ABC与△ADE中,∴△ABC≌△ADE(ASA),∴∠B=∠D.(2)由(1)可得△ABC≌△ADE.【点睛】本题考查全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【考点8 全等三角形的应用】【例8】(2019春•开江县期末)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树C处,接着再向前走了30步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了140步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【答案】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC(ASA),∴AB=DE,又∵小刚共走了140步,其中AD走了60步,∴走完DE用了80步,小刚一步大约50厘米,即DE=80×0.5米=40米.答:小刚在点A处时他与电线塔的距离为40米.【点睛】本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.【变式8-1】(2019春•峄城区期末)如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.小华的想法对吗?为什么?【分析】通过全等三角形得到内错角相等,得到两直线平行,进而得到同旁内角互补.【答案】解:小华的想法对,理由是:∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中,∴△COB≌△FOE(SAS)∴BC=EF(全等三角形对应边相等)∠BCO=∠F(全等三角形对应角相等)∴AB∥DF(内错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁内角互补),【点睛】本题考查了三角形的全等的判定和性质;做题时用了两直线平行内错角相等,同旁内角互补等知识,要学会综合运用这些知识.【变式8-2】(2019春•槐荫区期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【分析】根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可,利用全等三角形的性质进行解答.【答案】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.【点睛】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.【变式8-3】(2019秋•临海市期末)如图1,为测量池塘宽度AB,可在池塘外的空地上取任意一点O,连接AO,BO,并分别延长至点C,D,使OC=OA,OD=OB,连接CD.(1)求证:AB=CD;(2)如图2,受地形条件的影响,于是采取以下措施:延长AO至点C,使OC=OA,过点C作AB的平行线CE,延长BO至点F,连接EF,测得∠CEF=140°,∠OFE=110°,CE=11m,EF=10m,请直接写出池塘宽度AB.【分析】(1)根据全等三角形的判定和性质解答即可;(2)根据全等三角形的性质解答.【答案】证明:(1)在△ABO与△CDO中,∴△ABO≌△CDO(SAS),∴AB=CD;(2)如图所示:延长OF、CE交于点G,∵∠CEF=140°,∠OFE=110°,∴∠FEG=40°,∠EFG=70°,∴∠G=180°﹣40°﹣70°=70°,∴EF=EG,∵CE=11m,EF=10m,∴CG=CE+EG=CE+EF=11+10=21m,∵CG∥AB,∴∠A=∠C,在△ABO与△CGO中,∴△ABO≌△CGO(ASA)∴AB=CG=21m.【点睛】此题考查全等三角形的应用,关键是根据全等三角形的判定和性质解答.【考点9 全等三角形中的动点问题】【例9】(2019秋•莱山区期末)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A﹣C路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q分别以每秒1cm 和3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.则点P运动时间为多少时,△PEC与△QFC全等?【分析】推出CP=CQ,①P在AC上,Q在BC上,推出方程6﹣t=8﹣3t,②P、Q都在AC上,此时P、Q重合,得到方程6﹣t=3t﹣8,Q在AC上,求出即可得出答案.【答案】解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有2种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;答:点P运动1或3.5时,△PEC与△QFC全等.【点睛】本题主要考查对全等三角形的性质,解一元一次方程等知识点的理解和掌握,能根据题意得出方程是解此题的关键.【变式9-1】(2019秋•娄底期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【答案】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP 全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【变式9-2】(2019秋•内乡县期末)如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C=∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.【答案】解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【变式9-3】(2019秋•梁平区期末)如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t秒,且t≤5.(1)PC=cm(用含t的代数式表示).(2)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得以A、B、P为顶点的三角形与以P、Q、C为顶点的三角形全等?若存在,请求出v的值;若不存在,请说明理由.【分析】(1)利用速度公式,用t表示出BP,从而可用t表示出PC;。
三角形边的关系1教学目标1.通过摆一摆、比一比、算一算等活动,经历猜测、探究、发现、验证等过程,探索并发现三角形任意两边之和大于第三边,并会判断指定长度的三条线段能否围成三角形。
2.在动手操作、积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,提高运用数学知识解决实际问题的能力。
3.积极参与探究活动,在活动中锻炼自主探索、合作交流的能力,体验数学学习的快乐。
2学情分析对于三角形,学生并不陌生,通过前面的学习,学生已经初步认识了三角形,知道三角形有三条边、三个顶点和三个角,以及三角形稳定性的知识,这些都是学生进一步进行学习的基础。
学生乐于动手,喜欢实践,并在前几年的学习中,掌握了一定的实践方法和思考方式,同时比较善于发现和总结,这也将为本节课的学习做好铺垫。
3重点探究三角形三边的关系,知道三角形任意两条边的和大于第三边。
4难点能根据三角形三边的关系来解决实际问题。
教学过程活动1【导入】复习引入师:前面,我们已经认识了三角形,请同学们仔细看,下面哪个图形是三角形师:大家同意这个意见吗?为什么它们不是三角形师:看来,只有像这一个,由三条线段首尾相连,围成的图形才是三角形。
活动2【活动】动手操作,收集数据1提出问题,展开活动:师:如果给你三根小棒,你能围出一个三角形吗?师:同学们,争论是没有意义的,我们怎么样就行了?两个字“动手”。
师:请大家用学具袋中的六根小棒,任意选出其中三根,尝试围成三角形,把小棒的长度写在数据记录单上。
比一比,哪个小组得到的数据多?开始!2、小组合作,汇报交流:(学生操作后,老师选择一个小组的表格进行展示。
)活动3【讲授】分析数据,揭示规律1、运用数据,启发思考师:好,现在已经有很多同学完成了,请大家把小棒迅速放在桌子的最前面。
好,谁来说一说你们小组的记录?(教师板书数据)(出现问题,让学生上来摆一摆)师:在刚才的活动中,我们得到了很多数据。
根据这些数据,大家有什么想法?或者想提出什么问题根据学生的回答,板书(为什么围不成?为什么围得成?)为什么围不成?请大家先独立思考,想好以后,同座互相说一说,交流一下。