瞬时变化率——导数(一)
- 格式:doc
- 大小:92.50 KB
- 文档页数:4
1.1.2 瞬时变化率——导数导数定义求函数的导函数.1.瞬时速度(1)在物理学中,运动物体的位移与所用时间的比称为__________.(2)一般地,如果当Δt __________0时,运动物体位移s (t )的平均变化率s (t 0+Δt )-s (t 0)Δt无限趋近于一个______,那么这个______称为物体在t =t 0时的__________,也就是位移对于时间的____________.预习交流1做一做:如果质点A 按规律s =3t 2运动,则在t =3 s 时的瞬时速度为__________. 2.瞬时加速度一般地,如果当Δt __________时,运动物体速度v (t )的平均变化率v (t 0+Δt )-v (t 0)Δt无限趋近于一个_______,那么这个________称为物体在t =t 0时的_________,也就是速度对于时间的____________.3.导数(1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx无限趋近于一个______A ,则称f (x )在x =x 0处______,并称该______A 为函数f (x )在x =x 0处的______,记为______.(2)导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处切线的________. (3)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的________,记作________.预习交流2做一做:设函数f (x )可导,则当Δx →0时,f (1+Δx )-f (1)3Δx等于__________.预习交流3做一做:函数y =x +1x在x =1处的导数是__________.预习交流4利用导数求曲线切线方程的步骤有哪些?预习导引1.(1)平均速度 (2)无限趋近于 常数 常数 瞬时速度 瞬时变化率预习交流1:提示:s (3+Δt )=3(3+Δt )2=3[9+6Δt +(Δt )2]=27+18Δt +3(Δt )2.s (3)=3×32=27.Δs =s (3+Δt )-s (3)=18Δt +3(Δt )2, ∴Δs Δt =18+3Δt ,当Δt →0时,ΔsΔt→18. 2.无限趋近于0 常数 常数 瞬时加速度 瞬时变化率3.(1)常数 可导 常数 导数 f ′(x 0) (2)斜率 (3)导函数 f ′(x )预习交流2:提示:f (1+Δx )-f (1)3Δx =13·f (1+Δx )-f (1)Δx,当Δx →0时,f (1+Δx )-f (1)Δx =f ′(1),∴原式=13f ′(1).预习交流3:提示:∵函数y =f (x )=x +1x,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=(Δx )21+Δx.∴Δy Δx =Δx 1+Δx ,当Δx →0时,Δy Δx →0,即y =x +1x在x =1处的导数为0. 预习交流4:提示:利用导数的几何意义求曲线的切线方程的步骤: (1)求出函数y =f (x )在点x 0处的导数f ′(x 0);(2)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0); (3)将所得切线方程化为一般式.一、求瞬时速度一辆汽车按规律s =at 2+1做直线运动,当汽车在t =2 s 时的瞬时速度为12 m/s ,求a .思路分析:先根据瞬时速度的求法得到汽车在t =2 s 时的瞬时速度的表达式,再代入求出a 的值.1.一个物体的运动方程为s =1-t +t 2.其中s 的单位是m ,t 的单位是s ,那么物体在3 s 末的瞬时速度是__________.2.子弹在枪筒中运动可以看作是匀变速运动,如果它的加速度是a =5×105 m/s 2,子弹从枪口射出时所用的时间为t 0=1.6×10-3s .求子弹射出枪口时的瞬时速度.根据条件求瞬时速度的步骤:(1)探究非匀速直线运动的规律s =s (t );(2)由时间改变量Δt 确定路程改变量Δs =s (t 0+Δt )-s (t 0);(3)求平均速度v =ΔsΔt;(4)运用逼近思想求瞬时速度,当Δt →0时,ΔsΔt→v (常数).二、利用导数的定义求函数的导数已知f (x )=x 2-3.(1)求f (x )在x =2处的导数; (2)求f (x )在x =a 处的导数.思路分析:根据导数的定义进行求解.深刻理解概念是正确解题的关键.1.若函数f (x )=ax -2在x =3处的导数等于4,则a =__________.2.(1)求函数f (x )=1x +1在x =1处的导数;(2)求函数f (x )=2x 的导数.结合函数,先求出Δy =f (x 0+Δx )-f (x 0),再求ΔyΔx=f (x 0+Δx )-f (x 0)Δx ,当Δx →0时,求ΔyΔx 的值,即f ′(x 0).三、导数的几何意义已知y =2x 3上一点A (1,2),求点A 处的切线斜率.思路分析:为求得过点(1,2)的切线斜率,可以从经过点(1,2)的任意一条直线(割线)入手.1.抛物线y =14x 2在点Q (2,1)处的切线方程为__________.2.已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程.1.导数的几何意义是指:曲线y =f (x )在(x 0,y 0)点处的切线的斜率就是函数y =f (x )在x =x 0处的导数,而切线的斜率就是切线倾斜角的正切值.2.运用导数的几何意义解决曲线的切线问题时,一定要注意所给的点是否是在曲线上,若点在曲线上,则该点的导数值就是该点处的曲线的切线的斜率;若点不在曲线上,则该点的导数值不是切线的斜率.3.若所给的点不在曲线上,应另设切点,然后利用导数的几何意义建立关于所设切点横坐标的关系式进行求解.1.若一物体的运动方程为s =2-12t 2,则该物体在t =6时的瞬时速度为__________.2.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为__________. 3.函数f (x )=1-3x 在x =2处的导数为__________.4.一质点按规律s =2t 3运动,则t =2时的瞬时速度为__________.5.如图,函数y =f (x )的图象在点P 处的切线是l ,则f (2)+f ′(2)=__________.答案:活动与探究1:解:∵s =at 2+1,∴s (2+Δt )=a (2+Δt )2+1=4a +4a ·Δt +a ·(Δt )2+1.于是Δs =s (2+Δt )-s (2)=4a +4a ·Δt +a ·(Δt )2+1-(4a +1)=4a ·Δt +a ·(Δt )2,∴Δs Δt =4a ·Δt +a ·(Δt )2Δt=4a +a ·Δt . 当Δt →0时,ΔsΔt→4a ,依题意有4a =12,∴a =3. 迁移与应用:1.5 m/s 解析:s (3+Δt )=1-(3+Δt )+(3+Δt )2=(Δt )2+5Δt +7,所以s (3+Δt )-s (3)=(Δt )2+5Δt , 故s (3+Δt )-s (3)Δt=Δt +5,于是物体在3 s 末的瞬时速度,即Δt →0时,ΔsΔt→5(m/s).2.解:运动方程为s =12at 2.∵Δs =12a (t 0+Δt )2-12at 20=at 0·Δt +12a ·(Δt )2,∴Δs Δt =at 0+12a ·Δt ,∴Δt →0时,ΔsΔt→at 0. 由题意知a =5×105(m/s 2),t 0=1.6×10-3(s),故at 0=8×102=800(m/s).即子弹射出枪口时的瞬时速度为800 m/s.活动与探究2:解:(1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-3-(22-3)Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4.(2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2-3-(a 2-3)Δx=2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .迁移与应用:1.4 解析:由题意知f ′(3)=4,而f ′(3)=Δy Δx =a (3+Δx )-2-(3a -2)Δx=a ,当Δx →0时,ΔyΔx→a ,故a =4.2.解:(1)(导数定义法)∵Δy =f (1+Δx )-f (1)=12+Δx -12=-Δx 2(2+Δx ),∴ΔyΔx=-12(2+Δx ),从而Δx →0时,2+Δx →2,∴f (x )在x =1处的导数等于-14.(导函数的函数值法)∵Δy =1x +Δx +1-1x +1=-Δx (x +Δx +1)(x +1),∴ΔyΔx=-1(x +Δx +1)(x +1),从而Δx →0时,Δy Δx →-1(x +1)2,于是f ′(1)=-1(1+1)2=-14.(2)∵Δy =f (x +Δx )-f (x )=2x +Δx -2x ,∴Δy Δx =2x +Δx -2x Δx =(2x +Δx -2x )(x +Δx +x )Δx (x +Δx +x )=2x +Δx +x,从而Δx →0时,Δy Δx →1x.活动与探究3:解:设A (1,2),B (1+Δx,2(1+Δx )3),则割线AB 的斜率为k AB =2(1+Δx )3-2Δx =6+6Δx +2(Δx )2,当Δx 无限趋近于0时,k AB 无限趋近于常数6,从而曲线y =2x 3在点A (1,2)处的切线斜率为6.迁移与应用:1.x -y -1=0 解析:∵y =14x 2,Δy =14(2+Δx )2-14×22=Δx +14(Δx )2,Δy Δx=1+14Δx , ∴当Δx →0时,Δy Δx →1,即f ′(2)=1,由导数的几何意义得抛物线y =14x 2在点Q (2,1)处的切线的斜率为1.∴切线方程为y -1=x -2,即x -y -1=0.2.解:因为Δy Δx =3(1+Δx )2-(1+Δx )-(3×12-1)Δx=5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5,所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5.切线方程为y -2=5(x -1),即5x -y -3=0. 当堂检测1.-6 解析:Δs Δt =s (6+Δt )-s (6)Δt =2-12(6+Δt )2-(-16)Δt =-12Δt -6,∴当Δt →0时,ΔsΔt→-6.2.45° 解析:∵Δy Δx =12(1+Δx )2-2-12×1+2Δx =Δx +12(Δx )2Δx =1+12Δx ,当Δx无限趋近于0时,1+12Δx 无限趋近于1,∴曲线y =12x 2-2在点P ⎝⎛⎭⎪⎫1,-32处的切线斜率为1,∴倾斜角为45°.3.-3 解析:Δy =f (2+Δx )-f (2)=-3Δx ,Δy Δx =-3,则Δx 趋于0时,ΔyΔx=-3.∴f (x )在x =2处的导数为-3.4.24 解析:Δs =s (2+Δt )-s (2)=2(2+Δt )3-2×23=2×[8+6(Δt )2+12Δt +(Δt )3]-16=24Δt +12(Δt )2+2(Δt )3, ∴Δs Δt =24+12Δt +2(Δt )2,则当Δt →0时,Δs Δt →24. 5.98解析:由题图可知,直线l 的方程为9x +8y -36=0. 当x =2时,y =94,即f (2)=94.又切线斜率为-98,即f ′(2)=-98,∴f (2)+f ′(2)=98.欢迎您的下载,资料仅供参考!。
瞬时变化率——导数基础过关练题组一 曲线的割线、切线的斜率1.已知函数f (x )=x 2图象上四点A (1,f (1))、B (2,f (2))、C (3,f (3))、D (4,f (4)),割线AB 、BC 、CD 的斜率分别为k 1,k 2,k 3,则 ( )A.k 1<k 2<k 3B.k 2<k 1<k 3C.k 3<k 2<k 1D.k 1<k 3<k 22.过曲线y =x 2+1上两点P (1,2)和Q (1+Δx ,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率为 ;当Δx =0.001时,割线的斜率为 .3.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为 .题组二 瞬时速度与瞬时加速度4.(2020江苏苏州中学高二下阶段调研)一个物体的位移s 关于时间t 的运动方程为s (t )=1-t +t 2,其中s 的单位:m,t 的单位:s,那么物体在t =3 s 时的瞬时速度是 ( )A.5 m/sB.6 m/sC.7 m/sD.8 m/s5.(2020江苏无锡一中高二下期中)一辆汽车做直线运动,位移s 与时间t 的关系为s =at 2+1,若汽车在t =2时的瞬时速度为12,则a = ( ) A.12 B.13 C.2 D.36.(2020江苏常熟高二下期中)火车开出车站一段时间内,速度v (单位:m/s)与行驶时间t (单位:s)之间的关系是v (t )=0.4t +0.6t 2,当加速度为2.8 m/s 2时,火车开出去 ( )A.32 s B.2 s C.52 s D.73 s7.(2020北京陈经纶中学高二下期中)若一辆汽车在公路上做加速运动,设t 秒时的速度为v (t )=12t 2+10,其中v 的单位是m/s,t 的单位是s,则该车在t =2 s 时的瞬时加速度为 .8.已知某物体的运动方程是s ={3t 2+2,0≤t <3,29+3(t -3)2,t ≥3,则该物体在t =1时的瞬时速度为 ;在t =4时的瞬时速度为 .9.航天飞机升空后一段时间内,第t s 时的高度为h (t )=5t 3+30t 2+45t +4,其中h 的单位为m,t 的单位为s .(1)h (0),h (1),h (2)分别表示什么?(2)求第2 s内的平均速度;(3)求第2 s末的瞬时速度.题组三导数的定义及其应用10.函数f(x)在x=x0处的导数可表示为()A.f'(x0)=limΔt→0t(t0+Δt)-t(t0)ΔtB.f'(x0)=limΔt→0[f(x0+Δx)-f(x0)]C.f'(x0)=f(x0+Δx)-f(x0)D.f'(x0)=t(t0+Δt)-t(t0)Δt11.汽车在笔直公路上行驶,如果v(t)表示t时刻的速度,则导数v'(t0) ()A.表示当t=t0时汽车的加速度B.表示当t=t0时汽车的瞬时速度C.表示当t=t0时汽车的位移变化率D.表示当t=t0时汽车的位移12.已知函数f(x)=ax+4,若f'(1)=2,则a=.13.函数f(x)=√t2+1在x=0处的导数为.题组四导数的几何意义14.函数y=f(x)在x=x0处的导数f'(x0)的几何意义是()A.在点(x0,f(x0))处与y=f(x)的图象只有一个交点的直线的斜率B.过点(x0,f(x0))的切线的斜率C.点(x0,f(x0))与点(0,0)的连线的斜率D.函数y=f(x)的图象在点(x0,f(x0))处的切线的斜率15.已知函数f(x)在R上可导,且f(x)的图象如图所示,则下列不等式正确的是()A.f'(a)<f'(b)<f'(c)B.f'(b)<f'(c)<f'(a)C.f'(a)<f'(c)<f'(b)D.f'(c)<f'(a)<f'(b)16.(2020江苏连云港智贤中学高二下月考)已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=x+3,则f(1)+f'(1)=.题组五求曲线的切线方程17.(2021江苏镇江八校高三上期中联考)曲线y=f(x)=x-x2在点(1,0)处的切线方程是()A.x-2y-1=0B.x+2y-1=0C.x-y-1=0D.x+y-1=018.若曲线y=f(x)=x2+ax+b在点(1,1)处的切线方程为3x-y-2=0,则()A.a=-1,b=1B.a=1,b=-1C.a=-2,b=1D.a=2,b=-119.(2020广东实验中学高二上期末)与直线2x-y+4=0平行且与抛物线y=x2相切的直线方程是.20.过点M(1,1)且与曲线y=x3+1相切的直线方程为.能力提升练题组一瞬时速度与瞬时加速度1.(2020江苏无锡锡东高级中学4月线上检测,)若小球自由落体的运动方程为s(t)=12gt2(g为常数),该小球在t=1到t=3的平均速度为t,在t=2的瞬时速度为v2,则t和v2关系为()A.t>v2B.t<v2C.t=v2D.不能确定2.()一物体沿斜面自由下滑,测得下滑的位移s与时间t之间的函数关系为s=3t3,则当t=1时,该物体的瞬时加速度为()A.18B.9C.6D.3题组二导数的定义及其应用3.(2021江苏苏州陆慕高级中学高二下质检,)已知函数f(x)可导,则limΔt→0t(1-Δt)-t(1)-Δt等于()A.f'(1)B.不存在f'(1) D.以上都不对C.134. (2019江苏南通启东中学高二下月考,)若函数f(x)满足f'(x0)=-3,则当h无限趋近无限趋近于.于0时,t(t0+t)-t(t0-3t)t5.()服用某种药物后,人体血液中药物的质量浓度f(x)(单位:μg/mL)与时间t(单位:min)的函数关系式是y=f(t),假设函数y=f(t)在t=10和t=100处的导数分别为f'(10)=1.5和f'(100)=-0.6,试解释它们的实际意义.题组三导数的几何意义6.(2020江苏南京中华中学高二上段测,)函数y=f(x)的图象如图所示,f'(x)为函数f(x)的导函数,则下列结论正确的是 ()A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(3)<f(3)-f(2)<f'(2)C.0<f'(3)<f'(2)<f(3)-f(2)D.0<f(3)-f(2)<f'(2)<f'(3)7.(多选)(2021江苏无锡一中高三上10月检测,)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-t(t)-t(t)的大小评价在[a,b]这段时间内企业污水治理能力的强t-t弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.则结论正确的是()A.在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强B.在t2时刻,甲企业的污水治理能力比乙企业强C.在t3时刻,甲、乙两企业的污水排放都已达标D.甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强8.(多选)()已知函数f(x)的定义域为R,其导函数f'(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是 ()A.(x1-x2)[f(x1)-f(x2)]<0B.(x1-x2)[f(x1)-f(x2)]>0C.f(t1+t22)>t(t1)+t(t2)2D.f(t1+t22)<t(t1)+t(t2)2题组四求曲线的切线方程9.(2020江苏淮安淮阴中学高二下期末,)设函数f(x)=x3+(a-1)x2+ax为奇函数,则曲线y=f(x)在x=1处的切线方程为.10.(2019江苏南通海安中学高二下月考,)已知曲线f(x)=ax2+bx+14与直线y=x相切于点A(1,1),若对任意x∈[1,9],不等式f(x-t)≤x恒成立,则所有满足条件的实数t组成的集合为.11.(2020福建厦门二中高二上期中,)已知曲线y=f(x)=x2,y=g(x)=1t,过两条曲线的交点作两条曲线的切线,求两切线与x轴围成的三角形的面积.(请用导数的定义求切线的斜率)答案全解全析 基础过关练1.A k 1=t (2)-t (1)2-1=4-1=3,k 2=t (3)-t (2)3-2=9-4=5,k 3=t (4)-t (3)4-3=16-9=7,则k 1<k 2<k 3,故选A. 2.答案 2.1;2.001解析 ∵Δy =(1+Δx )2+1-(12+1)=2Δx +(Δx )2,∴Δt Δt=2+Δx ,∴割线的斜率为2+Δx.当Δx =0.1时,割线的斜率为2+0.1=2.1. 当Δx =0.001时,割线的斜率为2+0.001=2.001. 3.答案 4 解析抛物线在点P处切线的斜率为k =limΔt →0ΔtΔt =limΔt →0[(-2+Δt )2-(-2+Δt )+t ]-(6+t )Δt=limΔt →0-5Δt +(Δt )2Δt=-5,因为点P 的横坐标是-2, 所以点P 的纵坐标是6+c , 故直线OP 的斜率为-6+t 2,根据题意有-6+t 2=-5,解得c =4.4.A 因为Δt Δt =t (3+Δt )-t (3)Δt=1-(3+Δt )+(3+Δt )2-1+3-9Δt=Δt +5,所以当Δt 无限趋近于0时,Δt +5无限趋近于5,即物体在t =3s 时的瞬时速度是5m/s,故选A.5.D 因为Δt Δt =t (2+Δt )-t (2)Δt=t (2+Δt )2+1-4t -1Δt=a Δt +4a ,所以当Δt 无限趋近于0时,a Δt +4a 无限趋近于4a ,所以汽车在t =2时的瞬时速度为4a ,即4a =12,解得a =3.故选D. 6.B 设当加速度为2.8m/s 2时,火车开出x s . 则Δt Δt =t (t +Δt )-t (t )Δt=0.4(t +Δt )+0.6(t +Δt )2-0.4t -0.6t 2Δt=0.4+1.2x +0.6Δt ,当Δt 无限趋近于0时,0.4+1.2x +0.6Δt 无限趋近于0.4+1.2x ,所以0.4+1.2x =2.8,解得x =2.故选B. 7.答案 2m/s 2解析 因为Δt Δt =t (2+Δt )-t (2)Δt=12(2+Δt )2+10-12×4-10Δt=12Δt +2,所以当Δt 无限趋近于0时,12Δt +2无限趋近于2,即物体在t =2s 时的瞬时加速度为2m/s 2.8.答案 6;6解析 当t =1时,Δs =3(1+Δt )2+2-3×12-2=3(Δt )2+6Δt , ∴Δt Δt=3Δt +6,∴limΔt →0ΔtΔt=6,即当t =1时的瞬时速度为6.当t =4时,Δs =29+3(4+Δt -3)2-29-3(4-3)2=3(Δt )2+6Δt , ∴ΔtΔt =3Δt +6,∴limΔt →0ΔtΔt=6,即当t =4时的瞬时速度为6.9.解析 (1)h (0)表示航天飞机发射前的高度;h (1)表示航天飞机升空后第1s 时的高度; h (2)表示航天飞机升空后第2s 时的高度.(2)航天飞机升空后第2s 内的平均速度为t (2)-t (1)2-1=5×23+30×22+45×2+4-(5×13+30×12+45×1+4)1=170(m/s).(3)第2s 末的瞬时速度为limΔt →0ΔtΔt =limΔt →0t (2+Δt )-t (2)Δt=lim Δt →05(2+Δt )3+30(2+Δt )2+45(2+Δt )+4-(5×23+30×22+45×2+4)Δt=limΔt →05(Δt )3+60(Δt )2+225ΔtΔt=225(m/s).因此第2s 末的瞬时速度为225m/s . 10.A 由导数的定义知A 正确.11.A 由于v (t )表示t 时刻的速度,因此v'(t 0)表示当t =t 0时汽车的加速度,故选A. 12.答案 2解析 由题意得,Δy =f (1+Δx )-f (1)=a (1+Δx )+4-a -4=a Δx ,∴lim Δt →0ΔtΔt=a ,∴f'(1)=a =2. 13.答案 0解析 Δy =√(0+Δt )2+1-√0+1 =2√(Δt )2+1+1=2√(Δt )2+1+1,∴ΔtΔt =√(Δt )2+1+1,∴当Δx →0时,√(Δt )2+1+1→0,即limΔt √(Δt )2+1+1=0,∴f (x )在x =0处的导数为0,即f'(0)=0.14.D f'(x 0)的几何意义是函数y =f (x )的图象在点(x 0,f (x 0))处的切线的斜率.15.A 由题意可知,f'(a ),f'(b ),f'(c )分别是函数f (x )在x =a 、x =b 和x =c 处切线的斜率,则有f'(a )<0<f'(b )<f'(c ),故选A. 16.答案 5解析 由导数的几何意义可得,f'(1)=1,又M (1,f (1))在切线上,所以f (1)=1+3=4,则f (1)+f'(1)=4+1=5.17.D 由题意得,f'(1)=lim Δt →0ΔtΔt=limΔt →0(1+Δt )-(1+Δt )2-1+1Δt=lim Δt →0(-Δx -1)=-1,所以曲线y =f (x )=x -x 2在点(1,0)处的切线方程为y =-1×(x -1),即x +y -1=0,故选D. 18.B 由题意得,f'(1)=limΔt →0ΔtΔt=lim Δt →0(1+Δt )2+t (1+Δt )+t -1-t -tΔt=limΔt →0(Δt )2+2Δt +t ΔtΔt=2+a.∵曲线y =f (x )=x 2+ax +b 在点(1,1)处的切线方程为3x -y -2=0, ∴2+a =3,解得a =1.又∵点(1,1)在曲线y =f (x )=x 2+ax +b 上, ∴1+a +b =1,解得b =-1, ∴a =1,b =-1.故选B. 19.答案 2x -y -1=0 解析设切点坐标为(x 0,y 0),y =f (x )=x 2,则由题意可得,切线斜率f'(x 0)=limΔt →0t (t 0+Δt )-t (t 0)Δt =2x 0=2,所以x 0=1,则y 0=1,所以切点坐标为(1,1),故所求的直线方程为y -1=2(x -1),即2x -y -1=0. 20.答案 27x -4y -23=0和y =1 解析 Δt Δt=(t +Δt )3+1-t 3-1Δt=3t (Δt )2+3t 2Δt +(Δt )3Δt=3x Δx +3x 2+(Δx )2, 则limΔt →0ΔtΔt=3x 2,因此y'=3x 2. 设过点M (1,1)的直线与曲线y =x 3+1相切于点P (x 0,t 03+1),根据导数的几何意义知曲线在点P 处的切线的斜率k =3t 02①,过点M 和点P 的切线的斜率k =t 03+1-1t 0-1②,由①-②得3t 02=t 03t 0-1,解得x 0=0或x 0=32,所以k =0或k =274,因此过点M (1,1)且与曲线y =x 3+1相切的直线有两条,方程分别为y -1=274(x -1)和y =1,即27x -4y -23=0和y =1. 易错警示要注意“在某点处的切线”和“过某点的切线”的差别,在某点处的切线中该点为切点,过某点的切线中该点可能是切点,也可能不是切点.能力提升练1.C t =t (3)-t (1)3-1=12t ×(32-12)2=2g ,因为Δt Δt =t (2+Δt )-t (2)Δt=12t (2+Δt )2-2t Δt=2g +12g Δt ,所以当Δt 无限趋近于0时,2g +12g Δt 无限趋近于2g ,所以v 2=2g ,即t =v 2.故选C. 2.答案 A信息提取 ①物体下滑位移s 与时间t 之间的关系式为s =3t 3;②求t =1时,该物体的瞬时加速度.数学建模 本题以物理中的瞬时加速度为背景构建函数模型,将物理中的瞬时加速度转化为数学中的瞬时变化率来求解.求解时可先由位移函数求得瞬时速度,再由瞬时速度求得瞬时加速度. 解析ΔtΔt =t (t +Δt )-t (t )Δt =3(t +Δt )3-3t 3Δt =9t 2+9t Δt +3(Δt )2,当Δt 无限趋近于0时,9t 2+9t Δt +3(Δt )2无限趋近于9t 2,即该物体的瞬时速度v 与时间t 的关系为v (t )=9t 2.Δt Δt=t (1+Δt )-t (1)Δt=9(1+Δt )2-9Δt=9Δt +18,当Δt 无限趋近于0时,9Δt +18无限趋近于18,所以当t =1时,该物体的瞬时加速度为18.故选A. 3.A 因为Δx →0,所以(-Δx )→0,所以lim Δt →0t (1-Δt )-t (1)-Δt =lim -Δt →0t (1-Δt )-t (1)-Δt =f'(1).故选A. 4.答案 -12解析 当h 无限趋近于0时,t (t 0+t )-t (t 0-3t )t =4×t (t 0+t )-t (t 0-3t )4t,因为f'(x 0)=-3, 所以lim t →0t (t 0+t )-t (t 0-3t )4t =-3, 所以lim t →0t (t 0+t )-t (t 0-3t )t =4×limt →0t (t 0+t )-t (t 0-3t )4t =-3×4=-12. 5.解析 f'(10)=1.5表示服药后10min 时,血液中药物的质量浓度上升的速度为1.5μg/(mL·min),也就是说,如果保持这一速度,那么每经过1min,血液中药物的质量浓度将上升1.5μg/mL .f'(100)=-0.6表示服药后100min 时,血液中药物的质量浓度下降的速度为0.6μg/(mL·min),也就是说,如果保持这一速度,那么每经过1min,血液中药物的质量浓度将下降0.6μg/mL.6.B 由题图可知,f (x )在x =2处的切线斜率大于在x =3处的切线斜率,且斜率为正, ∴0<f'(3)<f'(2), ∵f (3)-f (2)=t (3)-t (2)3-2,∴f (3)-f (2)可看作过(2,f (2))和(3,f (3))的割线的斜率,由题图可知f'(3)<f (3)-f (2)<f'(2),即0<f'(3)<f(3)-f(2)<f'(2).故选B.7.ABC设y=-t(t)-t(t)t-t,由已知条件可得甲、乙两个企业在[t1,t2]这段时间内污水治理能力强弱的数值计算式为-t(t2)-t(t1)t2-t1,由题图易知y甲>y乙,因此甲企业的污水治理能力比乙企业强,A正确;由题意知在某一时刻企业污水治理能力的强弱由这一时刻的切线的斜率的绝对值表示,B正确;在t3时刻,由题图可知甲、乙两企业的污水排放量都在污水达标排放量以下,C正确;由计算式-t(t)-t(t)t-t可知,甲企业在[0,t1]这段时间内污水治理能力最弱,D错误.8.AD由题中图象可知,导函数f'(x)的图象在x轴下方,即f'(x)<0,且其绝对值越来越小,因此过函数f(x)图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得f(x)的大致图象如图所示.A选项表示x1-x2与f(x1)-f(x2)异号,即f(x)图象的割线斜率t(t1)-t(t2)t1-t2为负,故A正确;B选项表示x1-x2与f(x1)-f(x2)同号,即f(x)图象的割线斜率t(t1)-t(t2)t1-t2为正,故B不正确;f(t1+t22)表示t1+t22对应的函数值,即图中点B的纵坐标,t(t1)+t(t2)2表示当x=x1和x=x2时所对应的函数值的平均值,即图中点A的纵坐标,显然有f(t1+t22)<t(t1)+t(t2)2,故C不正确,D正确.故选AD.9.答案4x-y-2=0解析∵f(x)是奇函数,∴f(-x)=-f(x),即(-x)3+(a-1)(-x)2+a(-x)=-x3-(a-1)x2-ax,即a=1,∴f(x)=x3+x,∴f'(1)=limΔt→0t(1+Δt)-t(1)Δt=lim Δt→0(1+Δt)3+(1+Δt)-2Δt=limΔt→0[(Δx)2+3Δx+4]=4,f(1)=2,∴曲线y =f (x )在x =1处的切线方程为y -2=4(x -1),即4x -y -2=0. 10.答案 {4} 解析 f'(1)=limΔt →0t (1+Δt )-t (1)Δt=limΔt →0t (1+Δt )2+t (1+Δt )+14-t -t -14Δt=lim Δt →0(2a +b +a Δx )=2a +b.因为曲线f (x )=ax 2+bx +14与直线y =x 相切于点A (1,1),所以{t +t +14=1,2t +t =1,解得{t =14,t =12,所以f (x )=(t +12)2,由f (x -t )≤x (1≤x ≤9)得(t -t +12)2≤x (1≤x ≤9),解得(√t -1)2≤t ≤(√t +1)2(1≤x ≤9),由此可得(√t -1)max 2=4≤t ≤(√t +1)min 2=4(1≤x ≤9), 所以所有满足条件的实数t 组成的集合为{4}.11.解析 由{t =t 2,t =1t ,得{t =1,t =1,故两条曲线的交点坐标为(1,1).两条曲线切线的斜率分别为f'(1)=limΔt →0t (Δt +1)-t (1)Δt =limΔt →0(Δt +1)2-12Δt=lim Δt →0(Δx +2)=2,g'(1)=lim Δt →0t (Δt +1)-t (1)Δt =lim Δt →01Δt +1-11Δt=lim Δt →0(-1Δt +1)=-1.所以两条切线的方程分别为y -1=2(x -1),y -1=-(x -1),即y =2x -1与y =-x +2,两条切线与x 轴的交点坐标分别为(12,0),(2,0),所以两切线与x 轴围成的三角形的面积为12×1×|2-12|=34.。
导数——平均变化率与瞬时变化率本讲教育信息】⼀. 教学内容:导数——平均变化率与瞬时变化率⼆. 本周教学⽬标:1、了解导数概念的⼴阔背景,体会导数的思想及其内涵.2、通过函数图象直观理解导数的⼏何意义.三. 本周知识要点:(⼀)平均变化率1、情境:观察某市某天的⽓温变化图2、⼀般地,函数f(x)在区间[x1,x2]上的平均变化率平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.(⼆)瞬时变化率——导数1、曲线的切线如图,设曲线c是函数的图象,点是曲线 c 上⼀点作割线PQ,当点Q 沿着曲线c⽆限地趋近于点P,割线PQ⽆限地趋近于某⼀极限位置PT我们就把极限位置上的直线PT,叫做曲线c在点P 处的切线割线PQ的斜率为,即当时,⽆限趋近于点P的斜率.2、瞬时速度与瞬时加速度1)瞬时速度定义:运动物体经过某⼀时刻(某⼀位置)的速度,叫做瞬时速度.2)确定物体在某⼀点A处的瞬时速度的⽅法:要确定物体在某⼀点A处的瞬时速度,从A点起取⼀⼩段位移AA1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表⽰物体经过A点的瞬时速度.当位移⾜够⼩时,物体在这段时间内的运动可认为是匀速的,所得的平均速度就等于物体经过A点的瞬时速度.我们现在已经了解了⼀些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律⽤函数表⽰为s=s(t),也叫做物体的运动⽅程或位移公式,现在有两个时刻t0,t0+Δt,现在问从t0到t0+Δt这段时间内,物体的位移、平均速度各是:位移为Δs=s(t0+Δt)-s(t0)(Δt称时间增量)平均速度根据对瞬时速度的直观描述,当位移⾜够⼩,现在位移由时间t来表⽰,也就是说时间⾜够短时,平均速度就等于瞬时速度.现在是从t0到t0+Δt,这段时间是Δt. 时间Δt⾜够短,就是Δt⽆限趋近于0.当Δt→0时,位移的平均变化率⽆限趋近于⼀个常数,那么称这个常数为物体在t= t0的瞬时速度同样,计算运动物体速度的平均变化率,当Δt→0时,平均速度⽆限趋近于⼀个常数,那么这个常数为在t= t0时的瞬时加速度.3、导数3、导数设函数在(a,b)上有定义,.若⽆限趋近于0时,⽐值⽆限趋近于⼀个常数A,则称f(x)在x=处可导,并称该常数A为函数在处的导数,记作.⼏何意义是曲线上点()处的切线的斜率.导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每⼀个,都对应着⼀个确定的导数,从⽽构成了⼀个新的函数,称这个函数为函数在开区间内的导函数,简称导数,也可记作.【典型例题】例1、⽔经过虹吸管从容器甲中流向容器⼄,t s后容器甲中⽔的体积(单位:),计算第⼀个10s内V的平均变化率.解:在区间[0,10]上,体积V的平均变化率为即第⼀个10s内容器甲中⽔的体积的平均变化率为.例2、已知函数,,分别计算在区间[-3,-1],[0,5]上函数及的平均变化率.解:函数在[-3,-1]上的平均变化率为在[-3,-1]上的平均变化率为函数在[0,5]上的平均变化率为在[0,5]上的平均变化率为例3、已知函数,分别计算函数在区间[1,3],[1,2],[1,1.1],[1,1.001]上的平均变化率.解:函数在区间[1,3]上的平均变化率为函数在[1,2]上的平均变化率为函数在[1,1.1]上的平均变化率为函数在[1,1.001]上的平均变化率为例4、物体⾃由落体的运动⽅程s=s(t)=gt2,其中位移单位m,时间单位s,g=9.8 m/s2. 求t=3这⼀时段的速度.解:取⼀⼩段时间[3,3+Δt],位置改变量Δs=g(3+Δt)2-g·32=(6+Δt)Δt,平均速度g(6+Δt)当Δt⽆限趋于0时,⽆限趋于3g=29.4 m/s.例5、已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),(1)当t=2,Δt=0.01时,求.(1)当t=2,Δt=0.01时,求.(2)当t=2,Δt=0.001时,求.(3)求质点M在t=2时的瞬时速度.分析:Δs即位移的改变量,Δt即时间的改变量,即平均速度,当Δt越⼩,求出的越接近某时刻的速度.解:∵=4t+2Δt∴(1)当t=2,Δt=0.01时,=4×2+2×0.01=8.02 cm/s.(2)当t=2,Δt=0.001时,=4×2+2×0.001=8.002 cm/s.(3) Δt0,(4t+2Δt)=4t=4×2=8 cm/s例6、曲线的⽅程为y=x2+1,那么求此曲线在点P(1,2)处的切线的斜率,以及切线的⽅程.解:设Q(1+,2+),则割线PQ的斜率为:斜率为2∴切线的斜率为2.切线的⽅程为y-2=2(x-1),即y=2x.【模拟试题】1、若函数f(x)=2x2+1,图象上P(1,3)及邻近点Q(1+Δx,3+Δy),则=()A. 4B. 4ΔxC. 4+2ΔxD. 2Δx2、⼀直线运动的物体,从时间到时,物体的位移为,那么时,为()A. 从时间到时,物体的平均速度;B. 在时刻时该物体的瞬时速度;C. 当时间为时物体的速度;D. 从时间到时物体的平均速度3、已知曲线y=2x2上⼀点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线⽅程.4、求曲线y=x2+1在点P(-2,5)处的切线⽅程.5、求y=2x2+4x在点x=3处的导数.6、⼀球沿⼀斜⾯⾃由滚下,其运动⽅程是s=s(t)=t2(位移单位:m,时间单位:s),求⼩球在t=5时的瞬时速度7、质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),求质点M在t=2时的瞬时速度.【试题答案】1、B2、B3、解:(1)时,k=∴点A处的切线的斜率为4.(2)点A处的切线⽅程是y-2=4(x-1)即y=4x-24、解:时,k=∴切线⽅程是y-5=-4(x+2),即y=-4x-3.5、解:Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)=2(Δx)2+16Δx,=2Δx+16∴时,y′|x=3=166、解:时,瞬时速度v=(10+Δt)=10 m/s.∴瞬时速度v=2t=2×5=10 m/s.7、解:时,瞬时速度v==(8+2Δt)=8cm/s。
1.1.2 瞬时变化率——导数曲线上一点处的切线如图P n 的坐标为(x n ,f (x n ))(n =1,2,3,4…),P 的坐标为(x 0,y 0).问题1:当点P n →点P 时,试想割线PP n 如何变化? 提示:当点P n 趋近于点P 时,割线PP n 趋近于确定的位置. 问题2:割线PP n 斜率是什么? 提示:割线PP n 的斜率是k n =f x n -f x 0x n -x 0.问题3:割线PP n 的斜率与过点P 的切线PT 的斜率k 有什么关系呢? 提示:当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率. 问题4:能否求得过点P 的切线PT 的斜率? 提示:能.1.割线设Q 为曲线C 上不同于P 的一点,这时,直线PQ 称为曲线的割线. 2.切线随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C .当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 也称为曲线在点P 处的切线.瞬时速度与瞬时加速度一质点的运动方程为S =8-3t 2,其中S 表示位移,t 表示时间. 问题1:该质点在[1,1+Δt ]这段时间内的平均速度是多少?提示:该质点在[1,1+Δt ]这段时间内的平均速度为8-31+Δt 2-8+3×12Δt=-6-3Δt .问题2:Δt 的变化对所求平均速度有何影响? 提示:Δt 越小,平均速度越接近常数-6.1.平均速度运动物体的位移与所用时间的比称为平均速度. 2.瞬时速度一般地,如果当Δt 无限趋近于0时,运动物体位移S (t )的平均变化率S t 0+Δt -S t 0Δt无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,也就是位移对于时间的瞬时变化率.3.瞬时加速度一般地,如果当Δt 无限趋近于0时,运动物体速度v (t )的平均变化率v t 0+Δt -v t 0Δt无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,也就是速度对于时间的瞬时变化率.导 数1.导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx=f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).2.导数的几何意义导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率. 3.导函数(1)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ),在不引起混淆时,导函数f ′(x )也简称f (x )的导数.(2)f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.1.利用导数的几何意义,可求曲线上在某点处的切线的斜率,然后由点斜式写出直线方程.2.函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值,所以求函数在一点处的导数,一般先求出函数的导函数,再计算这点的导函数值.[对应学生用书P5]求曲线上某一点处的切线[例1] 已知曲线y =x +1x 上的一点A ⎝ ⎛⎭⎪⎫2,52,用切线斜率定义求:(1)点A 处的切线的斜率; (2)点A 处的切线方程. [思路点拨] 先计算f 2+Δx -f 2Δx,再求其在Δx 趋近于0时无限逼近的值.[精解详析] (1)∵Δy =f (2+Δx )-f (2)=2+Δx +12+Δx -⎝ ⎛⎭⎪⎫2+12=-Δx 22+Δx +Δx ,∴Δy Δx =-Δx 2Δx 2+Δx +Δx Δx =-122+Δx +1. 当Δx 无限趋近于零时,Δy Δx 无限趋近于34,即点A 处的切线的斜率是34.(2)切线方程为y -52=34(x -2),即3x -4y +4=0.[一点通] 根据曲线上一点处的切线的定义,要求曲线过某点的切线方程,只需求出切线的斜率,即在该点处,Δx 无限趋近于0时,ΔyΔx无限趋近的常数.1.曲线y =-12x 2-2在点P ⎝ ⎛⎭⎪⎫1,-52处的切线的斜率为________.解析:设P ⎝ ⎛⎭⎪⎫1,-52,Q ⎝ ⎛⎭⎪⎫1+Δx ,-121+Δx2-2,则割线PQ 的斜率为k PQ =-121+Δx 2-2+52Δx=-12Δx -1.当Δx 无限趋近于0时,k PQ 无限趋近于-1,所以曲线y =-12x 2-2在点P ⎝ ⎛⎭⎪⎫1,-52处的切线的斜率为-1.答案:-12.已知曲线y =2x 2+4x 在点P 处的切线的斜率为16,则P 点坐标为________.解析:设P 点坐标为(x 0,y 0),则f x 0+Δx -f x 0x 0+Δx -x 0=2Δx2+4x 0Δx +4ΔxΔx=4x 0+4+2Δx .当Δx 无限趋近于0时,4x 0+4+2Δx 无限趋近于4x 0+4, 因此4x 0+4=16,即x 0=3, 所以y 0=2×32+4×3=18+12=30. 即P 点坐标为(3,30). 答案:(3,30)3.已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程. 解:设A (1,2),B (1+Δx,3(1+Δx )2-(1+Δx )), 则k AB =31+Δx2-1+Δx -3×12-1Δx=5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5,所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5.切线方程为y -2=5(x -1),即5x -y -3=0.瞬时速度[例2] 一质点按规律S (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若该质点在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.[思路点拨] 先求出质点在t =2s 时的平均速度,再根据瞬时速度的概念列方程求解. [精解详析] 因为ΔS =S (2+Δt )-S (2)=a (2+Δt )2+1-a ·22-1=4a Δt +a (Δt )2,所以ΔSΔt =4a +a Δt .当Δt 无限趋近于0时,ΔSΔt 无限趋近于4a .所以t =2 s 时的瞬时速度为4a m/s. 故4a =8,即a =2.[一点通] 要计算物体的瞬时速度,只要给时间一个改变量Δt ,求出相应的位移的改变量ΔS ,再求出平均速度v =ΔS Δt ,最后计算当Δt 无限趋近于0时,ΔSΔt无限趋近常数,就是该物体在该时刻的瞬时速度.4.一做直线运动的物体,其位移S 与时间t 的关系是S =3t -t 2,则此物体在t =2时的瞬时速度为________.解析:由于ΔS =3(2+Δt )-(2+Δt )2-(3×2-22)=3Δt -4Δt -(Δt )2=-Δt -(Δt )2, 所以ΔS Δt =-Δt -Δt 2Δt=-1-Δt .当Δt 无限趋近于0时,ΔSΔt 无限趋近于常数-1.故物体在t =2时的瞬时速度为-1. 答案:-15.如果一个物体的运动方程S (t )=⎩⎨⎧t 2+2,0≤t <3,29+3t -32,t ≥3,试求该物体在t =1和t =4时的瞬时速度.解:当t =1时,S (t )=t 2+2, 则ΔS Δt =S 1+Δt -S 1Δt=1+Δt 2+2-3Δt=2+Δt ,当Δt 无限趋近于0时,2+Δt 无限趋近于2, 所以v (1)=2; ∵t =4∈[3,+∞),∴S (t )=29+3(t -3)2=3t 2-18t +56, ∴ΔS Δt=34+Δt 2-184+Δt +56-3×42+18×4-56Δt=3Δt 2+6·Δt Δt=3·Δt +6,∴当Δt 无限趋近于0时,3·Δt +6→6,即ΔSΔt →6,所以v (4)=6.导数及其应用[例3] 已知f (x )=x 2-3. (1)求f (x )在x =2处的导数; (2)求f (x )在x =a 处的导数.[思路点拨] 根据导数的定义进行求解.深刻理解概念是正确解题的关键. [精解详析] (1)因为Δy Δx =f 2+Δx -f 2Δx=2+Δx2-3-22-3Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4.(2)因为Δy Δx =f a +Δx -f aΔx=a +Δx2-3-a 2-3Δx=2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .[一点通] 由导数的定义知,求一个函数y =f (x )在x =x 0处的导数的步骤如下: (1)求函数值的改变量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f x 0+Δx -f x 0Δx ;(3)令Δx 无限趋近于0,求得导数.6.函数y =x +1x在x =1处的导数是________.解析:∵函数y =f (x )=x +1x,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=Δx 21+Δx ,∴Δy Δx =Δx 1+Δx ,当Δx →0时,ΔyΔx →0, 即y =x +1x在x =1处的导数为0.答案:07.设f (x )=ax +4,若f ′(1)=2,则a =________. 解析:∵f 1+Δx -f 1Δx =a 1+Δx +4-a -4Δx=a ,∴f ′(1)=a ,即a =2. 答案:28.将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第x h 时,原油的温度(单位:℃)为f (x )=x 2-7x +15(0≤x ≤8).求函数y =f (x )在x =6处的导数f ′(6),并解释它的实际意义.解:当x 从6变到6+Δx 时,函数值从f (6)变到f (6+Δx ),函数值y 关于x 的平均变化率为:f 6+Δx -f 6Δx=6+Δx2-76+Δx +15-62-7×6+15Δx=5Δx +Δx 2Δx=5+Δx .当x →6时,即Δx →0,平均变化率趋近于5,所以f ′(6)=5,导数f ′(6)=5表示当x =6 h 时原油温度的瞬时变化率即原油温度的瞬时变化速度.也就是说,如果保持6 h 时温度的变化速度,每经过1 h 时间,原油温度将升高5℃.1.利用导数的几何意义求过某点的切线方程(1)若已知点(x 0,y 0)在已知曲线上,则先求出函数y =f (x )在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f ′(x 0)(x -x 0).(2)若题中所给的点(x 0,y 0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.2.f ′(x 0)与f ′(x )的异同区别 联系f ′(x 0) f ′(x 0)是具体的值,是数值在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值f ′(x )f ′(x )是f (x )在某区间I 上每一点都存在导数而定义的一个新函数,是函数[对应课时跟踪训练(二)]一、填空题1.一质点运动的方程为S =5-3t 2,若该质点在时间段[1,1+Δt ]内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度为________.解析:∵当Δt 无限趋近于0时,-3Δt -6无限趋近于常数-6,∴该质点在t =1时的瞬时速度为-6.答案:-62.函数f (x )=1-3x 在x =2处的导数为________. 解析:Δy =f (2+Δx )-f (2)=-3Δx ,ΔyΔx =-3,则Δx 趋于0时,ΔyΔx =- 3.故f (x )在x =2处的导数为-3. 答案:-33.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.解析:由题意知f ′(1)=12,f (1)=12+2=52,所以f (1)+f ′(1)=52+12=3.答案:34.曲线f (x )=12x 2-2在点⎝⎛⎭⎪⎫1,-32处的切线的倾斜角为________.解析:∵f 1+Δx -f 1Δx=121+Δx 2-2-⎝ ⎛⎭⎪⎫12-2Δx=12Δx 2+ΔxΔx=12Δx +1. ∴当Δx 无限趋近于0时,f 1+Δx -f 1Δx无限趋近于常数1,即切线的斜率为1.∴切线的倾斜角为π4.答案:π45.已知曲线y =2ax 2+1过点P (a ,3),则该曲线在P 点处的切线方程为________. 解析:∵y =2ax 2+1过点P (a ,3), ∴3=2a 2+1,即a 2=1.又∵a ≥0,∴a =1,即y =2x 2+1. ∴P (1,3).又Δy Δx =f 1+Δx -f 1Δx=21+Δx 2+1-2×12-1Δx=4+2Δx .∴当Δx 无限趋近于0时,ΔyΔx 无限趋近于常数4,∴f ′(1)=4,即切线的斜率为4.由点斜式可得切线方程为y -3=4(x -1), 即4x -y -1=0. 答案:4x -y -1=0 二、 解答题6.已知质点运动方程是S (t )=12gt 2+2t -1(g 是重力加速度,常量),求质点在t =4 s 时的瞬时速度(其中s 的单位是m ,t 的单位是s).解:ΔS Δt =S 4+Δt -S 4Δt=⎣⎢⎡⎦⎥⎤12g 4+Δt 2+24+Δt -1-⎝ ⎛⎭⎪⎫12g ·42+2×4-1Δt=12g Δt 2+4g ·Δt +2·Δt Δt=12g Δt +4g +2.∵当Δt →0时,ΔS Δt→4g +2, ∴S ′(4)=4g +2,即v (4)=4g +2,所以,质点在t =4 s 时的瞬时速度为(4g +2) m/s.7.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程.解:∵31+Δx 2-41+Δx +2-3×12-4×1+2Δx =2Δx +3Δx 2Δx =2+3·Δx ,∴当Δx →0时,2+3·Δx →2,∴f ′(1)=2, 所以直线的斜率为2,所以直线方程为y -2=2(x +1),即2x -y +4=0. 8.已知直线l :y =4x +a 和曲线C :y =x 3-2x 2+3相切.求a 的值及切点的坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0),∵Δy Δx =x 0+Δx 3-2x 0+Δx 2+3-x 30-2x 20+3Δx=(Δx )2+(3x 0-2)Δx +3x 20-4x 0.∴当Δx →0时,Δy Δx→3x 20-4x 0, 即f ′(x 0)=3x 20-4x 0,由导数的几何意义,得3x 20-4x 0=4,解得x 0=-23或x 0=2. ∴切点的坐标为⎝ ⎛⎭⎪⎫-23,4927或(2,3), 当切点为⎝ ⎛⎭⎪⎫-23,4927时, 有4927=4×⎝ ⎛⎭⎪⎫-23+a ,∴a =12127, 当切点为(2,3)时,有3=4×2+a ,∴a =-5,当a =12127时,切点为⎝ ⎛⎭⎪⎫-23,4927; a =-5时,切点为(2,3).。
第3章 §3.1 导数的概念3.1.2 瞬时变化率——导数(一)学习目标1.了解曲线的切线的概念,会用逼近的思想求切线斜率.2.会求物体运动的瞬时速度与瞬时加速度.问题导学达标检测题型探究内容索引问题导学知识点一 曲线上一点处的切线思考 如图,当点P n(x n,f(x n))(n=1,2,3,4)沿着曲线f(x)趋近于点P(x,f(x))时,割线PP n的变化趋势是什么?答案 当点P n趋近于点P时,割线PP n趋近于确定的位置.这个确定的位置的直线PT称为过点P的切线.斜率梳理 可以用逼近的方法来计算切线的斜率,设P (x ,f (x )),Q (x +”x ,f (x +”x )),则割线PQ 的斜率为k PQ =f x +”x -f x”x .当”x 无限趋近于0时, 无限趋近于点P (x ,f (x ))处的切线的. f x +”x -f x”x知识点二 瞬时速度与瞬时加速度思考 瞬时速度和瞬时加速度和函数的变化率有什么关系?答案 瞬时速度是位移对于时间的瞬时变化率,瞬时加速度是速度对于时间的瞬时变化率.v t 0+”t -v t 0 ”tS t 0+”t -S t 0 ”t梳理 (1)如果当”t 无限趋近于0时,运动物体位移S (t )的平均变化率 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的,即位移对于时间的 .(2)如果当”t 无限趋近于0时,运动物体速度v (t )的平均变化率无限趋近于一个常数,那么这个常数称为物体在t =t 0时的 ,即速度对于时间的 .瞬时速度瞬时变化率瞬时加速度瞬时变化率1.曲线上给定一点P ,过点P 可以作该曲线的两条割线.( )2.过曲线上任一点可能作不出一条切线.( )3.有的曲线过它上面的某一点可作两条切线.( )4.平均速度刻画运动物体在某一时间段内变化的快慢程度,瞬时速度刻画物体在某一时刻变化的快慢程度.( )[思考辨析 判断正误]√×√√题型探究类型一 求曲线在某点处的切线斜率例1如图,已知曲线y=13x3上一点P2,83,求:(1)点P处的切线的斜率;解 由y =13x 3,得”y ”x =13 x +”x 3-13x 3”x=13×3x 2”x +3x ”x 2+ ”x 3”x =13×[3x 2+3x ”x +( ”x )2],当”x 无限趋近于0时,”y ”x 无限趋近于x 2.即点P 处的切线的斜率为22=4.解在点P处的切线方程为y-83=4(x-2),即12x-3y-16=0.(2)点P处的切线方程.反思与感悟 解决此类问题的关键是理解割线逼近切线的思想.即求曲线上一点处切线的斜率时,先表示出曲线在该点处的割线的斜率,则当”x无限趋近于0时,可得到割线的斜率逼近切线的斜率.跟踪训练1 利用割线逼近切线的方法分别求曲线y =2x 2在x =0,x =-1,x =2处的切线斜率.当”x 无限趋近于0时,k PQ 无限趋近于4x 0,从而曲线y =f (x )在x =0,x =-1,x =2处的切线斜率分别为0,-4,8.则割线PQ 的斜率k PQ =”y ”x =2 x 0+”x 2-2x 20x 0+”x -x 0=4x0+2 ”x .解 设P (x 0,f (x 0)),Q (x 0+”x ,f (x 0+”x )),类型二 求瞬时速度、瞬时加速度例2 已知质点M的运动速度与运动时间的关系为v=3t2+2(速度单位:cm/s,时间单位:s),(1)当t=2,”t=0.01时,求;解”v”t=v t+”t -v t”t=3 t+”t 2+2- 3t2+2”t=6t+3 ”t.”v”t当t=2,”t=0.01时,”v”t=6×2+3×0.01=12.03 cm/s2.(2)求质点M在t=2 s时的瞬时加速度.解 当”t无限趋近于0时,6t+3 ”t无限趋近于6t,则质点M在t=2 s时的瞬时加速度为12 cm/s2.反思与感悟 (1)求瞬时速度的关键在于正确表示“位移的增量与时间增量的比值”,求瞬时加速度的关键在于正确表示“速度的增量与时间增量的比值”,注意二者的区别.(2)求瞬时加速度:①求平均加速度 ;②令”t →0,求出瞬时加速度.”v ”t跟踪训练2 质点M按规律S(t)=at2+1做直线运动(位移单位:m,时间单位:s).若质点M在t=2 s时的瞬时速度为8 m/s,求常数a的值.解 ∵”S=S(2+”t)-S(2)=a(2+”t)2+1-a·22-1=4a”t+a( ”t)2,∴”S”t=4a+a”t.当”t无限趋近于0时,4a+a”t无限趋近于4a.∵在t=2 s时,瞬时速度为8 m/s,∴4a=8,∴a=2.达标检测解析∵f 2+”x -f 2”x=2 2+”x 2-8”x=8+2 ”x.1.已知曲线y=f(x)=2x2上一点A(2,8),则点A处的切线斜率为___.8当”x无限趋近于0时,8+2 ”x无限趋近于8,∴曲线f(x)在点A处的切线斜率为8.2.任一做直线运动的物体,其位移S与时间t的关系是S=3t-t2,则物体的初速度是___.3解析∵”S”t=S ”t -S 0”t=3 ”t- ”t 2”t=3-”t,∴当”t无限趋近于0时,”S”t无限趋近于3.解析 在[1,1+”t ]内的平均加速度为”v ”t = 1+”t 2+2 1+”t +2-5”t=”t +4. 3.已知物体运动的速度与时间之间的关系:v (t )=t 2+2t +2,则在时间段[1,1+”t ]内的平均加速度是_______,在t =1时的瞬时加速度是___.4+”t 4当”t 无限趋近于0时,”v ”t 无限趋近于4,故在时间段[1,1+”t ]内的平均加速度为4+”t ,在t =1时的瞬时加速度是4.4.已知曲线y=2x2+4x在点P处的切线斜率为16,则点P的坐标为______.(3,30)解析设点P(x0,2x20+4x0).f x0+”x -f x0”x=2 ”x 2+4x0· ”x+4 ”x”x=4x0+4+2 ”x,当”x无限趋近于0时,4x0+4+2 ”x无限趋近于4x0+4,令4x0+4=16,得x0=3,∴P(3,30).5.已知函数y=f(x)在x=x0处的导数为11,则当”x趋近于零时,无限趋近于常数______.-11解析因为f x0-”x -f x0”x=-f x0-”x -f x0-”x,f x0-”x -f x0”x所以f x0-”x -f x0”x无限趋近于常数-11.规律与方法1.曲线的切线斜率是割线斜率的极限值,是函数在一点处的瞬时变化率.2.瞬时速度是运动物体的位移对于时间的瞬时变化率,可以精确刻画物体在某一时刻运动的快慢程度.。
3.1.2 瞬时变化率——导数(一)
【学习要求】
1.理解曲线的切线的概念,会用逼近的思想求切线斜率.
2.会求物体运动的瞬时速度与瞬时加速度.
【学法指导】
可以利用曲线的割线逼近切线,用物体运动的平均速度逼近瞬时速度,这就是数学上的“无限逼近”,为函数的导数作准备.
课前预习
1.曲线的切线:设直线PQ 为曲线C 的割线,随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近
__________________,当___________________时,直线PQ 最终就成为在点P 处最逼近曲线的直线l .这条直线l 称为曲线在点P 处的切线.
2.瞬时速度可__________________________________,是位移关于时间的瞬时变化率.
学生活动
活动一 曲线上一点处的切线
问题1 如图,当点P n (x n ,f (x n ))(n =1,2,3,4)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 的变化趋势是什么?
问题2 怎样求切线的斜率?
例1 已知曲线y =13
x 3上一点P ⎝⎛⎭⎫2,83,求: (1)点P 处的切线斜率;(2)点P 处的切线方程.
跟踪训练1 已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程.
活动二瞬时速度与瞬时加速度
问题1物体的平均速度能否精确反映它的运动状态?问题2如何描述物体在某一时刻的运动状态?
问题3瞬时速度和瞬时加速度和函数的变化率有什么关系?
例2一质点按规律s=2t2+2t(位移单位:m,时间单位:s)做直线运动.求:
(1)该质点在前3 s内的平均速度;(2)质点在2 s到3 s内的平均速度;(3)质点在3 s时的瞬时速度.
小结平均速度可反映物体在某一段时间内的平均变化状态,而瞬时速度反映物体在某一时刻的运动变化状态,瞬时速度是平均速度当Δt趋于0时的极限值.
跟踪训练2一辆汽车按规律s=3t2+1作直线运动,求这辆车在t=3 s时的瞬时速度.(时间单位:s,位移单位:m)
跟踪训练3某质点做直线运动,在t s时的速度为v(t)=2t2+1,求质点在t=2 s时的加速度.(v单位:m/s)
课堂检测
1.已知曲线y=f(x)=2x2上一点A(2,8),则点A处的切线斜率为________.
2.已知曲线y=2x2+4x在点P处的切线斜率为16.则P点坐标为________.
3.任一作直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.
4.一质点做加速直线运动,其速度与时间的关系是v=t2+t+2 (v单位:m/s;时间单位:s),则质点在t=2 s 时的瞬时加速度为________.
课堂小结
1.曲线的切线斜率是割线斜率的极限值,是函数在一点处的瞬时变化率.
2.瞬时速度是运动物体的位移对于时间的瞬时变化率,可以精确刻画物体在某一时刻运动的快慢.
自我检测
1.一质点运动的方程为s =5-3t 2,若该质点在时间段[1,1+Δt ](Δt >0)内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度是________.
2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率的值为________.
3.已知曲线y =12
x 2-2上一点P ⎝⎛⎭⎫1,-32,则过点P 的切线的倾斜角为________.
4.曲线y =4x -x 3在点(-1,-3)处的切线方程为______________.(已知(a +b )3=a 3+3a 2b +3ab 2+b 3)
5.一物体的运动方程为s =7t 2+8,则其在t =______时的瞬时速度为1.
6.一物体的运动方程是s =12
at 2(a 为常数),则该物体在t =t 0时的瞬时速度为________.
7.已知物体运动的速度与时间之间的关系是:v (t )=t 2+2t +2,则在时间间隔[1,1+Δt ]内的平均加速度是________,在t =1时的瞬时加速度是________.
8.已知直线x -y -1=0与曲线y =ax 2相切,则a =________.
9.求曲线f (x )=3x 2-2x 在点(1,1)处切线的斜率.
10.以初速度v 0 (v 0>0)垂直上抛的物体,t 秒时间的高度为s (t )=v 0t -12
gt 2,求物体在时刻t 0处的瞬时速度.
11.高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间的关系式为h (t )=-
4.9t 2+6.5t +10,求运动员在t =6598 s 时的瞬时速度,并解释此时的运动状况.
12.若一物体运动方程如下:(位移单位:m ,时间单位:s)s =⎩⎪⎨⎪⎧ 3t 2+2 (t ≥3) ①29+3(t -3)2 (0≤t <3)
② 求:(1)物体在t ∈[3,5]内的平均速度;(2)物体的初速度v 0;(3)物体在t =1时的瞬时速度.。