第5章采样控制系统的数字仿真
- 格式:ppt
- 大小:284.00 KB
- 文档页数:22
控制系统计算机仿真课后答案参考答案说明:1( 对于可以用文字或数字给出的情况,直接给出参考答案。
2( 对于难以用文字或数字给出的情况,将提供MATLAB程序或Simulink模型。
第 1 章1.1 系统是被研究的对象,模型是对系统的描述,仿真是通过模型研究系统的一种工具或手段。
1.2 数学仿真的基本工具是数字计算机,因此也称为计算机仿真或数字仿真。
将数学模型通过一定的方式转变成能在计算机上实现和运行的数学模型,称之为仿真模型。
1.3 因为仿真是在模型上做试验,是一种广义的试验。
因此,仿真基本上是一种通过试验来研究系统的综合试验技术,具有一般试验的性质。
而进行试验研究通常是需要进行试验设计。
1.4 解析法又称为分析法,它是应用数学推导、演绎去求解数学模型的方法。
仿真法是通过在模型上进行一系列试验来研究问题的方法。
利用解析法求解模型可以得出对问题的一般性答案,而仿真法的每一次运行则只能给出在特定条件下的数值解。
,解析法常常是围绕着使问题易于求解,而不是使研究方法更适合于问题,常常因为存在诸多困难而不能适用。
从原则上讲,仿真法对系统数学模型的形式及复杂程度没有限制,是广泛适用的,但当模型的复杂程度增大时,试验次数就会迅速增加,从而影响使用效率。
1.5 仿真可以应用于系统分析、系统设计、理论验证和训练仿真器等方面。
1.6,8,20,71,,,,,,,,,x,100x,0u,,,, ,,,,0100,,,,y,,,002x注:本题答案是用MATLAB中tf2ss()函数给出的,是所谓“第二能控标准型”(下同)。
11.7,3,3,11,,,,,,,,,x,100x,0u,,,, ,,,,0100,,,,y,,,013x1.82s,3s,3G(s), 32s,4s,5s,21.91.368,0.36801,,,,,,,,x(k,1),100x(k),0u(k),,,, ,,,,0100,,,,y(k),,,00.3680.264x(k)1.10 仿真模型见praxis1_10_1.mdl;MATLAB程序见praxis1_10_2.m。
《控制系统建模与仿真》课程习题(1)一、“投针实验”的历史价值在人类数学文化史中,对圆周率 精确值的追求吸引了许多学者的研究兴趣。
在众多的圆周率计算方法中,最为奇妙的是法国物理学家布丰(Boffon)在1777年提出的“投针实验”。
试回答下列问题:1、试对“投针实验”的机理给出一种直观形象的物理解释?2、有人说“布丰/ Boffon(投针实验)是仿真技术的奠基者”,为什么?3、试用MATLAB语言编制“投针实验”的仿真程序,仿真证明之。
二、自平衡式两轮电动车的安全问题近年来,自平衡式两轮电动车产品成为“抢眼”的代步工具,但也出现很多问题(如上图所示);试根据你所了解的情况就“平衡车产品是否可以合法上路?”问题,给出你的意见与建议。
提示:可从“技术、安全、法律、可持续”等方面,有理有据地展开讨论。
参考书:张晓华《控制系统数字仿真与CAD》 (第4版) 机械工业出版社 2020张晓华《系统建模与仿真》(第2版)清华大学出版社 2016《控制系统建模与仿真》课程习题(2)一、一阶直线倒立摆系统的建模问题对于教材中图2-7所示的一阶直线倒立摆系统,基于牛顿定律所建立的数学模型(如教材的图2-8所示),试问:这个数学模型是否正确,给出你的分析与证明。
提示:(1)基于MATLAB仿真进行模型验证(参见教材第四章第三节);(2)应用“拉格朗日方程”方法建模,进行结果对比。
二、一阶直线双倒立摆系统的可实现问题如下图所示的一阶直线双倒立摆系统,试问:能否通过控制力F实现“在保持两杆不倒的条件下,使小车在直线X方向的位置任意移动”?提示:(1)建立系统数学模型;(2)应用现代控制理论的“能控性定理”进行分析。
参考书:张晓华《控制系统数字仿真与CAD》 (第4版) 机械工业出版社 2020张晓华《系统建模与仿真》(第2版)清华大学出版社 2016《控制系统建模与仿真》课程习题(3)一、水箱液位控制系统设计问题如下图所示的“水箱液位系统”,试回答下列问题:1、试给出含有(控制器+传感器)的“水箱液位控制系统”方案;2、试依据“流体力学”的基本概念,建立系统的数学模型;3、若使系统液位控制实现稳态无静差,试给出PID控制器设计方案;二、水箱液位控制的拓展问题试回答下述问题:1、某人在上述“水箱液位控制系统”中,采用单片机作控制器,程序设计为“增量式PI控制算法”,如果控制系统在“阶跃给定”下存在稳态误差,试问这种情况是否合理?为什么?2、对于上图所示的“水箱液位系统”,在下排水出口处流体呈“紊流”状态,试证明:其流量与液位高度的关系为Q=K∙√H。
第4章控制系统数字仿真数字仿真就是采用数学模型,在数字计算机上借助数值解法所进行的仿真实验。
所谓数值解法,就是寻求y(t)在[a,b]区间内的一系列离散节点t1<t2<…<t m<t m+1<…上的近似值y1, y2, …,y m, y m+1, …,即求取y m+1 y(t m+1)。
相邻节点的间距h=t m+1-t m称为步长,这里假定h为定值,即t m=t0+mh,m=0, 1, 2,…。
本章主要讲述数字仿真的基本理论和方法。
4.1 数值积分法系统的动态特性通常用一阶微分方程组来描述,也即状态空间表达式。
一般来说,只有极少数的微分方程能用到初等方法得其解析解(或用解析的方法得到精确解),多数只能用近似数值求解。
利用计算机求微分方程主要使用数值积分法,它是系统仿真的一个重要方法。
在这里,我们主要研究一阶微分方程的形式,如:⎪⎩⎪⎨⎧===00)(),(y t t y y t f dtdy(1), 求y(t)解:⎰⎰⎰+====tt o tt tt dty t f t y t y dty t f dy dty t f dy y t f dtdy),()()(),(),(),(当t=t m+1,t 0=t m 时⎰++=+1),()()(1m mt t m m dty t f t y t y(2)数值积分法时在已知初值的情况下,对f(t, y)进行近似积分,从而对y(t)进行数值求解的方法。
下面介绍几种在数字仿真常用的数字积分法。
1.欧拉法欧拉法又称为折线法,是最简单,也是最早的一种数值计算方法。
对于式(2),如果积分间隔h=t m+1 - t m 取得足够小,使得在t m 与t m+1之间的f(t, y)可近似看做常数f(t m , y m )。
这样式(2)可化为:),()()(1m m m m y t hf t y t y +≈+即),(1m m m m y t hf y y +≈+ (3)(3)式即为欧拉公式。