第五讲 系统模型的结构辨识和检验
- 格式:ppt
- 大小:622.00 KB
- 文档页数:10
1请叙述系统辨识的基本原理(方框图),步骤以及基本方法定义:系统辨识就是从对系统进行观察和测量所获得的信息重提取系统数学模型的一种理论和方法。
辨识定义:辨识有三个要素——数据、模型类和准则。
辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型辨识的三大要素:输入输出数据、模型类、等价准则基本原理:步骤:对一种给定的辨识方法,从实验设计到获得最终模型,一般要经历如下一些步骤:根据辨识的目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最后经过验证获得最终模型。
基本方法:根据数学模型的形式:非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、谱分析法。
参数辨识——现代辨识方法(最小二乘法等)2随机语言的描述白噪声是最简单的随机过程,均值为零,谱密度为非零常数的平稳随机过程。
白噪声过程(一系列不相关的随机变量组成的理想化随机过程)相关函数: 谱密度: 白噪声序列,白噪声序列是白噪声过程的离散形式。
如果序列 满足: 相关函数: 则称为白噪声序列。
谱密度:M 序列是最长线性移位寄存器序列,是伪随机二位式序列的一种形式。
M 序列的循环周期 M 序列的可加性:所有M 序列都具有移位可加性辨识输入信号要求具有白噪声的统计特性 M 序列具有近似的白噪声性质,即 M 序列“净扰动”小,幅度、周期、易控制,实现简单。
3两种噪声模型的形式是什么 第一种含噪声的被辨识系统数学模型0011()()()()n ni i i i y k ay k i b u k i v k ===-+-+∑∑,式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0()()()T y k k v k ψθ=+。
其中,()()()()()()()=1212T k y k y k y k n u k u k u k n ψ------⎡⎤⎣⎦,,,,,,,)()(2τδστ=W R +∞<<∞-=ωσω2)(W S )}({kW ,2,1,0,)(2±±==l l R l W δσ2)()(σωω==∑∞-∞=-l l j W W e l R S ⎩⎨⎧≠=≈+=⎰0,00,Const )()(1)(0ττττT M dt t M t M T R bit )12(-=P P N第二种含噪声的被辨识系统数学模型:它与第一种的区别仅在于噪声的状况不同,第二种被辨识系统如下图所示:ξ(k)为噪声序列,假设为零均值独立同分布的平稳随即序列,且 ()()()y k x k k ξ=+ 由由以上两式可推导出0011()()()()n ni i i i y k a y k i b u k i v k ===-+-+∑∑,式中01()()()n i i v k k a k i ξξ==--∑4阐述最小二乘辨识方法的原理、数学模型以及推导数学模型:推导过程:含噪声的数学模型为:0011()()()()n ni i i i y k ay k i b u k i v k ===-+-+∑∑ 式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0()()()T y k k v k ψθ=+ 0θ是被辨识系统的真实参数向量(2n 维,n 为系统的阶数)。
机械系统参数辨识与模型验证方法研究摘要:机械系统参数辨识与模型验证是一项重要的研究内容,对于机械系统的优化设计和性能提升具有重要意义。
本文将从机械系统的参数辨识方法、模型验证方法以及应用实例三个方面进行探讨,并结合实际案例加以讲解。
1. 介绍机械系统的参数辨识与模型验证是指通过实验或其他手段,对机械系统的各种参数进行准确测定和辨识,并对系统模型进行验证和修正的过程。
机械系统的参数辨识和模型验证是研究机械系统性能和行为的基础,对于优化设计、故障诊断和性能预测等方面具有重要意义。
2. 机械系统参数辨识方法机械系统参数辨识方法主要包括数据采集、参数辨识和参数优化三个步骤。
数据采集是指通过测量、记录机械系统输入和输出信号,并进行数据预处理,获取准确的参数数据。
参数辨识是指根据所采集到的数据,利用识别算法和数学模型,对机械系统的各种参数进行辨识和估计。
参数优化是指通过对辨识结果进行分析和优化,得到最佳的参数估计结果。
常用的机械系统参数辨识方法包括神经网络辨识法、最小二乘法、贝叶斯统计方法等。
神经网络辨识法是通过构建神经网络模型,利用已知的输入输出数据进行训练和参数辨识。
最小二乘法是指通过最小化模型输出与实际测量值之间的误差平方和,得到最优的参数估计结果。
贝叶斯统计方法是通过建立概率模型,并利用贝叶斯推理方法,对参数进行估计和预测。
3. 机械系统模型验证方法机械系统模型验证方法主要包括实验验证和仿真验证两种。
实验验证是通过实验测试,利用实际测量数据对机械系统模型进行验证。
通过对模型输出与实际测量值进行比较,评估模型的准确性和可信度。
仿真验证是利用计算机仿真技术,构建机械系统的数学模型,并对模型进行仿真计算,得到系统的输出响应。
通过对比仿真结果与实际测量数据,验证模型的准确性和可靠性。
实验验证方法可以采用工程试验和实验台架试验两种形式。
工程试验是指在实际应用环境下对机械系统进行试验,获取实际操作数据,并与模型输出进行比较。
系统辨识与模型预测控制系统辨识与模型预测控制是现代控制理论中的关键概念,它们在工程领域中被广泛应用于系统建模及控制设计中。
本文将详细介绍系统辨识与模型预测控制的基本概念、原理、方法和应用。
一、系统辨识系统辨识是指通过实验数据对系统的动态行为进行建模和估计的过程。
它可以帮助我们了解系统的性质和结构,并在控制系统设计中提供准确的数学模型。
系统辨识的主要任务是确定系统的参数和结构,并评估模型的质量。
1.1 参数辨识参数辨识是系统辨识的主要内容之一,它通过收集系统的输入和输出数据,并根据建模方法对参数进行估计。
常用的参数辨识方法包括最小二乘法、极大似然法、频域法等。
参数辨识的结果对建模和控制设计具有重要的指导意义。
1.2 结构辨识结构辨识是指确定系统的数学结构,即选择合适的模型形式和结构。
常用的结构辨识方法有ARX模型、ARMA模型、ARMAX模型等。
结构辨识的关键是根据系统的性质和实际需求选择适当的模型结构,以保证模型的准确性和有效性。
二、模型预测控制模型预测控制是一种基于系统动态模型的控制方法,它通过在线求解最优控制问题实现对系统的控制。
模型预测控制通过对系统未来动态行为的预测,结合控制目标和约束条件,求解优化问题得到最优控制输入。
它具有优良的鲁棒性和适应性,并且能够处理多变量、非线性以及时变系统的控制问题。
2.1 模型建立模型预测控制的第一步是建立系统的数学模型,通常采用系统辨识的方法得到。
模型可以是线性的或非线性的,根据实际需求选择适当的模型结构和参数。
2.2 控制器设计模型预测控制的核心是设计控制器,控制器的目标是使系统输出跟踪参考轨迹,并满足约束条件。
控制器设计通常通过求解一个离散时间最优控制问题来实现,常用的方法有二次规划、线性规划、动态规划等。
2.3 优化求解模型预测控制的关键是求解最优控制问题,将系统的模型和控制目标转化为一个优化问题,并通过数值优化方法求解得到最优解。
常用的优化算法包括线性规划、非线性规划、遗传算法等。
《系统辨识》第5讲要点第5章 线性动态模型参数辨识-最小二乘法5.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类:① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:其中代表模型输出与系统输出的偏差。
典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。
② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。
③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度最大限度地逼近条件下的概率密度,即。
典型的方法是极大似然法。
5.2 最小二乘法的基本概念● 两种算法形式① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。
② 递推算法:在上次模型参数估计值的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值,广泛采用的递推算法形式为其中表示k 时刻的模型参数估计值,K(k)为算法的增益,h(k-d)是由观测数据组成的输入数据向量,d为整数,表示新息。
● 最小二乘原理定义:设一个随机序列的均值是参数 的线性函数其中h(k)是可测的数据向量,那么利用随机序列的一个实现,使准则函数达到极小的参数估计值称作的最小二乘估计。
● 最小二乘原理表明,未知参数估计问题,就是求参数估计值,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。
● 如果系统的输入输出关系可以描述成如下的最小二乘格式式中z(k)为模型输出变量,h(k)为输入数据向量,为模型参数向量,n(k)为零均值随机噪声。
为了求此模型的参数估计值,可以利用上述最小二乘原理。
根据观测到的已知数据序列和,极小化下列准则函数即可求得模型参数的最小二乘估计值。
● 最小二乘估计值应在观测值与估计值之累次误差的平方和达到最小值处,所得到的模型输出能最好地逼近实际系统的输出。