上海三花演示中文版20071123
- 格式:pdf
- 大小:5.05 MB
- 文档页数:58
39899 Balentine Drive, Suite 125 Phone: 510 651 5122 Newark, CA 94560 Fax: 510 651 5127URL: MST Use Case ExampleVersion 118 January 2011PurposeThis is a companion document to DisplayPort Standard Version 1.2 and provides tangible examples of how a topology consisting of MST DP devices is to be managed while DisplayPort Standard describes the overall framework.SummaryThis document is Version 1 of the MST DP Usage Example Document Series, and covers how an MST DP Source device and a device containing MST Branching Unit are to interact with each other to perform typical topology and payload bandwidth management functions. A topology consisting of an MST DP Source device, an MST Splitter Branch device, and two video stream sinks is covered in this document.Table of ContentsPreface (7)Acknowledgements (8)Revision History (9)References (10)1 Example MST Topology without Audio Stream Sink (11)1.1 Topology Change Sequences of This Document (14)1.2 Topology Discovery (14)1.2.1 Source Device Operation (14)1.2.2 Splitter Branch Device Operation (21)1.3 Reading and Writing DP Device Global Unique Identifier (GUID) (21)1.3.1 Source Device Operation (22)1.3.2 Splitter Branch Device Operation (24)1.4 Obtaining Display Capabilities (25)1.4.1 Source Device Operation (25)1.4.2 Splitter Branch Device Operation (30)1.5 Establishing a Virtual Channel from PC to Display 1 (31)1.5.1 Source Device Operation (31)1.5.2 Splitter Branch Device Operation (36)1.6 Establishing a Virtual Channel from PC to Display 2 (37)1.6.1 Source Device Operation (37)1.6.2 Splitter Branch Device Operation (41)1.7 Reallocating the Virtual Channel from PC to Display 1 (41)1.7.1 Source Device (41)1.7.2 Splitter Branch Device Operation (45)1.8 Deleting Virtual Channel from PC to Display 1 (45)1.8.1 Source Device (45)1.8.2 Splitter Branch Device Operation (47)1.9 Cloning the Virtual Channel from PC to Display 2 on Display 1 (47)1.9.1 Source Device Operation (47)1.9.2 Splitter Branch Device Operation (49)1.10 Deleting Cloned Virtual Channel from PC to Display 2 (49)1.10.1 Source Device Operation (49)1.10.2 Splitter Branch Device Operation (50)1.11 Handling Unexpected Changes in Available PBN (51)1.11.1 Splitter Branch Device Operation (51)1.11.2 Source Device Operation (52)1.12 Entering and Exiting Sleep Mode (53)1.12.1 Source Device Operation (53)1.12.2 Splitter Branch Device Operation (56)1.13 Connection Status Change of a Remote Device Due to Unplug or Power Off Event (57)1.13.1 Splitter Branch Device Operation (57)1.13.2 Source Device Operation (58)1.14 Connection Status Change of a Remote Device Due to Plug or Power On Event (59)1.14.1 Splitter Branch Device Operation (59)1.14.2 Source Device Operation (60)2 Example MST Topology with Audio (62)2.1 Topology Discovery (63)2.2 Establishing a Virtual Channel from PC to Display 1 with Audio (66)2.3 Establishing a Virtual Channel from PC to Display 2 with Audio (67)3 Native AUX Transactions for Sideband MSG Delivery (69)3.1 Sideband MSG From uPacket TX to uPacket RX (DOWN_REQ or UP_REP) (69)3.2 Sideband MSG From uPacket RX to uPacket TX (UP_REQ or DOWN_REP) (69)4 Appendix A: MST Source Device Acting as SST-mode-only Device (70)5 Appendix B: MST Source Device with Two DP Output Connectors (71)TablesTable 0-1: Main Contributors (8)Table 1-1: Reference Documents (10)Table 1-1: LINK_ADDRESS Message Transaction (17)Table 1-2: LINK_ADDRESS Message Transaction Sideband MSG (17)Table 1-3: LINK_ADDRESS Message Transaction Reply (17)Table 1-4: LINK_ADDRESS Message Transaction Reply First Sideband MSG (19)Table 1-5: LINK_ADDRESS Message Transaction Reply Second Sideband MSG (20)Table 1-6: Sideband MSG for the GUID REMOTE_DPCD_READ Message Transaction Request 22 Table 1-7: Sideband MSG for the GUID REMOTE_DPCD_READ Message Transaction Reply (22)Table 1-8: Sideband MSG for the GUID REMOTE_DPCD_WRITE Message Transaction Request23 Table 1-9: Sideband MSG for the GUID REMOTE_DPCD_Write Message Transaction Reply (24)Table 1-10: Sideband MSG for the REMOTE_DPCD_WRITE Message Transaction Request Setting the I2C Speed to 100K (25)Table 1-11: Sideband MSG for the REMOTE_DPCD_WRITE Message Transaction Reply (26)Table 1-12: Message Transaction Request for Reading 128-Byte EDID from a Remote Sink Device26 Table 1-13: Sideband MSG for REMOTE_I2C_READ Message Transaction Request (27)Table 1-14: First Sideband MSG Reply for REMOTE_I2C_READ Message Transaction (28)Table 1-15: Second Sideband MSG Reply for REMOTE_I2C_READ Message Transaction (28)Table 1-16: Third Sideband MSG Reply for REMOTE_I2C_READ Message Transaction (29)Table 1-17: Fourth Sideband MSG Reply for REMOTE_I2C_READ Message Transaction Reply . 29 Table 1-18: ENUM_PATH_RESOURCES Message Transaction Request Sideband MSG (31)Table 1-19: ENUM_PATH_RESOURCES Message Transaction Reply Sideband MSG (32)Table 1-20: Virtual Channel (VC) Payload ID Table (35)Table 1-21: ALLOCATE_PAYLOAD Message Transaction Request Sideband MSG (35)Table 1-22: ALLOCATE_PAYLOAD Message Transaction Reply Sideband MSG (36)Table 1-23: ENUM_PATH_RESOURCES Message Transaction Request Sideband MSG (37)Table 1-24: ENUM_PATH_RESOURCES Message Transaction Reply Sideband MSG (38)Table 1-25: uPacket TX and RX VC Payload ID Table (39)Table 1-26: ALLOCATE_PAYLOAD Message Transaction Request Sideband MSG (40)Table 1-27: ALLOCATE_PAYLOAD Message Transaction Reply Sideband MSG (40)Table 1-28: uPacket TX and RX VC Payload ID Table (42)Table 1-29: ALLOCATE_PAYLOAD Message Transaction Request Sideband MSG for Reallocating a Virtual Channel (44)Table 1-30: ALLOCATE_PAYLOAD Message Transaction Reply Sideband MSG for Reallocatinga Virtual Channel (44)Table 1-31: Delete VC ALLOCATE_PAYLOAD Message Transaction Request Sideband MSG .. 45 Table 1-32: Delete VC ALLOCATE_PAYLOAD Message Transaction Reply Sideband MSG (46)Table 1-33: uPacket TX and uPacket RX VC Payload ID Table (47)Table 1-34: ALLOCATE_PAYLOAD Message Transaction Request Sideband MSG for Cloning Example (48)Table 1-35: ALLOCATE_PAYLOAD Message Transaction Reply Sideband MSG for Cloning Example (48)Table 1-36: ALLOCATE_PAYLOAD Message Transaction Request Sideband MSG for Deleting a Cloned Virtual Channel Example (49)Table 1-37: ALLOCATE_PAYLOAD Message Transaction Reply Sideband MSG for Deleting a Cloned Virtual Channel Example (50)Table 1-38: RESOURCE_STATUS_NOTIFY Message Transaction Request Sideband MSG (51)Table 1-39: RESOURCE_STATUS_NOTIFY Message Transaction Reply Sideband MSG (52)Table 1-40: POWER_DOWN_PHY Message Transaction Request Sideband MSG (53)Table 1-41: POWER_DOWN_PHY Message Transaction Reply Sideband MSG (53)Table 1-42: CLEAR_PAYLOAD_ID_TABLE Message Transaction Request Sideband MSG (54)Table 1-43: CLEAR_PAYLOAD_ID_TABLE Message Transaction Reply Sideband MSG (55)Table 1-44: POWER_UP_PHY Message Transaction Request Sideband MSG (55)Table 1-45: POWER_UP_PHY Message Transaction Reply Sideband MSG (56)Table 1-46: Unplug CONNECTION_STATUS_NOTIFY Broadcast Message Transaction Request Sideband MSG (57)Table 1-47: Unplug CONNECTION_STATUS_NOTIFY Broadcast Message Transaction Reply Sideband MSG (58)Table 1-48: Plug CONNECTION_STATUS_NOTIFY Broadcast Message Transaction Request Sideband MSG (59)Table 1-49: Plug CONNECTION_STATUS_NOTIFY Broadcast Message Transaction Reply Sideband MSG (60)Table 2-1: Audio Video Support Requirements (63)Table 2-2: LINK_ADDRESS Message Transaction Reply First Sideband MSG (64)Table 2-3: LINK_ADDRESS Message Transaction Reply Second Sideband MSG (65)Table 2-4: ALLOCATE_PAYLOAD Message Transaction Request Sideband MSG with Audio (66)Table 2-5: ALLOCATE_PAYLOAD Message Transaction Reply Sideband MSG (66)Table 2-6: ALLOCATE_PAYLOAD Message Transaction Request Sideband MSG with Audio (67)Table 2-7: ALLOCATE_PAYLOAD Message Transaction Reply Sideband MSG (68)FiguresFigure 1-1: Logical Topology Covered in this Document (11)Figure 1-2: Physical Topology of PC and Multi-stream Sink Monitor (12)Figure 1-3: Physical Topology of PC and Multi-stream Sink Monitor (13)Figure 1-4: Physical Topology with Separate PC, Branch Device and Single Stream DP Monitors .. 13 Figure 1-5: Determine Whether LINK_ADDRESS Message Transaction Should be Used (15)Figure 1-6: Virtual Channel Allocation Procedure Flowchart (34)Figure 2-1: Audio Example Topology (62)PrefaceIntellectual PropertyCopyright © 2011 Video Electronics Standards Association. All rights reserved.While every precaution has been taken in the preparation of this standard, the Video Electronics Standards Association and its contributors assume no responsibility for errors or omissions, and make no warranties, expressed or implied, of functionality or suitability for any purpose.TrademarksAll trademarks used within this document are the property of their respective owners. DMT, DP, DisplayPort, EDID, and VESA are trademarks of the Video Electronics Standards Association.HDCP is a trademark of Digital Content Protection, LLCI2C is a trademark of Philips.PatentsVESA draws attention to the fact that it is claimed that compliance with this Standard may involve the use of a patent or other intellectual property right (collectively, “IPR”). VESA takes no position concerning the evidence, validity, and scope of this IPR.THIS STANDARD IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY IMPLEMENTATION OF THIS STANDARD SHALL BE MADE ENTIRELY AT THE IMPLEMENTER’S OWN RISK, AND NEITHER VESA, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR INDIRECTLY ARISING FROM THE IMPLEMENTATION OF THIS STANDARD.Support for this StandardClarifications and application notes to support this standard may be written. To obtain the latest standard and any support documentation, contact VESA.If you have a product, which incorporates DisplayPort, you should ask the company that manufactured your product for assistance. If you are a manufacturer, VESA can assist you with any clarification you may require. Submit all comments or reported errors in writing to VESA using one of the following methods.•Fax: 510 651 5127, direct this fax to Technical Support at VESA•e-mail: support@•Mail: Technical SupportVESA39899 Balentine Drive, Suite 125Newark, CA 94560AcknowledgementsThis document would not have been possible without the efforts of VESA’s DisplayPort Task Group. In particular, the following individuals and their companies contributed significant time and knowledge to this version of the document.Table 0-1: Main ContributorsName CompanyTony Cheng AMDSyed Hussain AMDGeorge Kyriazis AppleBob Ridenour AppleYoshinobu Banba EIZO NANAOGeorge Hayek IntelSrikanth Kambhatla IntelCameron Buschardth NVIDIADavid Steers NVIDIAKen Jaramillo NXP SemiconductorJohn Garrett STMicroelectronics EditorAlan Kobayashi STMicroelectronics Co-editorRevision HistoryJanuary 18, 2011Initial ReleaseReferencesTable 1-2: Reference DocumentsDocument Version / Revision Date VESA Policy 200 Intellectual Property Rights Version B February 2005 VESA DisplayPort Standard Version 1.2 January 2010VESA and Industry Standards and Guidelines for Computer Display MonitorVersion 1. Rev.12 November 2008 Timing (DMTVESA Enhanced Extended Display Identification Data Standard (E-EDID) Rel. A Version 1 February 20001 Example MST Topology without Audio Stream SinkThis document covers how an MST DP Source device and a device containing MST Branching Unit are to interact to perform typical topology and payload bandwidth management functions in the following logical topology.Figure 1-4: Physical Topology with Separate PC, Branch Device and Single Stream DPMonitors1.1 Topology Change Sequences of This DocumentThere are two ways an MST DP Source device can be notified of a topology change.By a Hot Plug/Unplug event indicating a connection or disconnection of an immediate downstream device to its uPacket TX port.By receipt of a CONNECTION_STATUS_NOTIFY message transaction indicating a connection or disconnection of a remote device.Note: Alternately, the Topology Manager in a Source device may choose to periodically poll theUP_REQ_RDY bit of the immediate downstream device to monitor the connection change event.In this document, topology discovery and ensuing operations upon a plugging of an immediatedownstream device (that is, the Splitter to which to stream sinks are already connected) to an MST DP Source device is covered first. Connection status change of a remote device is covered later in thisdocument.1.2 Topology DiscoveryThis example explains the sequence of events necessary to discover the connected stream sinks. It is assumed that both stream sinks are connected to the branching unit before the branching unit isconnected to the source device.1.2.1Source Device OperationWhen the Splitter is plugged to the MST DP Source device, the Source device is notified of a HotPlug event via the detection of a long (that is, longer than 2ms) HPD pulse. Topology Manager of the DP Source device will read certain DPCD locations of the Splitter to determine the newly connected device type so that it can update the topology map to its Stream Policy Maker.The DPCD locations to be read for topology discovery are DPCD_REV,DOWNSTREAMPORT_PRESENT and MSTM_CAP. The given DPCD locations are read todetermine what type of DP device was connected and whether the device is MST capable (and thus capable of handling message transactions using Sideband MSGs) as shown in the following diagram.With the logical topology used in this document, the immediate downstream device has an MSTBranching Unit. Once it is determined that the device has an MST Branching Unit, the TopologyManager of the MST Source device must use the LINK_ADDRESS Message transaction to discover the devices connected to the Branching Unit.Figure 1-5: Determine Whether LINK_ADDRESS Message Transaction Should be Used The MST DP Source device sets UP_REQ_EN bit and UPSTREAM_IS_SRC bit of the immediate downstream device to declare itself as an MST DP Source device before issuing theLINK_ADDRESS Message Transaction to the immediate downstream device. The MST DP Sourcedevice uses the information received from the LINK_ADDRESS Message transaction to determine whether other DP MST Branching units are connected. If other DPMST Branching units are discovered, the LINK_ADDRESS Message transaction is sent to each DP MST Branching unit to determine the device connected to it. This procedure continues until the Source device’s search goals are met (all sinks found, first sink found or some other goal).An example algorithm to find all connected sinks is given below.Procedure FindAccessibleDPDevices given RAD of MST DP Branch device Send LINK_ADDRESS Message to address of MST DP Branching UnitWait wait_time_out time period (4 sec.) or until LINK_ADDRESS Message reply if wait_time_out time period elapsed without LINK_ADDRESS Message reply exit procedure indicating failureendifif device GUID field is empty (zeros)Write a GUID into the deviceelseif device already in list of devices foundif duplicate GUID obtained by traversing a loopexit procedure indicating a loopelseThere are multiple paths to the same deviceexit procedureendifendifendifAdd device to list of devices foundfor each downstream port of the MST DP Branch deviceif MST Branching Unit connected to downstream portExecute FindAccessibleDPDevices with address of MST DP Branch device elseAdd device to list of stream sinks/SST DP devicesendifendforend procedureThe Message Transaction source device will wait for 4 seconds for a reply for all message transactions. This is the time period to wait for the entire message transaction reply to be received; in other words, the wait time period for the last Sideband MSG for the message transaction reply to be received by the message source device.Given two RADs for the same DP MST device (same GUID), the following procedure will determine whether the DP MST device is part of a loop or is accessible through multiple paths.Procedure IsDevicePartOfLoop given RAD1 and RAD2 to same DP MST device if RAD1 has fewer links than RAD2Set SmallerRAD to RAD1Set LargerRAD to RAD2elseSet SmallerRAD to RAD2Set LargerRAD to RAD1endifSet N to the number of links in SmallerRADif the first N links of SmallerRAD is the same as the N links of LargerRAD return trueendifreturn falseend procedureThe list of sinks and SST DP devices from the above procedure will contain the relative address for the two stream sinks in this examples topology. The LINK_ADDRESS Message Transaction request and reply for this example are shown below.Table 1-1: LINK_ADDRESS Message TransactionLINK_ADDRESS Message Transaction Request Field Name ValueZeroRequest_Identifier 0000 0001Table 1-2: LINK_ADDRESS Message Transaction Sideband MSG LINK_ADDRESS Message Transaction Sideband MSG Request Field Name ValueLink_Count_TotalLink_Count_RemainingNo RADBroadcast_MessagePath_MessageSideband_MSG_Body_Length Start_Of_Message_Transaction End_Of_Message_Transaction zeroMessage_Sequence_No Sideband_MSG_Header_CRC zeroRequest_IdentifierSideband_MSG_Data_CRC 0001 000000 0010 111011000 0001 1101 0101The following shows the above values grouped into bytes.10h 02h CBh 01h D5hThe following LINK_ADDRESS Message Transaction reply will be received for the physical topology consisting of a PC connected to a daisy chainable monitor with an attached SST DP Monitor.Table 1-3: LINK_ADDRESS Message Transaction ReplyLINK_ADDRESS Message Transaction Reply Field Name ValueReply_TypeRequest_IdentifierGlobal_Unique_Identifier (GUID) of the originating branch device zerosNumber_Of_PortsInput_Port[0]Peer_Device_Type[0]Port_Number[0]Messaging_Capability_Status[0] 0000 0001 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 0000 1000 0000 1001 0000 1010 0000 1011 0000 1100 0000 1101 0000 1110 0000 1111 0001 0000 0000 00111001 00001DisplayPort_Device_Plug_Status[0]zerosInput_Port[1]Peer_Device_Type[1]Port_Number[1]Messaging_Capability_Status[1]DisplayPort_Device_Plug_Status[1]Legacy_Device_Plug_Status[1]zerosDPCD_Revision[1]Peer_Global_Unique_Identifier[1]Number_SDP_Streams[1]Number_SDP_Stream_Sinks[1]Input_Port[2]Peer_Device_Type[2]Port_Number[2]Messaging_Capability_Status[2]DisplayPort_Device_Plug_Status[2]Legacy_Device_Plug_Status[2]zerosDPCD_Revision[2]Peer_Global_Unique_Identifier[2] (Same as branch unit since this is a logical port) Number_SDP_Streams[2]Number_SDP_Stream_Sinks[2] 100 0000 0011 000110 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000011 100010 0000 0001 0010 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 0000 1000 0000 1001 0000 1010 0000 1011 0000 1100 0000 1101 0000 1110 0000 1111 0001 0000 0000 0000The following shows the above values grouped into bytes. 01h 01h 02h 03h 04h 05h 06h 07h 08h 09h0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 03h 90h C0h31h 40h 12h 00h 00h 00h 00h 00h 00h 00h00h 00h 00h 00h 00h 00h 00h 00h 00h 00h38h 40h 12h 01h 02h 03h 04h 05h 06h 07h08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 00hSince the above LINK_ADDRESS Message Transaction reply is greater than 44-bytes (48 bytes minus the size of the Sideband Header and Sideband Body CRC, 3 + 41), the reply must be divided into multiple Sideband Messages. The LINK_ADDRESS Message Transaction reply is split into two Sideband Messages between the DPCD_Version[2] and GUID[2]. With this split, the first Sideband Message is 47-bytes, and the second Sideband message is 21-bytes. The split can be performed at any point as long as the resultant Sideband messages are less than or equal to 48-bytes. In this case the split of the Message Transaction reply should not result in more than two Sideband messages. Table 1-4: LINK_ADDRESS Message Transaction Reply First Sideband MSGLINK_ADDRESS Message Transaction Reply Field Name ValueLink_Count_TotalLink_Count_RemainingNo RADBroadcast_MessagePath_MessageSideband_MSG_Body_LengthStart_Of_Message_TransactionEnd_Of_Message_TransactionzeroMessage_Sequence_NoSideband_MSG_Header_CRCReply_TypeRequest_IdentifierGlobal_Unique_Identifier (GUID) of the originating branch device zerosNumber_Of_PortsInput_Port[0]Peer_Device_Type[0]Port_Number[0]Messaging_Capability_Status[0]DisplayPort_Device_Plug_Status[0]zerosInput_Port[1]Peer_Device_Type[1] 0001 000010 1100 11001000 0001 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 0000 1000 0000 1001 0000 1010 0000 1011 0000 1100 0000 1101 0000 1110 0000 1111 0001 0000 0000 00111001 00001100 0000 0011Port_Number[1]Messaging_Capability_Status[1] DisplayPort_Device_Plug_Status[1] Legacy_Device_Plug_Status[1] zerosDPCD_Revision[1]Peer_Global_Unique_Identifier[1] Number_SDP_Streams[1] Number_SDP_Stream_Sinks[1] Input_Port[2]Peer_Device_Type[2]Port_Number[2]Messaging_Capability_Status[2] DisplayPort_Device_Plug_Status[2] Legacy_Device_Plug_Status[2] zerosDPCD_Revision[2]Sideband_MSG_Data_CRC 000110 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000011 100010 0000 0001 0010 0010 1000The following shows the above values grouped into bytes.10h 2Ch 89h 01h 01h 02h 03h 04h 05h 06h07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h03h 90h C0h 31h 40h 12h 00h 00h 00h 00h00h 00h 00h 00h 00h 00h 00h 00h 00h 00h00h 00h 00h 38h 40h 12h 28hTable 1-5: LINK_ADDRESS Message Transaction Reply Second Sideband MSG LINK_ADDRESS Message Transaction Reply Field Name ValueLink_Count_TotalLink_Count_RemainingNo RADBroadcast_MessagePath_MessageSideband_MSG_Body_LengthStart_Of_Message_TransactionEnd_Of_Message_TransactionzeroMessage_Sequence_NoSideband_MSG_Header_CRCPeer_Global_Unique_Identifier[2] (Same as branch unit since 0001 000001 0010 011111 0000 0001this is a logical port) Number_SDP_Streams[2]Number_SDP_Stream_Sinks[2]Sideband_MSG_Data_CRC 0000 0010 0000 0011 0000 0100 0000 0101 0000 0110 0000 0111 0000 1000 0000 1001 0000 1010 0000 1011 0000 1100 0000 1101 0000 1110 0000 1111 0001 0000 0000 0000 0011 1011The following shows the above values grouped into bytes.10h 12h 4Fh 01h 02h 03h 04h 05h 06h 07h08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 00h3Bh1.2.2Splitter Branch Device OperationWhen a Splitter Branch device completes initializing and is ready to handle AUX request transactions from its upstream device, the Splitter Branch device will assert HPD on its upstream physical port.Part of the initialization sequence is setting the MSTM_CAP DPCD location MST_CAP bit to 1. The Splitter Branch device will begin monitoring its downstream ports for device connections. When the Splitter Branch device detects devices connected to its downstream ports, its Topology Assistant has the option of reading the device information from the connected DP device for later reporting when a LINK_ADDRESS Message Transaction is received from the Topology Manager in the Sourcedevice; alternately, it may do nothing, just waiting for the LINK_ADDRESS Message Transactionbefore reading the device information of the connected DP device. Table 2-93 of the VESADisplayPort Standard Ver.1.2 describes what information needs to be obtained to determine thevalues for the Peer_Device_Type and Messaging_Capability_Status fields of the LINK_ADDRESS Message Transaction reply.The Splitter Branch device will monitor the MSTM_CTRL DPCD location UP_REQ_EN bit. When the UP_REQ_EN bit is set to 1 by the upstream device(s), it will set the UP_REQ_EN bit of thedownstream devices to 1 as long as those devices are MST devices (indicated by the MST_CAP bit equal to 1).Note: When the UP_REQ_EN bit is cleared to (or remains) 0 on the upstream port by the upstream device, the Splitter Branch device will clear the UP_REQ_EN bit of the downstream devices to 0 and operate as an SST Branch device (either an output switch or a replicater) as described in Section 3.”.1.3 Reading and Writing DP Device Global Unique Identifier (GUID)In this example the SST DP Sink device Display 1 supports HBR2. Therefore, Display 1 needs to have DPCD revision number 1.2. Because it has DPCD revision number 1.2, Display 1 must have a GUID field. Assuming Display 1 doesn’t contain a USB device, the GUID field can be set to zero as power-on reset default value. If the GUID field is set to zero, the GUID field must be writable using Native AUX CH transactions. This example provides the Message transactions required to read andsubsequently write the GUID field assuming the GUID field is set to zero.1.3.1Source Device OperationFrom the LINK_ADDRESS Message Transaction reply received from the last branch device, the MST DP Source device knows the DPCD version number supported by the SST DP Sink devices.For Display 1 the DPCD revision number supported is 1.2 indicating it supports a GUID field. The MST DP Source device sends a REMOTE_DPCD_READ Message Transaction request to the last branch device to read the GUID field of Display 1. The Sideband MSG containing theREMOTE_DPCD_READ Message Transaction request is shown in the following table.Table 1-6: Sideband MSG for the GUID REMOTE_DPCD_READ Message TransactionRequestREMOTE_DPCD_READ Message Transaction Request Sideband MSG Field Name ValueLink_Count_TotalLink_Count_RemainingNo RADBroadcast_MessagePath_MessageSideband_MSG_Body_Length Start_Of_Message_Transaction End_Of_Message_Transaction zeroMessage_Sequence_No Sideband_MSG_Header_CRC zeroRequest_IdentifierPort_NumberDPCD_AddressNumber_Of_Bytes_To_Read Sideband_MSG_Data_CRC 0001 000000 0110 111100010 0000 0001 0000 0000 0000 0011 0000 0001 0000 1110 1010The following shows the above values grouped into bytes.10h 06h CCh 20h 10h 00h 30h 10h EAhThe GUID field read will be zero. The reply to the above Message transaction request is shown in the table below.Table 1-7: Sideband MSG for the GUID REMOTE_DPCD_READ Message Transaction Reply REMOTE_DPCD_READ Message Transaction Reply Sideband MSG Field Name ValueLink_Count_TotalLink_Count_RemainingNo RADBroadcast_MessagePath_MessageSideband_MSG_Body_Length Start_Of_Message_Transaction End_Of_Message_Transaction zeroMessage_Sequence_No Sideband_MSG_Header_CRC Reply_TypeRequest_IdentifierzerosPort_NumberNumber_Of_Bytes_Read Data_Read[0] GUIDData_Read[1] 0001 000001 0100 111001010 0000 0000 0001 0001 0000 0000 0000 0000 0000。
半夏白术天麻汤下调ApoE-/-小鼠TMAO代谢的作用研究李继军1,荣雅琪1,孟宪卿2,姜月华2摘要目的:通过靶向超高效液相色谱-电喷雾串联质谱法(UPLC-ESI-MS/MS)检测半夏白术天麻汤对载脂蛋白E基因敲除(ApoE-/-)小鼠血浆氧化三甲胺(TMAO)相关代谢物及TMAO代谢途径的影响,探讨半夏白术天麻汤改善动脉硬化的药理作用机制㊂方法:选取雄性ApoE-/-小鼠36只,高脂高胆固醇饮食12周后,随机分为半夏白术天麻汤组[17.8g/(kg㊃d)]㊁瑞舒伐他汀钙组[0.08 mg/(kg㊃d)]和ApoE-/-模型组,灌胃8周,以C57BL/6J小鼠作为C57正常对照组(12只)㊂UPLC-ESI-MS/MS定量检测小鼠血浆TMAO及相关代谢物水平,苏木精-伊红(HE)染色观察主动脉形态,免疫组化观察CD36㊁NOD样受体热蛋白结构域相关蛋白3 (NLRP3)的分布,酶联免疫吸附法(ELISA)测定血浆白细胞介素-1β(IL-1β)㊁白细胞介素-18(IL-18)含量㊂结果:半夏白术天麻汤可降低ApoE-/-小鼠血浆左旋肉碱㊁甜菜碱㊁肌酐㊁三甲胺㊁TMAO水平(P<0.05或P<0.01),改善血管形态㊁减少脂质空泡和胶原沉积在血管组织中,并减少CD36㊁NLRP3在主动脉的分布(P<0.01),降低血浆IL-1β㊁IL-18含量(P<0.01)㊂结论:半夏白术天麻汤可减轻ApoE-/-小鼠动脉粥样硬化,其作用与降低血浆TMAO相关代谢物及TMAO代谢途径相关㊂关键词动脉粥样硬化;半夏白术天麻汤;氧化三甲胺;载脂蛋白E基因敲除;实验研究d o i:10.12102/j.i s s n.1672-1349.2023.18.008Effect of Banxia Baizhu Tianma Decoction on Down-regulating TMAO Metabolism in ApoE-/-MiceLI Jijun,RONG Yaqi,MENG Xianqing,JIANG YuehuaJinan Hospital of Traditional Chinese Medicine,Jinan250012,Shandong,ChinaCorresponding Author JIANG Yuehua,E-mail:************************Abstract Objective:To detect the effect of Banxia Baizhu Tianma Decoction(BBTD)on Trimethylamine N-oxide(TMAO)related metabolites and TMAO metabolic pathway in ApoE-/-mice.Methods:A total of36male ApoE-/-mice were fed with a high-fat and high-cholesterol diet for12weeks,then randomly divided into three groups:BBTD group17.8g/(kg㊃d),rosuvastatin group0.08mg/(kg㊃d), and model group,administered orally for8weeks;C57BL/6J mice were used as the standard control group(n=12).UPLC-ESI-MS/MS was used to detect the levels of TMAO and related metabolites in ApoE-/-mice;hematoxylin-eosin(HE)staining was used to observe aorta morphology,the distribution of CD36,and NLRP3was observed by immunohistochemistry;enzyme-linked immunosorbent assay (ELISA)was used to measure the contents of plasma interleukin-1β(IL-1β)and interleukin-18(IL-18).Results:BBTD could significantly reduce the plasma levels of L-carnitine,betaine,creatinine,TMA,and TMAO in ApoE-/-mice,improve the aortic morphology,decrease the density of CD36and NLRP3in aorta and decrease plasma IL-1βand IL-18levels(P<0.01).Conclusion:BBTD could effectively alleviated atherosclerosis in ApoE-/-mice,and the efficiency is related to the decrease of TMAO-related metabolites and TMAO metabolic pathway.Keywords atherosclerosis;Banxia Baizhu Tianma Decoction;trimethylamine oxide;ApoE-/-;experimental study血管炎性反应和脂质过氧化沉积导致的血管狭窄是动脉粥样硬化的主要病理改变㊂动脉粥样硬化在中医理论体系中无对应病名,根据其主要病理变化,多以眩晕㊁胸痹㊁痰饮为主进行辨证和对症治疗,总体属于本虚标实,以肝肾亏虚为本,以痰瘀阻滞为标㊂脾主运化,若饮食不节,劳逸失度,脾失健运,日久则脾虚湿盛,痰湿蕴结,阻于脉络,因此,治当燥湿化痰㊁平肝息风㊂氧化三甲胺(TMAO),即三甲胺-N-氧化物(trimethylamine N-oxide),来源于肠道菌群对肉㊁蛋㊁基金项目国家自然科学基金面上项目(No.82174177);山东省医药卫生科技发展计划项目(No.2017WSJ34)作者单位 1.济南市中医医院(济南250012);2山东中医药大学附属医院(济南250012)通讯作者姜月华,E-mail:************************引用信息李继军,荣雅琪,孟宪卿,等.半夏白术天麻汤下调ApoE-/-小鼠TMAO代谢的作用研究[J].中西医结合心脑血管病杂志,2023,21 (18):3336-3341.奶等富含胆碱类食物的代谢,已证实血液循环TMAO 水平与动脉粥样硬化风险呈正相关[1]㊂TMAO通过诱导脂肪酸转运体CD36表达上调,引起胆固醇过量沉积和泡沫细胞形成[2],且TMAO可激活NOD样受体热蛋白结构域相关蛋白3(NLRP3)炎性小体,导致内皮通透性增高和促炎性细胞因子白细胞介素-1β(IL-1β)㊁白细胞介素-18(IL-18)等的释放,加重血管炎症反应[3],因此,TMAO近年来被视为是动脉粥样硬化的促进剂[4]㊂半夏白术天麻汤(BBTD)是治疗痰湿壅盛㊁风痰上扰的经典名方,功效化痰息风㊁健脾祛湿,由半夏㊁天麻㊁茯苓㊁橘红㊁白术㊁甘草组成,入选2018年国家中医药管理局‘古代经典名方目录(第一批)“㊂半夏白术天麻汤临床多用于肥胖性高血压㊁颈源性眩晕㊁急性缺血性脑卒中㊁梅尼埃病等的治疗㊂有研究报道半夏白术天麻汤通过降血脂㊁下调基质金属蛋白酶-9(MMP-9)表达,改善载脂蛋白E基因敲除(ApoE-/-)小鼠动脉粥样硬化[5]㊂本课题组既往研究证实,半夏白术天麻汤以剂量依赖性方式减少血管内皮细胞凋亡㊁改善内皮功能[6],改变了痰湿壅盛证小鼠的代谢模式,降低多种脂质循环水平,减少主动脉根部脂质沉积和斑块形成[7],且可下调肥胖性高血压大鼠肾脏CD36的表达[8]㊂但半夏白术天麻汤参与动脉粥样硬化的治疗及其机制仍有待研究,深入解读半夏白术天麻汤的血管保护机制具有重要的研究价值和临床意义㊂本研究通过检测半夏白术天麻汤干预后ApoE-/-小鼠血浆TMAO及相关代谢物水平的变化,并同步观察主动脉CD36㊁NLRP3的表达及NLRP3下游IL-1β㊁IL-18表达,探讨半夏白术天麻汤改善动脉硬化的药理作用机制㊂1材料与方法1.1实验动物及模型诱导无特定病原体(SPF)级6周龄雄性ApoE-/-小鼠36只,体质量(22ʃ2)g,购自北京维通利华实验动物技术有限公司,动物许可证编号:SCXK(京)2016-0006㊂动物房设置12hʒ12h明暗周期,小鼠自由摄食㊁饮水,环境温度20~22ħ,相对湿度60%㊂以标准饲料适应性喂养5d后,高脂高胆固醇饲料喂养12周诱导动脉粥样硬化模型,然后分为半夏白术天麻汤组[17.8g/(kg㊃d)]㊁瑞舒伐他汀钙组[0.08mg/(kg㊃d)]和ApoE-/-模型组,每组12只,并以相应药物灌胃8周,灌胃期间仍继续高脂高胆固醇饮食㊂另以同周龄标准饲料喂养的12只C57BL/6J小鼠作为C57正常对照组㊂高脂高胆固醇饲料配方:83.75%基础饲料,21%脂肪, 0.15%胆固醇[3],标准饲料和高脂高胆固醇饲料均购自北京科澳协力饲料有限公司㊂1.2药物半夏白术天麻汤组方:半夏9g,天麻6g,白术18g,橘红6g,茯苓6g,甘草3g,生姜5g,大枣两枚㊂购自山东中医药大学附属医院中药房,水煎2次,2次水煎液混合后浓缩至生药1g㊂1.3实验仪器及试剂质谱系统为美国AB Sciex公司的4000Qtrap质谱检测系统,配有电喷雾(ESI)离子源和Analyst1.6.2工作站;超高效液相色谱仪为Waters UPLC HSS T3 (100mmˑ2.1mm,1.8μm)液相色谱柱,Waters公司;Analyst软件(版本号:1.6.2),美国AB Sciex公司;酶标仪Labsystems Multiskan MS352,芬兰赛默飞公司;洗板机Labsystems AC8,芬兰热电公司;TYXH-I 漩涡振荡器,上海汗诺仪器有限公司;TGL-16MS台式高速冷冻离心机,上海卢湘仪离心机仪器有限公司㊂兔抗小鼠CD36多克隆抗体(18836-1-AP)㊁兔抗小鼠NLRP3多克隆抗体(19771-1-AP),武汉三鹰公司;山羊抗兔多克隆抗体(ZB-2301),北京中衫金桥公司;链霉亲和素-生物素(SABC)免疫组化试剂盒(SP-0023),北京博奥森公司;3,3'二氨基苯胺(DAB)显色试剂盒(ZLI-9031),北京中衫公司;小鼠IL-1β酶联免疫吸附法(ELISA)试剂盒(210304KE10)㊁IL-18ELISA试剂盒(210304KE14),江苏晶美生物科技有限公司㊂水合氯醛,北京索莱宝科技有限公司㊂甲醇㊁甲酸㊁水㊁乙腈均购自CNW公司,L-2-氯苯丙氨酸购自上海恒创生物科技有限公司,LysoPC17.0购自美国Avanti公司㊂所有化学药品和溶剂均为分析纯或色谱级㊂1.4样本采集每天观察记录小鼠一般情况㊂喂养20周后,10%水合氯醛(350mg/kg)腹腔注射麻醉小鼠,下腔静脉取血,EDTA抗凝,3500r/min离心10min分离血浆, ELISA检测IL-1β㊁IL-18含量;并超高效液相色谱-电喷雾离子化串联质谱联用(UPLC-ESI-MS/MS)靶向检测血浆左旋肉碱(L-CA)㊁甜菜碱(Bet)㊁胆碱(CHO)㊁肌酐(Cre)㊁三甲胺(TMA)㊁TMAO的水平㊂冰上分离胸主动脉,10%中性甲醛固定,石蜡包埋,切片厚度4μm,苏木素-伊红(HE)染色观察组织学改变,马松染色(Masson)观察细胞外基质中的胶原沉积从而评价组织纤维化程度;并免疫组化观察CD36㊁NLRP3的分布㊂1.5标准液的配制与血浆样品前处理超纯水分别溶解左旋肉碱㊁甜菜碱㊁胆碱㊁肌酐㊁三甲胺㊁TMAO等各标准品至1mg/mL作为储备液,依次稀释至1㊁2㊁5㊁10㊁20㊁50㊁100㊁200㊁500ng/mL㊂80μL血浆加入240μL甲醇-乙腈=2ʒ1(V/V)[含0.01mol/L2,6-二叔丁基对甲酚(BHT)]涡旋混匀,超声振荡5min,-20ħ静置30min,10000r/min离心15min,取上清240μL,挥干,加入200μL甲醇-水=2ʒ98(V/V)涡旋混匀,超声1min,加入200μL氯仿4ħ静置10min, 10000r/min离心5min,取上清160μL进样㊂1.6UPLC-ESI-MS/MS靶向检测TMAO系列代谢物的条件与数据分析采用电喷雾离子源,正离子扫描,多反应检测(MRM)模式进行分析,优化正离子模式优化去簇电压(DP)㊁碰撞电压(CE)㊁碰撞室射出电压(CXP)等质谱参数(见表1),质谱分析条件:气帘气35;离子喷雾电压5500V;温度550ħ;离子源Gas1ʒ35;Gas2ʒ30㊂色谱流动相A(0.1%甲酸-水溶液),流动相B(乙腈),流速0.3mL/min;梯度洗脱程序见表2㊂利用Analyst 软件,采用默认参数对各MRM transition进行自动识别和积分,以质谱峰面积为纵坐标㊁物质浓度为横坐标绘制线性回归标准曲线㊂将样品分析物的质谱峰面积代入线性方程中,计算浓度㊂表1质谱参数名称模式前体离子(m/z)产物离子(m/z)DP(V)CE(V)CXP(V) TMAO+76.258.258.124.89.359.353.215.7 6.3三甲胺+60.144.195.022.98.045.1103.018.4 6.9胆碱+103.960.184.223.5 5.358.286.140.29.0甜菜碱+117.958.180.041.3 5.159.280.024.5 6.7肌酐+114.172.178.323.0 6.086.381.717.0 5.0左旋肉碱+162.0103.170.519.87.785.175.932.2 6.060.269.827.711.9表2梯度洗脱程序时间流动相A(%)流动相B(%) 010002.0min10002.5min10903.5min10904.0min10005.0min10001.7免疫组化观察主动脉CD36㊁NLRP3的表达与分布小鼠胸主动脉切片脱蜡至水,枸橼酸盐缓冲液微波炉高火加热进行抗原修复㊂然后滴加3%H2O2室温孵育10min,山羊血清室温封闭30min,分别滴加兔抗小鼠CD36㊁NLRP3一抗(1ʒ200稀释)4ħ孵育过夜,磷酸盐缓冲液(PBS)代替一抗作为阴性对照,次日依次滴加羊抗兔IgG二抗㊁SABC,DAB显色,苏木素复染3min,显微镜下观察棕黄色颗粒沉积作为阳性㊂随机选取5个视野,以Image J软件进行半定量分析㊂1.8ELISA检测血浆IL-1β㊁IL-18含量依据ELISA试剂盒说明书操作,检测血浆IL-1β㊁IL-18含量㊂1.9统计学处理采用SPSS22.0软件进行统计学分析,多组间比较采用单因素方差分析(One-Way ANOVA),两组间比较采用Dunnett t检验,统计图采用Graphpad Prism8绘制,定量资料符合正态分布以均数ʃ标准差(xʃs)表示,以P<0.05为差异有统计学意义㊂2结果2.1主动脉形态各组小鼠胸主动脉HE染色显示,C57正常对照组主动脉细胞排列有序,管壁光滑,内-中膜厚度适中; ApoE-/-模型组主动脉平滑肌层细胞排列紊乱,细胞核浓染,内-中膜间可见脂质沉积导致的空泡和组织异常,细胞外基质中可见大量胶原沉积;应用半夏白术天麻汤和瑞舒伐他汀钙后,脂质空泡显著减少,胶原沉积减轻,血管结构㊁形态有明显的改善㊂详见图1㊂图1小鼠胸主动脉HE及Masson染色切片图2.2血浆TMAO及相关代谢物水平的靶向UPLC-ESI-MS/MS检测ApoE-/-模型组血浆左旋肉碱㊁甜菜碱㊁肌酐㊁三甲胺㊁TMAO水平高于C57正常对照组(P<0.05或P< 0.01);半夏白术天麻汤和瑞舒伐他汀钙干预后,均能降低左旋肉碱㊁甜菜碱㊁肌酐㊁三甲胺㊁TMAO水平,与ApoE-/-模型组比较差异均有统计学意义(P<0.05或P<0.01);但半夏白术天麻汤组血浆胆碱水平高于ApoE-/-模型组及瑞舒伐他汀钙组(P<0.01)㊂详见图2㊁表3㊂图2各组UPLC-ESI-MS/MS血浆TMAO及相关代谢物水平比较(与C57正常对照组比较,*P<0.05,**P<0.01;与ApoE-/-模型组比较,#P<0.05,##P<0.01;与瑞舒伐他汀钙组比较,әP<0.01)表3各组血浆TMAO及相关代谢物水平比较(xʃs)单位:ng/mL 组别只数左旋肉碱甜菜碱胆碱肌酐三甲胺TMAO 半夏白术天麻汤组12258.87ʃ62.16③582.00ʃ155.67④1106.58ʃ199.94④⑤35.86ʃ7.46④10.28ʃ1.46③ 1.37ʃ0.62④瑞舒伐他汀钙组12241.05ʃ74.99④534.54ʃ148.73④793.77ʃ137.4239.14ʃ10.30④9.98ʃ1.15③ 1.20ʃ0.37④ApoE-/-模型组12326.92ʃ62.65②728.42ʃ166.41②816.08ʃ155.3654.71ʃ21.56②11.96ʃ1.89① 2.46ʃ1.32②C57正常对照组12133.77ʃ80.43407.17ʃ125.39885.58ʃ165.0827.46ʃ9.3810.25ʃ0.990.82ʃ0.33注:ApoE-/-模型组与C57正常对照组比较,①P<0.05,②P<0.01;与ApoE模型组比较,③P<0.05,④P<0.01;半夏白术天麻汤组与瑞舒伐他汀钙组比较,⑤P<0.01㊂2.3主动脉CD36㊁NLRP3的分布ApoE-/-模型组主动脉的CD36㊁NLRP3分布多于C57正常对照组主动脉(P<0.01);与ApoE模型组比较,半夏白术天麻汤组和瑞舒伐他汀钙组主动脉的CD36㊁NLRP3分布降低(P<0.01),半夏白术天麻汤组和瑞舒伐他汀钙组比较差异无统计学意义(P> 0.05)㊂详见图3㊁图4㊂图3免疫组化观察小鼠主动脉CD36㊁NLRP3的切片图图4免疫组化观察小鼠主动脉CD36㊁NLRP3分布柱状图(与C57正常对照组比较,*P<0.01;与ApoE-/-模型组比较,#P<0.01)2.4血浆IL-1β㊁IL-18含量ApoE-/-模型组血浆IL-1β㊁IL-18高于C57正常对照组(P<0.01);与ApoE-/-模型组比较,半夏白术天麻汤组和瑞舒伐他汀钙组血浆IL-1β㊁IL-18浓度降低(P<0.01),半夏白术天麻汤组和瑞舒伐他汀钙组比较差异无统计学意义(P>0.05)㊂详见表4㊂表4各组血浆IL-1β㊁IL-18含量比较(xʃs)单位:ng/L 组别只数IL-1βIL-18半夏白术天麻汤组1297.03ʃ4.68②81.04ʃ9.73②瑞舒伐他汀钙组12106.45ʃ11.09②106.39ʃ14.51②ApoE-/-模型组12134.29ʃ9.18①154.76ʃ11.85①C57正常对照组1283.58ʃ5.7865.41ʃ5.16注:ApoE-/-模型组与C57正常对照组比较,①P<0.01;与ApoE-/-模型组比较,②P<0.01㊂3讨论半夏白术天麻汤是专于化痰湿㊁息内风的经典方药[9],源于李东垣的‘脾胃论“,经清代名医程国彭加减形成现在的组方形式㊂据纳入112458例眩晕病人㊁随访15年的真实世界研究发现,半夏白术天麻汤不仅缓解了眩晕的临床症状,还有效降低了眩晕病人的卒中风险,其药效优于苓桂术甘汤和天麻钩藤饮[10]㊂据纳入1424例高血压病人的Meta分析证实,半夏白术天麻汤可有效降低收缩压,半夏白术天麻汤联合西药的降压药效明显优于单独西药治疗,使病人得到更大获益[11]㊂另据纳入2796例椎-基底动脉供血不足病人的Meta分析,半夏白术天麻汤提高了左椎动脉㊁右椎动脉㊁基底动脉的血流速度,减少了短暂性脑缺血(TIA)发作次数[12]㊂虽以上研究均未对其药理机制进行阐释,但通过分析半夏白术天麻汤的临床适应证,提示半夏白术天麻汤可改善动脉粥样硬化这一共同致病因素,从而实现其治疗高血压㊁眩晕㊁TIA,降低脑卒中风险的药效,因此,对半夏白术天麻汤药理机制的探索具有重要的临床意义㊂本课题组既往研究证实,半夏白术天麻汤可有效改善氧化型低密度脂蛋白(ox-LDL)诱导的血管内皮功能紊乱[6],降低多种循环脂质水平,并减少脂质沉积于大动脉[7]㊂半夏白术天麻汤健脾祛湿,尤擅治疗代谢相关的心脑血管疾病,但其调节代谢的机制和靶标仍亟待深入研究㊂TMAO是独立于传统心血管危险因素及心肾功能的新型代谢小分子指标,TMAO水平不仅与动脉粥样硬化风险呈正相关,而且与脑钠肽水平也具有相关性,高TMAO水平提示心因性死亡风险增加[13]㊂因肉碱㊁甜菜碱㊁胆碱均是TMAO的前体物质,在肠道菌群作用下转化为三甲胺,继而在肝脏黄素单加氧酶(FMOs)的作用下可转化为TMAO,血浆中的胆碱㊁甜菜碱㊁左旋肉碱升高预示着不良心血管事件的风险增加[14]㊂本研究中,半夏白术天麻汤降低了ApoE-/-小鼠血浆左旋肉碱㊁甜菜碱㊁肌酐㊁三甲胺㊁TMAO水平,显示出强大的改善动脉粥样硬化相关代谢物的作用㊂令人意外的结果是,半夏白术天麻汤组血浆胆碱水平高于其他3组,胆碱作为磷脂的组分,是生物膜的重要组成成分,也是迷走神经递质乙酰胆碱的前体分子[15],提示半夏白术天麻汤以更为复杂的方式调节胆碱水平,参与心血管疾病过程㊂TMAO是CD36和NLRP3的内源性配体[16]㊂巨噬细胞通过CD36介导的内吞途径,促进可溶性ox-LDL的摄取,导致溶酶体破裂和NLRP3炎症小体的活化[17]㊂NLRP3炎症小体广泛存在于单核-巨噬细胞中,TMAO激活NLRP3炎症小体后,导致单核-巨噬细胞集聚活化,促进IL-1β㊁IL-18的成熟和释放,在非感染情况下引发和维持慢性炎症反应,参与心血管炎症过程及动脉粥样硬化的发生发展,增加心脑血管事件风险㊂在本研究中,应用半夏白术天麻汤后,ApoE-/-小鼠在主动脉CD36㊁NLRP3分布减少的同时,IL-1β㊁IL-18水平也随之降低,提示机体炎症水平的下调㊂本研究证实,半夏白术天麻汤调节TMAO代谢途径,减少胆固醇蓄积㊁泡沫细胞形成和血管炎症,从而改善ApoE-/-小鼠动脉粥样硬化㊂已知肠道菌群是肉碱㊁甜菜碱㊁胆碱转化为TMAO的关键因素,提示半夏白术天麻汤与肠道菌群的关系也是今后的研究方向㊂参考文献:[1]LIU Y,DAI M.Trimethylamine N-oxide generated by the gutmicrobiota is associated with vascular inflammation:new insightsinto atherosclerosis[J].Mediators Inflamm,2020,2020:4634172. [2]WANG Z N,KLIPFELL E,BENNETT B J,et al.Gut florametabolism of phosphatidylcholine promotes cardiovasculardisease[J].Nature,2011,472(7341):57-63.[3]BOINI K M,HUSSAIN T,LI P L,et al.Trimethylamine-N-oxideinstigates NLRP3inflammasome activation and endothelialdysfunction[J].Cellular Physiology and Biochemistry,2017,44(1):152-162.[4]TANG W H,WANG Z,KENNEDY D J,et al.Gut microbiota-dependent trimethylamine N-oxide(TMAO)pathway contributesto both development of renal insufficiency and mortality risk inchronic kidney disease[J].Circ Res,2015,116(3):448-455. [5]王红松,单晓晓,赵国栋,等.半夏白术天麻汤对ApoE-/-小鼠动脉粥样硬化的干预作用及其机制[J].中国实验方剂学杂志,2021,27(7):9-15.[6]姜月华,张鹏,李兆钰,等.基于microRNA探讨半夏白术天麻汤内皮保护机制[J].中华中医药杂志,2021,36(4):1995-1999. [7]JIANG Y H,ZHANG P,TAO Y N,et al.Banxia Baizhu TianmaDecoction attenuates obesity-related hypertension[J].Journal ofEthnopharmacology,2021,266:113453.[8]王震,姜月华,吴赛,等.半夏白术天麻汤改善肥胖性高血压大鼠肾脏损害的机制研究[J].中华中医药学刊,2016,34(9):2130-2133.[9]薛昊,陈仁寿.经典名方半夏白术天麻汤源流与应用[J].中国实验方剂学杂志,2020,26(15):14-19.[10]TSAI T Y,LI C Y,LIVNEH H,et al.Decreased risk of stroke inpatients receiving traditional Chinese medicine for vertigo:apopulation-based cohort study[J].J Ethnopharmacol,2016,184:138-143.[11]XIONG X J,YANG X C,LIU W,et al.Banxia Baizhu TianmaDecoction for essential hypertension:a systematic review ofrandomized controlled trials[J].Evidence Based Complementaryand Alternative Medicine,2012,2012:271462.[12]GUO Z,SU Z,WANG Z,et al.The effect of Chinese herbalmedicine Banxia Baizhu Tianma Decoction for the treatment ofvertebrobasilar insufficiency vertigo:a systematic review andmeta-analysis of randomized controlled trials[J].ComplementTher Med,2017,31:27-38.[13]ORGAN C L,OTSUKA H,BHUSHAN S,et al.Choline diet and itsgut microbe-derived metabolite,trimethylamine N-oxide,exacerbate pressure overload-induced heart failure[J].Circulation Heart Failure,2016,9(1):e002314.[14]KOETH R A,WANG Z N,LEVISON B S,et al.Intestinal microbiotametabolism of L-carnitine,a nutrient in red meat,promotesatherosclerosis[J].Nature Medicine,2013,19(5):576-585. [15]LIU L,ZHAO M,YU X,ZANG W.Pharmacological modulation ofvagal nerve activity in cardiovascular diseases[J].Neurosci Bull,2019,35(1):156-166.[16]GENG J,YANG C,WANG B,et al.Trimethylamine N-oxidepromotes atherosclerosis via CD36-dependent MAPK/JNKpathway[J].Biomed Pharmacother,2018,97:941-947. [17]SHEEDY F J,GREBE A,RAYNER K J,et al.CD36coordinatesNLRP3inflammasome activation by facilitating intracellularnucleation of soluble ligands into particulate ligands in sterileinflammation[J].Nat Immunol,2013,14(8):812-820.(收稿日期:2022-03-24)(本文编辑王雅洁)。
■Operates from Single +5V Power Supply ■Meets All RS-232D and ITU V.28Specifications■Operates with 0.1µF to 10µF Capacitors ■High Data Rate – 120Kbps Under Load ■Low Power Shutdown ≤1µA (Typical)■3-State TTL/CMOS Receiver Outputs ■Low Power CMOS – 3mA Operation ■Improved ESD Specifications:±15kV Human Body Model±15kV IEC1000-4-2 Air Discharge ±8kV IEC1000-4-2 Contact DischargeNumber of RS232No. of Receivers No. of ExternalModel Drivers Receivers Active in Shutdown 0.1µF CapacitorsShutdown WakeUp TTL Tri–StateSP202E 220 4No No No SP232E 220 4No No No SP233E 220 0No No No SP310E 220 4Yes No Yes SP312E222 4Yes Yes YesDESCRIPTIONSELECTION TABLEThe SP202E/232E/233E/310E/312E devices are a family of line driver and receiver pairs that meet the specifications of RS-232 and V.28 serial protocols with enhanced ESD performance.The ESD tolerance has been improved on these devices to over ±15KV for both Human Body Model and IEC1000-4-2 Air Discharge Method. These devices are pin-to-pin compatible withSipex's SP232A/233A/310A/312A devices as well as popular industry standards. As with the initial versions, the SP202E/232E/233E/310E/312E devices feature at least 120Kbps data rate under load, 0.1µF charge pump capacitors, and overall ruggedness for commercial applications.This family also features Sipex's BiCMOS design allowing low power operation without sacrificing performance. The series is available in plastic DIP and SOIC packages operating over the commercial and industrial temperature ranges.CC 1OUT 1IN 1OUT 1IN 2IN 2OUTC 1+V+C 1-C 2+C 2-V-T 2OUT R 2INNow Available in Lead Free PackagingThis is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.V cc .................................................................................................................................................................+6V V +....................................................................................................................(Vcc-0.3V) to +11.0V V -............................................................................................................................................................-11.0V Input VoltagesT IN .........................................................................................................................-0.3 to (Vcc +0.3V)R IN ............................................................................................................................................................±15V Output VoltagesT OUT ....................................................................................................(V+, +0.3V) to (V-, -0.3V)R OUT ................................................................................................................-0.3V to (Vcc +0.3V)Short Circuit DurationT OUT .........................................................................................................................................ContinuousV CC =+5V ±10%; 0.1µF charge pump capacitors; T MIN to T MAX unless otherwise noted.ELECTRICAL CHARACTERISTICSPlastic DIP ..........................................................................375mW (derate 7mW/°C above +70°C)Small Outline ......................................................................375mW (derate 7mW/°C above +70°C)ABSOLUTE MAXIMUM RATINGSPERFORMANCE CURVES-55-400257085125Temperature (°C)051015202530V CC = 6VV CC = 5VV CC = 4VV CC = 3VI C C (m A )05101520Load Current (mA)681012V + (V o l t s )24V CC = 5V V CC = 4VV CC = 6V253035402468101214Load Current (mA)V – V o l t a g e (V o l t s )-3-4-5-6-7-8-9-10-11V CC = 6VV CC = 5VV CC = 4V2OUT 2IN 2OUT 2-2+1–1+2+2–T 2IN T 1IN R 1OUT R 1IN T 1OUT GND V CC V+GNDV–CC 1OUT 1IN 1OUT 1IN 2IN 2OUTC 1+V+C 1-C 2+C 2-V-T 2OUT R 2INT CC 1OUT 1IN 1OUT 1IN 2IN 2OUTNC *C 1+V+C 1-C 2+C 2-V-T 2OUT R 2INCC 1OUT 1IN 1OUT 1IN 2IN 2OUTC 1+V+C 1-C 2+C 2-V-T 2OUT R 2IN* N.C. for SP310E_A, EN for SP312E_APINOUTS4.54.755.0 5.25 5.5V CC (Volts)5.06.57.07.58.08.59.0Load current = 0mA T A = 25°CV O H (V o l t s )5.56.0FEATURES…The SP202E/232E/233E/310E/312E devices are a family of line driver and receiver pairs that meet the specifications of RS-232 and V.28 serial protocols with enhanced ESD perfor-mance. The ESD tolerance has been improved on these devices to over ±15KV for both Human Body Model and IEC1000-4-2 Air Discharge Method. These devices are pin-to-pin compat-ible with Sipex's232A/233A/310A/312A devices as well as popular industry standards. As with the initial versions, the SP202E/232E/ 233E/310E/312E devices feature10V/µs slew rate, 120Kbps data rate under load, 0.1µF charge pump capacitors, overall ruggedness for commercial applications, and increased drive current for longer and more flexible cable configurations. This family also features Sipex's BiCMOS design allowing low power operation without sacrificing performance.The SP202E/232E/233E/310E/312E devices have internal charge pump voltage converters which allow them to operate from a single +5V supply. The charge pumps will operate with polarized or non-polarized capacitors ranging from 0.1 to 10 µF and will generate the ±6V needed to generate the RS-232 output levels. Both meet all EIA RS-232 and ITU V.28 specifications.The SP310E provides identical features as the SP232E with a single control line which simultaneously shuts down the internal DC/DC converter and puts all transmitter and receiver outputs into a high impedance state. The SP312E is identical to the SP310E with separate tri-state and shutdown control lines.THEORY OF OPERATIONThe SP232E,SP233E,SP310E and SP312E devices are made up of three basic circuit blocks –1) a driver/transmitter, 2) a receiver and 3) a charge pump. Each block is described below.Driver/TransmitterThe drivers are inverting transmitters, which ac-cept TTL or CMOS inputs and output the RS-232 signals with an inverted sense relative to the input logic levels. Typically the RS-232output voltage swing is ±6V. Even under worst case loading conditions of 3kOhms and 2500pF, the output is guaranteed to be ±5V, which is consistent with the RS-232 standard specifications. The transmitter outputs are protected against infinite short-circuits to ground without degradation in reliability.Figure 1. Typical Circuit using the SP202E or SP232E.The instantaneous slew rate of the transmitteroutput is internally limited to a maximum of 30V/µs in order to meet the standards [EIA RS-232-D 2.1.7, Paragraph (5)]. However, the transition re-gion slew rate of these enhanced products is typi-cally 10V/µs. The smooth transition of the loaded output from V OL to V OH clearly meets the mono-tonicity requirements of the standard [EIA RS-232-D 2.1.7, Paragraphs (1) & (2)].ReceiversThe receivers convert RS-232 input signals to inverted TTL signals. Since the input is usually from a transmission line, where long cable lengthsand system interference can degrade the signal, the inputs have a typical hysteresis margin of 500mV.This ensures that the receiver is virtually immune to noisy transmission lines.The input thresholds are 0.8V minimum and 2.4V maximum, again well within the ±3V RS-232requirements. The receiver inputs are also pro-tected against voltages up to ±15V. Should an input be left unconnected, a 5KOhm pulldown resistor to ground will commit the output of the receiver to a high state.Figure 2. Typical Circuits using the SP233ECP and SP233ECTFigure 3. Typical Circuits using the SP310E and SP312EFigure 4. Charge Pump — Phase 1Figure 5. Charge Pump — Phase 2In actual system applications, it is quite possible for signals to be applied to the receiver inputs before power is applied to the receiver circuitry.This occurs, for example, when a PC user attempts to print, only to realize the printer wasn’t turned on.In this case an RS-232 signal from the PC will appear on the receiver input at the printer. When the printer power is turned on, the receiver will operate normally. All of these enhanced devices are fully protected.Charge PumpThe charge pump is a Sipex –patented design (5,306,954) and uses a unique approach com-pared to older less–efficient designs. The charge pump still requires four external capacitors, but uses a four–phase voltage shifting technique to attain symmetrical power supplies. There is a free–running oscillator that controls the four phases of the voltage shifting. A description of each phase follows.Phase 1— V SS charge storage —During this phase of the clock cycle, the positive side of capacitors C 1 and C 2 are initially charged to +5V. C l + is then switched to ground and the charge in C 1– is transferred to C 2–. Since C 2+ is connected to +5V, the voltage potential across capacitor C 2 is now 10V.Phase 2— V SS transfer — Phase two of the clock con-nects the negative terminal of C 2 to the V SS storage capacitor and the positive terminal of C 2to ground, and transfers the generated –l0V to C 3. Simultaneously, the positive side of capaci-tor C 1 is switched to +5V and the negative side is connected to ground.Phase 3— V DD charge storage — The third phase of the clock is identical to the first phase — the charge transferred in C 1 produces –5V in the negative terminal of C 1, which is applied to the negative side of capacitor C 2. Since C 2+ is at +5V, the voltage potential across C 2 is l0V.Phase 4— V DD transfer — The fourth phase of the clock connects the negative terminal of C 2 to ground,and transfers the generated l0V across C 2 to C 4,the V DD storage capacitor. Again, simultaneously with this, the positive side of capacitor C 1 is switched to +5V and the negative side is con-nected to ground, and the cycle begins again.Since both V + and V – are separately generated from V CC ; in a no–load condition V + and V – willFigure 6. Charge Pump Waveforms+10Va) C 2+GND GNDb) C 2––10VFigure 7. Charge Pump — Phase 3Figure 8. Charge Pump — Phase 4be symmetrical. Older charge pump approaches that generate V – from V + will show a decrease in the magnitude of V – compared to V + due to the inherent inefficiencies in the design.The clock rate for the charge pump typically operates at 15kHz. The external capacitors can be as low as 0.1µF with a 16V breakdown voltage rating.Shutdown (SD) and Enable (EN) for the SP310E and SP312EBoth the SP310E and SP312E have a shutdown/standby mode to conserve power in battery-pow-ered systems. To activate the shutdown mode,which stops the operation of the charge pump, a logic “0” is applied to the appropriate control line.For the SP310E , this control line is ON/OFF (pin 18). Activating the shutdown mode also puts theSP310E transmitter and receiver outputs in a high impedance condition (tri-stated). The shutdown mode is controlled on the SP312E by a logic “0”on the SHUTDOWN control line (pin 18); this also puts the transmitter outputs in a tri–state mode. The receiver outputs can be tri–stated separately during normal operation or shutdown by a logic “1” on the ENABLE line (pin 1).Wake–Up Feature for the SP312EThe SP312E has a wake–up feature that keeps all the receivers in an enabled state when the device is in the shutdown mode. Table 1 defines the truth table for the wake–up function.With only the receivers activated, the SP312E typically draws less than 5µA supply current. In the case of a modem interfaced to a computer in power down mode, the Ring Indicator (RI) signal from the modem would be used to "wake up" the computer, allowing it to accept data transmission.After the ring indicator signal has propagated through the SP312E receiver, it can be used to trigger the power management circuitry of the computer to power up the microprocessor, and bring the SD pin of the SP312E to a logic high, taking it out of the shutdown mode. The receiver propagation delay is typically 1µs. The enable time for V+ and V– is typically 2ms. After V+ and V– have settled to their final values, a signal can be sent back to the modem on the data terminal ready (DTR) pin signifying that the computer is ready to accept and transmit data.Pin Strapping for the SP233ECTThe SP233E packaged in the 20–pin SOIC pack-age (SP233ECT) has a slightly different pinout than the SP233E in other package configurations. To operate properly, the following pairs of pins must be externally wired together:the two V– pins (pins 10 and 17)the two C2+ pins (pins 12 and 15)the two C2– pins (pins 11 and 16)All other connections, features, functions and performance are identical to the SP233E as specified elsewhere in this data sheet.ESD TOLERANCEThe SP202E/232E/233E/310E/312E devices incorporates ruggedized ESD cells on all driver output and receiver input pins. The ESD struc-ture is improved over our previous family for more rugged applications and environments sen-sitive to electro-static discharges and associated transients. The improved ESD tolerance is at least ±15KV without damage nor latch-up. There are different methods of ESD testing applied:a) MIL-STD-883, Method 3015.7b) IEC1000-4-2 Air-Dischargec) IEC1000-4-2 Direct ContactThe Human Body Model has been the generally accepted ESD testing method for semiconductors. This method is also specified in MIL-STD-883, Method 3015.7 for ESD testing. The premise of this ESD test is to simulate the human body’s potential to store electro-static energy and discharge it to an integrated circuit. The simulation is performed by using a test model as shown in Figure 9. This method will test the IC’s capability to withstand an ESD transient during normal handling such as in manufacturing areas where the ICs tend to be handled frequently.The IEC-1000-4-2, formerly IEC801-2, is generally used for testing ESD on equipment and systems. For system manufacturers, they must guarantee a certain amount of ESD protection since the system itself is exposed to the outside environment and human presence. The premiseTable 1. Wake-up Function Truth Table.Figure 9. ESD Test Circuit for Human Body ModelFigure 10. ESD Test Circuit for IEC1000-4-2with IEC1000-4-2 is that the system is required to withstand an amount of static electricity when ESD is applied to points and surfaces of the equipment that are accessible to personnel during normal usage. The transceiver IC receives most of the ESD current when the ESD source is applied to the connector pins. The test circuit for IEC1000-4-2 is shown on Figure 10. There are two methods within IEC1000-4-2, the Air Discharge method and the Contact Discharge method.With the Air Discharge Method, an ESD voltage is applied to the equipment under test (EUT)through air. This simulates an electrically charged person ready to connect a cable onto the rear of the system only to find an unpleasant zap just before the person touches the back panel. The high energy potential on the person discharges through an arcing path to the rear panel of the system before he or she even touches the system.This energy, whether discharged directly or through air, is predominantly a function of theSP202E HUMAN BODY IEC1000-4-2FamilyMODEL Air Discharge Direct Contact LevelDriver Outputs ±15kV ±15kV ±8kV 4Receiver Inputs ±15kV±15kV±8kV4Figure 11. ESD Test Waveform for IEC1000-4-2t=0nst=30ns0A15A30At ➙i ➙Table 2. Transceiver ESD Tolerance Levelsdischarge current rather than the discharge voltage. Variables with an air discharge such as approach speed of the object carrying the ESD potential to the system and humidity will tend to change the discharge current. For example, the rise time of the discharge current varies with the approach speed.The Contact Discharge Method applies the ESD current directly to the EUT. This method was devised to reduce the unpredictability of the ESD arc. The discharge current rise time is constant since the energy is directly transferred without the air-gap arc. In situations such as hand held systems, the ESD charge can be directlydischarged to the equipment from a person already holding the equipment. The current is transferred on to the keypad or the serial port of the equipment directly and then travels through the PCB and finally to the IC.The circuit models in Figures 9 and 10 represent the typical ESD testing circuit used for all three methods. The C S is initially charged with the DC power supply when the first switch (SW1) is on.Now that the capacitor is charged, the second switch (SW2) is on while SW1 switches off. The voltage stored in the capacitor is then applied through R S , the current limiting resistor, onto the device under test (DUT). In ESD tests, the SW2switch is pulsed so that the device under test receives a duration of voltage.For the Human Body Model, the current limiting resistor (R S ) and the source capacitor (C S ) are 1.5k Ω an 100pF, respectively. For IEC-1000-4-2, the current limiting resistor (R S ) and the source capacitor (C S ) are 330Ω an 150pF, respectively.The higher C S value and lower R S value in the IEC1000-4-2 model are more stringent than the Human Body Model. The larger storage capacitor injects a higher voltage to the test point when SW2 is switched on. The lower current limiting resistor increases the current charge onto the test point.D 2x 2E1A1DETAIL A- - 2.00.05 - -Dimensions in (mm)20 PIN SSOP JEDEC MO-150(AE) V ariation1.65 1.75 1.850.22 - 0.380.09 - 0.250.55 0.75 0.950º 4º 8ºA A1A2b c D E E1L L1ØMIN NOM MAX 7.407.808.205.005.305.601.25 REF6.907.207.5020 PIN SSOPPACKAGE: 20 PIN SSOPPACKAGE: 16 PIN NSOIC16 PIN NSOICPACKAGE: 16 PIN WSOIC16 PIN SOIC WIDE- - .210.015 -Dimensions in inches 18 PIN PDIP JEDEC MS-001(AC) V ariation.115 .130 .195 .014 .018 .022.045 .060 .070.240 .250 .280A A1A2b c D1E E1e eA eB .115 .130 .150LMIN NOM MAX b2b3.030 .039 .045D .008.010.014.880.900.920.005.300.310.325.100 BSC .300 BSC .430-----18 pin PDIPPACKAGE: 18 PIN PDIPPart Number Temperature Range Topmark Package SP202ECN.............................0°C to +70°C.................................SP202ECN........................................................................16–pin NSOIC SP202ECN/TR.......................0°C to +70°C.................................SP202ECN........................................................................16–pin NSOIC SP202ECP.............................0°C to +70°C.................................SP202ECP.........................................................................16–pin PDIP SP202ECT.............................0°C to +70°C.................................SP202ECT.........................................................................16–pin WSOIC SP202ECT/TR.......................0°C to +70°C.................................SP202ECT.........................................................................16–pin WSOIC SP202EEN..........................–40°C to +85°C................................SP202EEN.........................................................................16–pin NSOIC SP202EEN/TR....................–40°C to +85°C................................SP202EEN.........................................................................16–pin NSOIC SP202EEP..........................–40°C to +85°C................................SP202EEP.........................................................................16–pin PDIP SP202EET..........................–40°C to +85°C................................SP202EET..........................................................................16–pin WSOIC SP202EET/TR.....................–40°C to +85°C................................SP202EET..........................................................................16–pin WSOIC SP232ECN.............................0°C to +70°C................................SP232ECN..........................................................................16–pin NSOIC SP232ECN/TR.......................0°C to +70°C................................SP232ECN..........................................................................16–pin NSOIC SP232ECP.............................0°C to +70°C.................................SP232ECP.........................................................................16–pin PDIP SP232ECT.............................0°C to +70°C.................................SP232ECT..........................................................................16–pin WSOIC SP232ECT/TR.......................0°C to +70°C.................................SP232ECT..........................................................................16–pin WSOIC SP232EEN..........................–40°C to +85°C................................SP232EEN..........................................................................16–pin NSOIC SP232EEN/TR....................–40°C to +85°C................................SP232EEN..........................................................................16–pin NSOIC SP232EEP..........................–40°C to +85°C................................SP232EEP..........................................................................16–pin PDIP SP232EET..........................–40°C to +85°C................................SP232EET...........................................................................16–pin WSOIC SP232EET/TR.....................–40°C to +85°C................................SP232EET...........................................................................16–pin WSOIC SP233ECT............................0°C to +70°C.................................SP233ECT...........................................................................20–pin WSOIC SP233ECT/TR......................0°C to +70°C.................................SP233ECT...........................................................................20–pin WSOIC SP233EET..........................–40°C to +85°C................................SP233EET...........................................................................20–pin WSOIC SP233EET/TR.....................–40°C to +85°C................................SP233EET...........................................................................20–pin WSOIC SP310ECP............................0°C to +70°C.................................SP310ECP.........................................................................18–pin PDIP SP310ECT............................0°C to +70°C.................................SP310ECT..........................................................................18–pin WSOIC SP310ECT/TR......................0°C to +70°C.................................SP310ECT..........................................................................18–pin WSOIC SP310ECA............................0°C to +70°C.................................SP310ECA..........................................................................20–pin SSOP SP310ECA/TR......................0°C to +70°C.................................SP310ECA..........................................................................20–pin SSOP SP310EEP..........................–40°C to +85°C................................SP310EEP..........................................................................18–pin PDIP SP310EET..........................–40°C to +85°C................................SP310EET...........................................................................18–pin WSOIC SP310EET/TR.....................–40°C to +85°C................................SP310EET...........................................................................18–pin WSOIC SP310EEA..........................–40°C to +85°C................................SP310EEA...........................................................................20–pin SSOP SP310EEA/TR.....................–40°C to +85°C................................SP310EEA...........................................................................20–pin SSOP SP312ECP............................0°C to +70°C.................................SP312ECP..........................................................................18–pin PDIP SP312ECT............................0°C to +70°C.................................SP312ECT...........................................................................18–pin WSOIC SP312ECT/TR......................0°C to +70°C.................................SP312ECT...........................................................................18–pin WSOIC SP312ECA............................0°C to +70°C.................................SP312ECA...........................................................................20–pin SSOP SP312ECA/TR......................0°C to +70°C.................................SP312ECA...........................................................................20–pin SSOP SP312EEP..........................–40°C to +85°C................................SP312EEP...........................................................................18–pin PDIP SP312EET..........................–40°C to +85°C................................SP312EET............................................................................18–pin WSOIC SP312EET/TR.....................–40°C to +85°C................................SP312EET............................................................................18–pin WSOIC SP312EEA..........................–40°C to +85°C................................SP312EEA............................................................................20–pin SSOP SP312EEA/TR.....................–40°C to +85°C................................SP312EEA............................................................................20–pin SSOPapplication or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.Available in lead free packaging. To order add "-L" suffix to part number.Example: SP312EEA/TR = standard; SP312EEA-L/TR = lead free /TR = Tape and ReelPack quantity is 1,500 for SSOP or WSOIC and 2,500 for NSOIC.Sipex Corporation Headquarters and Sales Office233 South Hillview Drive Milpitas, CA 95035TEL: (408) 934-7500FAX: (408) 935-7600ORDERING INFORMATIONREVISION HISTORY。
Mitel 3300 ICP53系列IP话机使用手册版本:00目录1综述 (4)2使用介绍 (5)2.15212IP话机 (5)2.25224IP话机 (6)2.3设置话机功能 (7)2.4定义功能键 (7)2.5显示一个功能键的信息 (7)2.6铃音调节 (8)2.7手柄收听音量调节 (8)2.8扬声器音量调节 (8)2.9显示屏对比度调节 (8)2.10语言设置 (8)3基本功能 (9)3.1拨打电话 (9)3.2应答来电 (9)3.3重拨 (9)3.4保存及重拨号码 (9)3.5速拨键 (9)3.6个人速拨号码 (10)3.7H OLD(保持) (10)3.8静音 (10)3.9呼叫转接 (11)3.10呼叫转移 (11)3.11结束一组呼叫转移 (12)3.12呼叫转移链跳过某话机 (13)3.13A UTO ANSWER(自动接听来电) (13)3.14C ALLBACK(回叫) (13)3.15S WAP (穿梭通话) (13)3.16三方会议 (13)3.17拆分三方会议 (14)4高级功能 (15)4.1组内代接 (15)4.2C AMP ON(等待) (15)4.3P ICK UP(代接) (15)4.4DND(免打扰) (15)4.5C ALL HISTORY (16)4.6录音 (16)4.7M USIC(音乐) (17)4.8H OT D ESKING (17)5特色功能(仅5224 IP话机) (19)5.1P HONEBOOK(按姓名拨号) (19)5.2R EMINDER(叫醒) (19)1综述本文档适用于Mitel 3300 ICP系列中52系列IP话机(5212,5224)的使用。
若无特殊注明,该文档中描述的操作步骤均适用于这两种IP话机。
本文档仅供参考。
如需了解更详细信息,请参见敏迪的技术文档。
本文档中的内容若有修改,恕不另行通知。
文档的更新状态,请登陆公司网站查询:2使用介绍2.15212 IP话机性能特点:→ 2 行, 20 字符白色背光液晶显示屏→支持双模操作 - SIP 和MiNET→双网口,10/100 BaseT交换式以太网口→12 个可编程带LED支持灯功能键→10 个固定功能键,SuperKey –可对可编程键快速编程→支持半双功免提通话,支持摘机广播/免提应答功能→支持标准POE供电标准802.3af→支持WLAN和千兆机座2.25224 IP话机性能特点:→ 2 行, 20 字符白色背光液晶显示屏→支持双模操作 - SIP 和MiNET→双网口,10/100 BaseT交换式以太网口→24 个可编程带LED支持灯功能键→10 个固定功能键,SuperKey –可对可编程键快速编程→3个软功能键→支持全双功免提通话,支持摘机广播/免提应答功能→支持标准POE供电标准802.3af→可连接会议单元,PKM,LIM,支持WLAN和千兆机座2.3设置话机功能1、按2、按no往下翻页,直到显示我们想要的功能3、按yes4、选择一个功能5、根据屏幕提示开启或关闭相应的功能6、按退出主要选项:Phone book,forward,personal keys,wake up, dnd, auto answer(5224 only), ringer adjust,language2.4定义功能键1、按2、按no往下翻页,直到显示“personal keys”3、按yes4、选择一个功能键。
三花高低压开关说明书
三花高低压开关是一种常见的电气元件,用于控制电路的通断。
它具有多种功能和特点,广泛应用于工业、商业和家庭领域。
三花高低压开关的工作原理是通过控制电路中的电流通断,实现电路的开关功能。
当需要打开电路时,高低压开关将电路断开,阻止电流的通过;当需要关闭电路时,高低压开关将电路接通,允许电流的通过。
安装和维护方面,需要按照说明书的要求进行操作,确保开关的正确安装和正常工作。
同时,需要定期进行检查和维护,及时发现和排除故障,保证高低压开关的安全和稳定运行。
总之,三花高低压开关是一种重要的电气元件,对于控制电路的通断和保护电路的安全具有重要作用。
在使用和安装过程中,需要按照说明书的要求进行操作,确保开关的正常工作。
RED-D-ARC ES 275iIM803-CFebruary, 2011Red-D-Arc Spec-Built Welding EquipmentThis RED-D-ARC welder is built to RED-D-ARC Extreme Duty design specifications by Lincoln Electric.Safety Depends on YouThis welder is designed and built with safety in mind.However, your overall safety can be increased by proper installation ... and thoughtful operation on your part.DO NOT INSTALL, OPERATE OR REPAIR THIS EQUIPMENT WITHOUT READING THIS MANUAL AND THE SAFETY PRECAUTIONS CONTAINED THROUGHOUT.And, most importantly, think before you act and be careful.For use with machines having Code Numbers:10994, 11166, 11223, 11773OPERATOR’S MANUAL(Refer to /safety for additional safety information.vvfor selecting one of ourQUALITY products. We want you to take pride in operating this product ••• as much pride as we have in bringing this product to you!Read this Operators Manual completely before attempting to use this equipment. Save this manual and keep it handy for quick reference. Pay particular attention to the safety instructions we have provided for your protection.The level of seriousness to be applied to each is explained below:Technical Specifications - ES 275i• have• TurnFigure A.1 Input Voltage Reconnect InstructionsThe ES 275i is a 275 amp arc welding power source that utilizes single or three phase input power, to pro-duce constant current output. The welding response of this Invertec has been optimized for stick (SMAW) and TIG (GTAW).OPERATIONAL FEATuRESThe ES 275i provides continuous total range output current adjustment, selectable welding modes and local or remote output control. Welding characteristics can be controlled via an arc force control. Additionally, starting characteristics can be adjusted via a “hot start” control.WELDING CAPAbILITYThe ES 275i is rated at 275 amps, 35% duty cycle (based on a 10 minute cycle). It is also rated at 200 amps, 100% duty cycle, and 250 amps, 60% duty cycle.LIMITATIONSThe ES 275i is not recommended for pipe thawing.1. POWER SWITCh- Place the lever in the “ON”position to energize the machine. When the power is on the output will be energized in STICK (SMAW) mode and TIG (GTAW) if the remote is set to local control. At power up the thermal Light and Fan will turn on for approxi-mately 3 seconds.2. OuTPuT CONTROL- This controls the outputcurrent. Control is provided over the entire output range of the power source with (1) turn of the control knob. This control may be adjusted while under load to change power source output. When using remote control this function becomes the limit setting.3. LOCAL/REMOTE SWITCh- Place in the“LOCAL” position to allow output adjustment at the machine. Place in the “REMOTE” position to allow output adjustment at remote pot or amptrol. In Remote, the machine output control pot is the limit setting for remote control.4. MODE SWITChCC -Stick (SMAW) Use this mode for all stick welding.Output energized when machine is on.TIG (GTAW) Optimized for touch start use. Short circuit current is limited to approximately 20 amps to aid in touch starting.5. hOT START - Controls the amount of starting ener-gy in CC Stick (SMAW). The Hot Start can be either turned on or off. When on, it provides a striking current at 260% of the set current or 275A whichever is larger then quickly reverts to the set current in 0.4 second.6. ARC FORCE- This control functions in CC Stick(SMAW) modes to adjust the Arc Force. The arc is soft at the minimum settings and more forceful or driving at the maximum settings. Higher spatter levels may be present at the maximum settings.Full range is from -10(Soft) to +10(Crisp)OVERLOAD PROTECTIONThe machine is electrically protected from producing high output currents. Should the output current exceed 300A, an electronic protection circuit will reduce the current to less than 200A. The machine will continue to produce this low current until the pro-tection circuit is reset. Reset occurs when the output load is removed.Note:When TIG welding with the Output Knob at or above 275 Amps the Arc may go out.ThERMAL PROTECTIONThermostats protect the machine from excessive operating temperatures. Excessive temperatures may be caused by a lack of cooling air or operating the machine beyond the duty cycle and output rating. If excessive operating temperature should occur, the thermostats will prevent output voltage or current.Thermostats are self-resetting once the machine cools sufficiently.FANThe cooling fan on the ES 275i operates once 15 amps of welding current is drawn and for 7 minutes after the output current has stopped flowing.The fan will also run anytime the machine has over heated.POWER-uP SEQuENCEAt power up the thermal light (and Power light on codes 11164 and above) turns on and the fans run for approximately 3 seconds. This is the pre-charge time for the main capacitors. After this time the fans and thermal light turn off and the pre-charge relay closes to apply full line power to the capacitors. At this time the machine is ready to weld.INPuT FILTER CAPACITOR DISChARGE PROCEDuRE1.Turn off input power or disconnect input powerlines.2.Remove the 5/16" hex head screws from the sideand top of the machine and remove wrap-around machine cover.3.Be careful not to make contact with the capacitorterminals that are located in the top and bottom of the Power Board.4.Obtain a high resistance and high wattage resistor(25-1000 ohms and 25 watts minimum). This resis-tor is not supplied with machine. NEVER USE A SHORTING STRAP FOR THIS PROCEDURE.5.Locate the four capacitor terminals (large hex headcap screws) shown in Figure D.1. One pair at the top and one pair at the bottom of the Power Board.e electrically insulated gloves and insulated pli-ers. Hold body of the resistor and connect resistor leads across the two capacitor terminals. Hold resistor in place for 10 seconds. DO NOT TOUCH CAPACITOR TERMINALS WITH YOUR BARE HANDS.7.Repeat discharge procedure for the capacitor onother two terminals.8.Check voltage across terminals of all capacitorswith a DC voltmeter. Polarity of capacitor terminals is marked on PC board above terminals. Voltage should be zero. If any voltage remains, repeat this capacitor discharge procedure.FIGuRE D.1 — LOCATION OF INPuT FILTER CAPACITOR TERMINALS.ROuTINE MAINTENANCE1. Perform the following preventive maintenance pro-cedures at least once every six months. It is good practice to keep a preventive maintenance record;a record tag attached to the machine works best.2. Remove the machine wrap-around cover and per-form the input filter capacitor discharge procedure (detail at the beginning of this chapter).3. Keeping the machine clean will result in cooleroperation and higher reliability. Be sure to clean the following areas with a low pressure air stream. See figure D.2 for component locations.•Power and control printed circuit boards•Power switch•Main transformer•Input rectifier•Heat sink fins•Input Filter Capacitors•Output Terminals4. Examine capacitors for leakage or oozing. Replaceif needed.5. Examine the sheet metal case for dents or break-age. Repair the case as required. Keep the case in good condition to ensure that high voltage parts are protected and correct spacings are maintained. All external sheet metal screws must be in place to assure case strength and electrical ground continu-ity.6. Check electrical ground continuity. Using an ohm-meter, measure resistance between either output terminal and an unpainted surface of the machine case. (See Figure D.2 for locations.) Meter reading should be 500,000 ohms or more. If meter reading is less than 500,000 ohms, check for electrical com-ponents that are not properly insulated from the case. Correct insulation if needed.7.Replace machine cover and screws.FIGuRE D.2 — LOCATION OF MAINTENANCE COMPONENTS.This Troubleshooting Guide is provided to help you locate and repair possible machine malfunctions.Simply follow the three-step procedure listed below.Step 1.LOCATE PROBLEM (SYMPTOM).Look under the column labeled “PROBLEM (SYMP-TOMS)”. This column describes possible symptoms that the machine mayexhibit. Find the listing that best describes the symptom that the machine is exhibiting.Step 2.POSSIBLE CAUSE.The second column labeled “POSSIBLE CAUSE” lists the obvious external possibilities that may contribute to the machine symptom.Step 3.RECOMMENDED COURSE OF ACTIONThis column provides a course of action for the Possible Cause, generally it states to contact your local Authorized Field Service Facility.If you do not understand or are unable to perform the Recommended Course of Action safely, contact your local Authorized Field Service Facility.hOW TO uSE TROubLEShOOTING GuIDEService and Repair should only be performed by Trained Personnel. Unauthorized repairs performed on this equipment may result in danger to the technician and machine operator and will invalidate your factory warranty. For your safety and to avoid Electrical Shock, please observe all safety notes and precautions detailed throughout this manual.__________________________________________________________________________WIRING DIAGRAM- CODE: 10994ES 275iES 275iJapaneseChineseKoreanArabicREAD AND UNDERSTAND THE MANUFACTURER’S INSTRUCTION FOR THIS EQUIPMENT AND THE CONSUMABLES TO BE USED AND FOLLOW YOUR EMPLOYER’S SAFETY PRACTICES.SE RECOMIENDA LEER Y ENTENDER LAS INSTRUCCIONES DEL FABRICANTE PARA EL USO DE ESTE EQUIPO Y LOS CONSUMIBLES QUE VA A UTILIZAR, SIGA LAS MEDIDAS DE SEGURIDAD DE SU SUPERVISOR.LISEZ ET COMPRENEZ LES INSTRUCTIONS DU FABRICANT EN CE QUI REGARDE CET EQUIPMENT ET LES PRODUITS A ETRE EMPLOYES ET SUIVEZ LES PROCEDURES DE SECURITE DE VOTRE EMPLOYEUR.LESEN SIE UND BEFOLGEN SIE DIE BETRIEBSANLEITUNG DER ANLAGE UND DEN ELEKTRO-DENEINSATZ DES HERSTELLERS. DIE UNFALLVERHÜTUNGSVORSCHRIFTEN DES ARBEITGEBERS SIND EBENFALLS ZU BEACHTEN.JapaneseChineseKoreanArabicLEIA E COMPREENDA AS INSTRUÇÕES DO FABRICANTE PARA ESTE EQUIPAMENTO E AS PARTES DE USO, E SIGA AS PRÁTICAS DE SEGURANÇA DO EMPREGADOR.• Sales and Service through Subsidiaries and Distributors Worldwide •Cleveland, Ohio 44117-1199 U.S.A. TEL: 216.481.8100 FAX: 216.486.1751 WEB SITE: 。
©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13Commercial AttenuatorsAT Series, E408 SeriesFeatures• M odels Feature a Range of Attenuation Steps (1.5dB or 3dB Steps) as Well as Continuous to Meet Application and Budget Requirements • W all Plates are Stainless Steel with Stamped and Filled or Screen Printed Dial Scale, and a Skirted Black Knob (White and Ivory Plastic Plates with Matching Skirted Knobs Also Available in Decora Style-D Series Only)• P opular Rack Mount Attenuator Versions are Available on the AT and E408 Series for Mounting on to Blank Panels in Equipment Cabinets• All AT Models Mount into Most 1-Gang E.O. Boxes. (23⁄4" Deep)• AT and E408 Series are UL ListedGenenal DescriptionAT Series Industry Standard Auto Transformer. High-quality auto transformer series provides the advantages of excellent frequencyresponse, low insertion loss and reliable performance for volume control application in 25V/70.7V systems. Attenuation is accomplished in ten make before break steps plus positive Off position. (No stop between maximum and Off position to prevent switch damage). Contacts are silver plated for noise-free operation. Features a removable terminal block. Includes stainless steel plate, with stamped and filled or screen printed dial scale and a skirted black knob. (White and ivory plastic plates with matching skirted knobs also available in Decora style-see AT model description chart).E408 Auto Transformer with Precision Level Control. Specially designed for attenuation in masking and sound reinforcement systems where fine tuning of level control is required. Employs a ten-position, non-shorting rotary switch without stop. Attenuation rate is 1.5dB per step. (All other specifications are the same as the AT Series including the UL listing).PA Series Priority Paging Option. Priority paging feature by-passes the effect of the attenuator to provide program level selection of individual emergency and paging signals at the amplifier. Option isavailable on all AT attenuators. The SPDT relay is operated with 24VDC at 10mA. Includes protective relay cover to ensure lasting trouble-free performance. Terminations to the relay and attenuator are made via a removable terminal block. (All other specifications except for dimensions are the same as selected AT models).RM Series Rack Mount Option. For attenuation convenience of rack-mounted equipment in cabinets and consoles, the AT, E408Series attenuators are available without mounting plate for rack panel installation. Attractive matte black polycarbonate dial scale overlay with adhesive backing replaces the mounting plate. Includes skirted black knob. Overlay size is 29 square (51mm). (To order, simply add RM after the selected attenuator model number. Example: AT10-RM or AT10-PARM.) (Dial scale overlays to retrofit existing installations are available, see Model HX23.)Replacement Knobs©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13Specfications AT10-(PA)Power Rating * 10 WattsUL ListingAttenuation Per Step 3dB Total Attenuation33dB**Insertion Loss .4dB Plate Size 1 gang Resistance NoneAT35-(PA)Power Rating *35 WattsUL ListingAttenuation Per Step 3dB Total Attenuation27dBInsertion Loss .6dB Plate Size 1 gang Resistance NoneAT100-(PA)Power Rating *100 WattsUL ListingAttenuation Per Step 3dB Total Attenuation27dBInsertion Loss .6dB Plate Size 1 gang Resistance NoneE408-100Power Rating *100 WattsUL ListingAttenuation Per Step 1.5dB Total Attenuation15dBInsertion Loss .6dB Plate Size 1 gang Resistance None* Continuous** These units have two steps of 6dB before off position.Note: Attenuation curve is steeper for a 25-volt lineArchitect and Engineer SpecificationsAT Series Attenuator(s) shall be Atlas Sound AT Series Model____________ auto transformer or approved equal. The power rating shall be __________ and attenuation range shall be _________dB. Attenuation per step for AT-____ shall be 8 steps of 3dB and 6dB each for the last two positions. Attenuator shall be a step type control with a positive off position. There shall be no stop between the maximum and off positions (AT Series only). Switch shall have silver plated contacts to eliminate noise and contact loss. All terminations must be made via a removable terminal block. Unit(s) shall be supplied with one of the following single gang face plates to be noted by model number suffix: Standard stain l ess steel faceplate (with dial scale to indicate attenuator position), Decora style plastic face plate-Ivory color, Decora style plastic face plate-White color. All models are designed to mount in a standard E.O. box.E408 UL Listed attenuator shall be Atlas Sound Model E408-100 auto transformer or approved equal. The power rating shall be 100W. The at t enu a tion per step shall be 1.5dB. Unit shall be a step type control with a positive off position. There shall be no stop between the maximum and off positions. Switch shall have silver plated contacts to elimi n ate noise and contact loss. The attenuator shall be mounted to a standard gang stainless steel wall plate which mounts to a standard E.O. box.RM Option Attenuator shall be Atlas Sound Model ____________ [(AT, E408 (-RM)] or ap p roved equal. Face plate shall be replaced by an adhesive matte black poly c ar b on a te dial scale escutcheon for attachment to a rack mount panel. Escutcheon size shall be 2" SQ.PA Option Specified AT Series attenuators include a priority relay. Relay shall be an SPDT, 24 VDC type securely mounted to the attenuator assembly wired at the factory. Relay shall include a protective cover.AT10 (dc) (-PA) (-RM)AT35 (dc) (-PA) (-RM)Faceplate Options:d = D - Decora Style FaceplateIvory and White inserts, trim ring and knobs icluded.If there is not the above 1 letter suffix, the attenuator is shipped with the standard stainless steel faceplate or is the RM version without a faceplate.©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13AT SeriesDimensional Specifications Plate Mounted AttenuatorsMODEL A B C D EAT10 41⁄2" 21⁄8" 23⁄4" 23⁄4" 13⁄4"AT10-PA 41⁄2" 21⁄8" 23⁄4" 23⁄4" 13⁄4"AT3541⁄2"21⁄8" 23⁄4" 23⁄4" 13⁄4"AT35-PA 41⁄2" 21⁄8" 23⁄4" 23⁄4" 13⁄4"AT10041⁄2"21⁄2" 23⁄4" 23⁄4" 13⁄4"AT100-PA 41⁄2" 21⁄2" 23⁄4" 23⁄4" 13⁄4"E408-100 41⁄2"25⁄8"23⁄4"23⁄4"13⁄4"©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13WIRING - AT SeriesEach terminal will hold up to 2-16AWG stranded wire.For larger wires or home run situations, a small length of wire and a wire nut are recommended.Attach wire according to label on terminal black as shown below (Non-PA Models will not have the "VDC+" and "VDC-" terminals).* Install the unit with the terminal block on top. This will ensure that theoff position is on the bottom.©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13Wiring - (-Pa) Priority AttenuatorsRelay SpecificationsCOIL VOLTAGE: 24VDC COIL CURRENT: 10MACONTACTS: S PDT-2AMP RatingRelay Has a Protective CoverPower Switching Req. For - Pa Attenuators。
2015年10月中文版J a p a nK o r e aT a i w a nA m e r i c a sE u r o p eC h i n aA S E A NI n d i aT u r k e yC H I N An e r P r o d u c t f o r C h i n aC-L i n k P a r t(中国用户选型专用)C C-L i n k P a r t n e r P r o d u c t f o r C h i n aC C-L i n k兼容产品集(中国用户选型专用)深圳市杰曼科技股份有限公司称重仪表/过程设备可通过CC-Link通讯快速组建重量监控反馈、控制系统特点●拥有单排高亮LED显示;外型小巧,节省安装空间●120/240/480次/秒多种A/D采样速度可选●1/100000显示精度●立抗振数字滤波器,开启后可最大限度屏蔽现场干扰●支持AC 90V~260V宽范围电源输入●板防护等级达到IP65●方便连接CC-Link产品,快速组建称重控制系统站类型远程设备站占用站数1,2或4个站CC-Link版本Ver.1.10外形尺寸105(W)×57(H)×151(D)mm 重量大约550g联系方式深圳市杰曼科技股份有限公司电话:*************网址:南京华太自动化技术有限公司适配器CC-Link适配器FR8000smartLink远程IO.可将数字量,模拟量,温度,定位,计数等模块混合接入CC-Link系统稳定,可靠,性价比高。
特点●插片式IO,便于扩展●优秀的背板总线,数据传输“0”延时●全系产品通过CE认证,性能稳定●所有电器特征符合IEC61131-2标准●诊断功能丰富,支持远程诊断和维护●体积小,节约安装空间站类型远程设备站占用站数1-4逻辑站可配CC-Link版本Ver.1.1外形尺寸适配器(94mm x 68mm x 50mm)IO模块(94mm x 68mm x12mm)重量0.13kg联系方式南京华太自动化技术有限公司电话:************邮箱:*********************网址:CC-Link 协会(中国)CC-Link作为亚洲最早开发的现场总线,2001年4月在高速发展的中国设立了CC-Link推广中心,开始了现场网络推广工作。
MHS3102-W说明书(大华)版本:v1.1.2版权声明本手册中所提及的其它软硬件产品的商标与名称,都属于相应公司所有。
本手册的版权属于本公司所有。
未得到本公司的正式许可,任何组织或个人不得以任何以任何手段和形式对本手册内容进行进行复制或传播。
本手册的内容若有任何修改,恕不另行通知。
产品概述MHS3102-W系列数字LED闪光灯(工业级)是专门针对治安卡口、超速抓拍、闯红灯等,室外电子警察的工作环境和功能要求而研制开发的大功率高性能数字脉冲闪光灯。
该产品采用我公司最新研发的专业闪光控制电路,具有回电快、寿命长、准确的控制闪光时间、闪光瞬间内保持以大功率方波形式输出有效地供给相机曝光周期内所需的光能量等特点。
通过调节闪光长度触发延时能够使发光与摄像机曝光时间达到完美的结合,从而大大降低其对人眼的影响和最大限度的减少环境光对拍照的干扰。
能够满足在各种光线条件下,辅助摄像系统实现对车辆和驾驶员清晰拍照的要求。
产品特点1、闪光长度可精确控制2、即时触发/延时触发(触发延时可精确控制)3、光输出瞬时功率大,且光输出瞬时内始终以大功率均匀输出4、可支持大功率连续闪光或每秒多次闪光5、瞬间回电,能保证连续多次闪光6、对人眼的影响低,不易引起司机的注意7、所有参数均可通过RS485 总线进行在线设置(掉电不会丢失),包括闪光长度、闪光延时等8、通过组合使用适应于多种现场光效要求9、温升低,使用寿命长,数倍以上于普通LED闪光灯的亮度技术指标型号: MHS3102-W主处理器: 高性能MCU调试接口: RS485串口LED灯珠: 德国ORSAM高亮LED 20PCS光照角度: 支持15度、30度、45度(可选)标准配置(15度)日夜功能:支持环境亮度检测,低照度下开启频闪接口:模式D支持以频闪频率100Hz,占空比可调连续工作RS485接口:支持PC连接参数配置:支持内部参数设置,如频闪亮度等供电电源:AC165-220V功耗:平均≦30W,峰值108W色温:5500-6200K 光通量:5000LM, 照度:17000lux/1米 (大约) 补光范围:距离10-20M,宽度5-10M频闪亮度:1~4同步接口:频闪触发输入外壳防护级别:IP66工作环境温度:-40~+50℃存储温度:-40~+85℃重量:净重2.5kg外形尺寸:261x202x90 (mm)硬件接口MHS3102-W型闪光灯的控制信号接口和频闪接口。
WASP电子部件包依下图所示进行连接:(图中分为:USB数据线,电机电缆、控制器、电源供应、低压变压器)注意:你的礼花弹敷球机不一定配备低压变压器。
如果没有,控制器将通过电脑USB数据线获得供电。
电源由两双电线与控制器相连,同时还提供一条可插入标准电源插口的电线,可在没有低压变压器时与标准电源插口连接。
电动机电缆连接控制器和礼花弹敷球机的电机。
控制器上的延伸电缆同电机相连,延伸电缆的接插件有确定前马达的标识。
若关掉接插件,电机将反向运转。
若发生这种情况,拔掉插口电源转换电机电缆和电机的连接即可矫正。
USB数据线一端插入控制器孔内的插座,另一端插入为礼花弹敷球机提供电源的电脑USB 插口。
此电子包设计被安装在为使用者提供的机柜内,便携的或是固定的均可。
电源线与电源连接,终端电压为110伏特。
终端应避免接触人引起事故或是接触金属物体导致短路。
新鲜空气可由控制器内风扇吹入并从设备的小孔中排除。
控制器会产生热量,任何含有控制器的密闭罩都应通风良好,而且应确保风扇和排风口没有物体堵塞。
当电子部件装配在合适的密闭罩中,在确定设备未通电的情况下,可尽量缩短各种连接线。
仔细检查每根线及其连接状况,以保证电线达到合适配置。
Ned的提示:我个人喜欢将机器的电子部件装入便携的小工具箱中,像这种海港航运的小盒子。
我经常将机器带到PGI大会或是其他演化制造集会场所,所以我希望装备包装及携带方便。
使用礼花弹敷球机时,我只需把工具箱盖子敞开散热就可以了。
我将各种连接线缩到最短,并将变压器电源线与电源供应线练到相同的终端。
这样,只需一个插头即可。
以防万一我还在工具箱的金属面上装备接地线。
各部分用强力双面胶固定在工具箱底部。
我还安装了些小电缆夹来拉紧-松缓电源线和控制器电缆。
礼花弹敷球机电子部件在工具箱内的安装我喜欢将之称为我的“盒内W ASP”。
如果你善于观察,就会发现上图中白色的电缆从控制器的左端引出。
这是引向可选的人工控制装置,Jim曾在其他地方提供过计划。
DESCRIPTIONFEATURES■ Meets true EIA/TIA-232-F Standards from a +3.0V to +5.5V power supply ■ Minimum 120Kbps Data Rate Under Full Load■ 1µA Low-Power Shutdown with Receivers Active (SP3222E )■ Interoperable with RS-232 down to +2.7V power source■ Enhanced ESD Specifications: ±15kV Human Body Model±15kV IEC1000-4-2 Air Discharge ±8kV IEC1000-4-2 Contact DischargeThe SP3222E/3232E series is an RS-232 transceiver solution intended for portable or hand-held applications such as notebook or palmtop computers. The SP3222E/3232E series has a high-efficiency, charge-pump power supply that requires only 0.1µF capacitors in 3.3V operation. This charge pump allows the SP3222E/3232E series to deliver true RS-232performance from a single power supply ranging from +3.3V to +5.0V. The SP3222E/3232E are 2-driver/2-receiver devices. This series is ideal for portable or hand-held applications such as notebook or palmtop computers. The ESD tolerance of the SP3222E/3232E devices are over ±15kV for both Human Body Model and IEC1000-4-2 Air discharge test methods. The SP3222E device has a low-power shutdown mode where the devices' driver outputs and charge pumps are disabled. During shutdown, the supply current falls to less than 1µA.SELECTION TABLEL E D O M s e i l p p u S r e w o P 232-S R s r e v i r D232-S R sr e v i e c e R l a n r e t x E st n e n o p m o C nw o d t u h S L T T e t t -a S 3f o .o N s n i P 2223P S V 5.5+o t V 0.3+224s e Y s e Y 02,812323P S V5.5+o t V 0.3+224oN oN 61V-C1+V+C1-C2+C2-ENR2INT2OUT DIP/SONote: See page 6 for other pinoutsNow Available in Lead Free PackagingRE T E M A R A P .N I M .P Y T .X A M ST I N U SN O I T I D N O C S C I T S I R E T C A R A H C C D tn e r r u C y l p p u S 3.00.1A m T ,d a o l o n B M A 52+=o V ,C C C V 3.3=tn e r r u C y l p p u S n w o d t u h S 0.101µA,D N G =N D H S T B M A 52+=o V ,C C C V3.3+=S T U P T U O R E V I E C E R D N A S T U P N I C I G O L W O L d l o h s e r h T c i g o L t u p n I 8.0V 2e t o N ,N D H S ,N E ,N I x T H G I H d l o h s e r h T c i g o L t u p n I 0.24.2V V C C 2e t o N ,V 3.3=V C C 2e t o N ,V 0.5=t n e r r u C e g a k a e L t u p n I 10.0±0.1±µA ,N D H S ,N E ,N I x T T B M A 52+=o C t n e r r u C e g a k a e L t u p t u O 50.0±01±µA d e l b a s i d s r e v i e c e r W O L e g a t l o V t u p t u O 4.0V I T U O A m 6.1=H G I H e g a t l o V t u p t u O V C C 6.0-V C C 1.0-VI T U O Am 0.1-=S T U P T U O R E V I R D gn i w S e g a t l o V t u p t u O 0.5±4.5±Vk 3Ω,s t u p t u o r e v i r d l l a t a d n u o r g o t d a o l T B M A 52+=o Cec n a t s i s e R t u p t u O 003ΩV C C T ,V 0=-V =+V =T U O =+V 2t n e r r u C t i u c r i C -t r o h S t u p t u O 53±07±06±001±A m A m V T U O V 0=V T U O =+V51tn e r r u C e g a k a e L t u p t u O 52±µAV T U O =+V ,V 21C C de l b a s i d s r e v i r d ,V 5.5o t V 0=NOTE 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.ABSOLUTE MAXIMUM RATINGSThese are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.V CC ................................................................-0.3V to +6.0V V+ (NOTE 1)................................................-0.3V to +7.0V V- (NOTE 1)................................................+0.3V to -7.0V V+ + |V-| (NOTE 1)....................................................+13V I CC (DC V CC or GND current).................................±100mAInput VoltagesTxIN, EN ...................................................-0.3V to +6.0V RxIN ..........................................................................±15V Output VoltagesTxOUT ......................................................................±15V RxOUT ...........................................-0.3V to (V CC + 0.3V)Short-Circuit DurationTxOUT ............................................................Continuous Storage Temperature ..............................-65°C to +150°C Power Dissipation Per Package20-pin SSOP (derate 9.25mW/o C above +70o C).....750mW 18-pin PDIP (derate 15.2mW/o C above +70o C)....1220mW 18-pin SOIC (derate 15.7mW/o C above +70o C)...1260mW 20-pin TSSOP (derate 11.1mW/o C above +70o C)..890mW 16-pin SSOP (derate 9.69mW/o C above +70o C).....775mW 16-pin PDIP (derate 14.3mW/o C above +70o C)....1150mW 16-pin Wide SOIC (derate 11.2mW/o C above +70o C)900mW 16-pin TSSOP (derate 10.5mW/o C above +70o C)..850mW 16-pin nSOIC (derate 13.57mW/°C above +70°C)..1086mWELECTRICAL CHARACTERISTICSUnless otherwise noted, the following specifications apply for V CC = +3.0V to +5.0V with T AMB = T MIN to T MAXR E T E M A R A P .N I M .P Y T .X A M ST I N U SN O I T I D N O C S T U P N I R E V I E C E R e g n a R e g a t l o V t u p n I 51-51+V W O L d l o h s e r h T t u p n I 6.08.02.15.1V V C C V 3.3=V C C V 0.5=H G I H d l o h s e r h T t u p n I 5.18.14.24.2V V C C V 3.3=V C C V0.5=s i s e r e t s y H t u p n I 3.0V ec n a t s i s e R t u p n I 357k ΩS C I T S I R E T C A R A H C G N I M I T e t a R a t a D m u m i x a M 021532s p b k R L k 3=ΩC ,L g n i h c t i w s r e v i r d e n o ,F p 0001=y a l e D n o i t a g a p o r P r e v i r D 0.10.1µs µs t L H P R ,L K 3=ΩC ,L F p 0001=t H L P R ,L K 3=ΩC ,L F p 0001=y a l e D n o i t a g a p o r P r e v i e c e R 3.03.0µs t L H P C ,T U O x R o t N I x R ,L F p 051=t H L P C ,T U O x R o t N I x R ,L Fp 051=e m i T e l b a n E t u p t u O r e v i e c e R 002s n e m i T e l b a s i D t u p t u O r e v i e c e R 002s n w e k S r e v i r D 001005s n t |L H P t -H L P T ,|B M A 52=o C we k S r e v i e c e R 0020001s n t |L H P t -H L P |et a R w e l S n o i g e R -n o i t i s n a r T 03/V µsV C C R ,V 3.3=L K 3=ΩT ,B M A 52=o ,C V 0.3+o t V 0.3-m o r f n e k a t s t n e m e r u s a e m V0.3-o t V 0.3+r o ELECTRICAL CHARACTERISTICSUnless otherwise noted, the following specifications apply for V CC = +3.0V to +5.0V with T AMB = T MIN to T MAX .Typical Values apply at V CC = +3.3V or +5.0V and T AMB = 25o C.NOTE 2: Driver input hysteresis is typically 250mV.Capacitance for the SP3222 and the SP3232SP3222 and the SP3232Transmitting Data for the SP3222 and the SP3232TYPICAL PERFORMANCE CHARACTERISTICSUnless otherwise noted, the following performance characteristics apply for V CC = +3.3V, 120kbps data rates, all drivers loaded with 3k Ω, 0.1µF charge pump capacitors, and T AMB = +25°C.DESCRIPTIONThe SP3222E/3232E transceivers meet the EIA/ TIA-232 and V.28/V.24 communication proto-cols and can be implemented in battery-pow-ered, portable, or hand-held applications such as notebook or palmtop computers. The SP3222E/ 3232E devices all feature Sipex's proprietary on-board charge pump circuitry that generates 2x VCC for RS-232 voltage levels from a single+3.0V to +5.5V power supply. This series is ideal for +3.3V-only systems, mixed +3.3V to +5.5V systems, or +5.0V-only systems that re-quire true RS-232 performance. The SP3222E/ 3232E series have drivers that operate at a typi-cal data rate of 235Kbps fully loaded.The SP3222E and SP3232E are 2-driver/2-re-ceiver devices ideal for portable or hand-held applications. The SP3222E features a 1µA shutdown mode that reduces power consump-tion and extends battery life in portable systems. Its receivers remain active in shutdown mode, allowing external devices such as modems to be monitored using only 1µA supply current.THEORY OF OPERATIONThe SP3222E/3232E series are made up of three basic circuit blocks: 1. Drivers, 2. Receivers, and 3. the Sipex proprietary charge pump. DriversThe drivers are inverting level transmitters that convert TTL or CMOS logic levels to ±5.0V EIA/TIA-232 levels inverted relative to the in-put logic levels. Typically, the RS-232 output voltage swing is ±5.5V with no load and at least ±5V minimum fully loaded. The driver outputs are protected against infinite short-circuits to ground without degradation in reliability. Driver outputs will meet EIA/TIA-562 levels of ±3.7V with supply voltages as low as 2.7V.The drivers typically can operate at a data rate of 235Kbps. The drivers can guarantee a data rate of 120Kbps fully loaded with 3KΩin parallel with 1000pF, ensuring compatibility with PC-to-PC communication software.The slew rate of the driver output is internally limited to a maximum of 30V/µs in order to meet the EIA standards (EIA RS-232D 2.1.7, Para-graph 5). The transition of the loaded output from HIGH to LOW also meets the monotonic-ity requirements of the standard.The SP3222E/3232E drivers can maintain high data rates up to 235Kbps fully loaded. Figure 8 shows a loopback test circuit used to test the RS-232 drivers. Figure 9 shows the test results of the loopback circuit with all drivers active at 120Kbps with RS-232 loads in parallel with 1000pF capacitors. Figure 10 shows the test results where one driver was active at 235Kbps and all drivers loaded with an RS-232 receiver in parallel with a 1000pF capacitor. A solid RS-232 data transmission rate of 120Kbps provides compatibility with many designs in personal computer peripherals and LAN applications.The SP3222E driver's output stages are turned off (tri-state) when the device is in shutdown mode. When the power is off, the SP3222E device permits the outputs to be driven up to ±12V. The driver's inputs do not have pull-up resistors. Designers should connect unused inputs to VCCor GND.In the shutdown mode, the supply current falls to less than 1µA, where SHDN = LOW. When the SP3222E device is shut down, the device's driver outputs are disabled (tri-stated) and the charge pumps are turned off with V+ pulled down to VCCand V- pulled to GND. The time required to exit shutdown is typically 100µs. Connect SHDN to VCCif the shutdown mode is not used. SHDN has no effect on RxOUT or RxOUTB.As they become active, the two driver outputs go to opposite RS-232 levels where one driver input is HIGH and the other LOW. Note that the drivers are enabled only when the magnitude of V- exceeds approximately 3V.ReceiversThe receivers convert EIA/TIA-232 levels to TTL or CMOS logic output levels. All receivers have an inverting tri-state output. These receiver outputs (RxOUT) are tri-stated when the enable control EN = HIGH. In the shutdown mode, the receivers can be active or inactive. EN has no effect on TxOUT. The truth table logic of the SP3222E/3232E driver and receiver outputs can be found in Table 2.Since receiver input is usually from a transmis-sion line where long cable lengths and system interference can degrade the signal, the inputs have a typical hysteresis margin of 300mV. This ensures that the receiver is virtually immune to noisy transmission lines. Should an input be left unconnected, a 5k Ω pulldown resistor to ground will commit the output of the receiver to a HIGH state.Charge PumpThe charge pump is a Sipex –patented design (5,306,954) and uses a unique approach com-pared to older less–efficient designs. The charge pump still requires four external capacitors, but uses a four–phase voltage shifting technique to attain symmetrical 5.5V power supplies. The internal power supply consists of a regulated dual charge pump that provides output voltages 5.5V regardless of the input voltage (V CC ) over the +3.0V to +5.5V range.In most circumstances, decoupling the power supply can be achieved adequately using a 0.1µF bypass capacitor at C5 (refer to Figures 6 and 7).In applications that are sensitive to power-sup-ply noise, decouple V CC to ground with a capaci-tor of the same value as charge-pump capacitor C1. Physically connect bypass capacitors as close to the IC as possible.The charge pumps operate in a discontinuous mode using an internal oscillator. If the output voltages are less than a magnitude of 5.5V, the charge pumps are enabled. If the output voltage exceed a magnitude of 5.5V, the charge pumps are disabled. This oscillator controls the four phases of the voltage shifting. A description of each phase follows.Phase 1— V SS charge storage — During this phase of the clock cycle, the positive side of capacitors C 1and C 2 are initially charged to V CC . C l + is then switched to GND and the charge in C 1– is trans-ferred to C 2–. Since C 2+ is connected to V CC , the voltage potential across capacitor C 2 is now 2times V CC .Phase 2— V SS transfer — Phase two of the clock con-nects the negative terminal of C 2 to the V SS storage capacitor and the positive terminal of C 2to GND. This transfers a negative generated voltage to C 3. This generated voltage is regu-lated to a minimum voltage of -5.5V. Simulta-neous with the transfer of the voltage to C 3, the positive side of capacitor C 1 is switched to V CC and the negative side is connected to GND.Phase 3— V DD charge storage — The third phase of the clock is identical to the first phase — the charge transferred in C 1 produces –V CC in the negative terminal of C 1, which is applied to the negative side of capacitor C 2. Since C 2+ is at V CC , the voltage potential across C 2 is 2 times V CC .Table 2. Truth Table Logic for Shutdown and Enable ControlN D H S N E T U O x T T U O x R 00e t a t s -i r T e v i t c A 01e t a t s -i r T e t a t s -i r T 10e v i t c A e v i t c A 11ev i t c A et a t s -i r TPhase 4— V DD transfer — The fourth phase of the clock connects the negative terminal of C 2 to GND,and transfers this positive generated voltage across C 2 to C 4, the V DD storage capacitor. This voltage is regulated to +5.5V. At this voltage,the internal oscillator is disabled. Simultaneous with the transfer of the voltage to C 4, the positive side of capacitor C 1 is switched to V CC and the negative side is connected to GND, allowing the charge pump cycle to begin again. The charge pump cycle will continue as long as the opera-tional conditions for the internal oscillator are present.Since both V + and V – are separately generated from V CC ; in a no–load condition V + and V – will be symmetrical. Older charge pump approaches that generate V – from V + will show a decrease in the magnitude of V – compared to V + due to the inherent inefficiencies in the design.The clock rate for the charge pump typically operates at 250kHz. The external capacitors can be as low as 0.1µF with a 16V breakdown voltage rating.ESD ToleranceThe SP3222E/3232E series incorporates ruggedized ESD cells on all driver output and receiver input pins. The ESD structure is improved over our previous family for more rugged applications and environments sensitive to electro-static discharges and associated transients. The improved ESD tolerance is at least ±15kV without damage nor latch-up.There are different methods of ESD testing applied:a) MIL-STD-883, Method 3015.7b) IEC1000-4-2 Air-Discharge c) IEC1000-4-2 Direct Contact The Human Body Model has been the generally accepted ESD testing method for semiconduc-tors. This method is also specified in MIL-STD-883, Method 3015.7 for ESD testing. The premise of this ESD test is to simulate the human body’spotential to store electro-static energy and discharge it to an integrated circuit. The simulation is performed by using a test model as shown in Figure 17. This method will test the IC’s capability to withstand an ESD transient during normal handling such as in manufacturing areas where the ICs tend to be handled frequently.The IEC-1000-4-2, formerly IEC801-2, is generally used for testing ESD on equipment and systems. For system manufacturers, they must guarantee a certain amount of ESD protection since the system itself is exposed to the outside environment and human presence.The premise with IEC1000-4-2 is that the system is required to withstand an amount of static electricity when ESD is applied to points and surfaces of the equipment that are accessible to personnel during normal usage.The transceiver IC receives most of the ESD current when the ESD source is applied to the connector pins. The test circuit for IEC1000-4-2is shown on Figure 18. There are two methods within IEC1000-4-2, the Air Discharge method and the Contact Discharge method.With the Air Discharge Method, an ESD voltage is applied to the equipment under test (EUT) through air. This simulates an electrically charged person ready to connect a cable onto the rear of the system only to find an unpleasant zap just before the person touches the back panel. The high energy potential on the person discharges through an arcing path to the rear panel of the system before he or she even touches the system. This energy, whether discharged directly or through air, is predominantly a function of the discharge current rather than the discharge voltage.Variables with an air discharge such as approach speed of the object carrying the ESD potential to the system and humidity will tend to change the discharge current. For example, the rise time of the discharge current varies with the approach speed.Figure 14. Charge Pump WaveformsThe Contact Discharge Method applies the ESD current directly to the EUT. This method was devised to reduce the unpredictability of the ESD arc. The discharge current rise time is constant since the energy is directly transferred without the air-gap arc. In situations such as hand held systems, the ESD charge can be directly discharged to the equipment from a person already holding the equipment. The current is transferred on to the keypad or the serial port of the equipment directly and then travels through the PCB and finally to the IC.The circuit models in Figures 17 and 18 represent the typical ESD testing circuits used for all three methods. The C S is initially charged with the DC power supply when the first switch (SW1) is on. Now that the capacitor is charged, the second switch (SW2) is on while SW1 switches off. The voltage stored in the capacitor is then applied through R S, the current limiting resistor, onto the device under test (DUT). In ESD tests, the SW2 switch is pulsed so that the device under test receives a duration of voltage.Figure 17. ESD Test Circuit for Human Body ModelFigure 18. ESD Test Circuit for IEC1000-4-2Figure 19. ESD Test Waveform for IEC1000-4-230AI ➙0A15At=30nst ➙t=0nsFor the Human Body Model, the current limiting resistor (R S ) and the source capacitor (C S ) are 1.5k Ω an 100pF, respectively. For IEC-1000-4-2, the current limiting resistor (R S )and the source capacitor (C S ) are 330Ω an 150pF,respectively.The higher C S value and lower R S value in the IEC1000-4-2 model are more stringent than the Human Body Model. The larger storage capacitor injects a higher voltage to the test point when SW2 is switched on. The lower current limiting resistor increases the current charge onto the test point.Device Pin Human Body IEC1000-4-2Tested Model Air Discharge Direct Contact LevelDriver Outputs ±15kV ±15kV ±8kV 4Receiver Inputs ±15kV±15kV±8kV4Table 3. Transceiver ESD Tolerance LevelsPACKAGE:PLASTIC SHRINKPACKAGE:PLASTICDUAL–IN–LINE (NARROW)PACKAGE:PLASTICPACKAGE:PLASTICSMALL OUTLINE (SOIC)(NARROW)DIMENSIONSin inches (mm) Minimum/Maximum Symbol16 Lead20 Lead D0.193/0.2010.252/0.260(4.90/5.10)(6.40/6.60)e0.026 BSC0.026 BSC(0.65 BSC)(0.65 BSC)PACKAGE:PLASTIC THINSMALL OUTLINE(TSSOP)ORDERING INFORMATIONModel Temperature Range Package Type SP3222ECA.............................................0˚C to +70˚C ..........................................20-Pin SSOP SP3222ECA/TR .......................................0˚C to +70˚C ..........................................20-Pin SSOP SP3222ECP.............................................0˚C to +70˚C ............................................18-Pin PDIP SP3222ECT .............................................0˚C to +70˚C ........................................18-Pin WSOIC SP3222ECT/TR .......................................0˚C to +70˚C ........................................18-Pin WSOIC SP3222ECY.............................................0˚C to +70˚C ........................................20-Pin TSSOP SP3222ECY/TR .......................................0˚C to +70˚C ........................................20-Pin TSSOP SP3222EEA ............................................-40˚C to +85˚C ........................................20-Pin SSOP SP3222EEA/TR ......................................-40˚C to +85˚C ........................................20-Pin SSOP SP3222EEP ............................................-40˚C to +85˚C ..........................................18-Pin PDIP SP3222EET ............................................-40˚C to +85˚C ......................................18-Pin WSOIC SP3222EET/TR ......................................-40˚C to +85˚C ......................................18-Pin WSOIC SP3222EEY ............................................-40˚C to +85˚C ......................................20-Pin TSSOP SP3222EEY/TR ......................................-40˚C to +85˚C ......................................20-Pin TSSOP SP3232ECA.............................................0˚C to +70˚C ..........................................16-Pin SSOP SP3232ECA/TR .......................................0˚C to +70˚C ..........................................16-Pin SSOP SP3232ECP.............................................0˚C to +70˚C ............................................16-Pin PDIP SP3232ECT .............................................0˚C to +70˚C ........................................16-Pin WSOIC SP3232ECT/TR .......................................0˚C to +70˚C ........................................16-Pin WSOIC SP3232ECN.............................................0˚C to +70˚C .........................................16-Pin nSOIC SP3232ECN/TR.......................................0˚C to +70˚C .........................................16-Pin nSOIC SP3232ECY.............................................0˚C to +70˚C ........................................16-Pin TSSOP SP3232ECY/TR .......................................0˚C to +70˚C ........................................16-Pin TSSOP SP3232EEA ............................................-40˚C to +85˚C ........................................16-Pin SSOP SP3232EEA/TR ......................................-40˚C to +85˚C ........................................16-Pin SSOP SP3232EEP ............................................-40˚C to +85˚C ..........................................16-Pin PDIP SP3232EET ............................................-40˚C to +85˚C ......................................16-Pin WSOIC SP3232EET/TR ......................................-40˚C to +85˚C ......................................16-Pin WSOIC SP3232EEN............................................-40˚C to +85˚C .......................................16-Pin nSOIC SP3232EEN/TR ......................................-40˚C to +85˚C .......................................16-Pin nSOIC SP3232EEY ............................................-40˚C to +85˚C ......................................16-Pin TSSOP SP3232EEY/TR ......................................-40˚C to +85˚C ......................................16-Pin TSSOPANALOG EXCELLENCESipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.Sipex Corporation Headquarters and Sales Office233 South Hillview Drive Milpitas, CA 95035TEL: (408) 934-7500FAX: (408) 935-7600Available in lead free packaging. To order add “-L” suffix to part number.Example: SP3232EEN/TR = standard; SP3232EEN-L/TR = lead free /TR = Tape and Reel。
Konzernnorm VW 01132Ausgabe 2015-02 Klass.-Nr.:01762Schlagwörter:Blechdurchzug, Direktverschraubung, FDS, Fließlochformen, Prüfung, gewindeformende SchraubenLoch- und gewindeformende SchraubenPrüfungFrühere AusgabenVW 01132: 2007-04ÄnderungenGegenüber der VW 01132: 2007-04 wurden folgende Änderungen vorgenommen:–Norm wurde inhaltlich vollständig überarbeitet und neu strukturiert–Fachverantwortung geändertSeite 1 von 20 Norm vor Anwendung auf Aktualität prüfen.Die elektronisch erzeugte Norm ist authentisch und gilt ohne Unterschrift.Alle Rechte vorbehalten. Weitergabe oder Vervielfältigung ohne vorherige Zustimmung einer Normenabteilung des Volkswagen Konzerns nicht gestattet.© Volkswagen Aktiengesellschaft VWNORM-2014-06a-patch5Seite 2VW 01132: 2015-02InhaltSeiteAnwendungsbereich ...................................................................................................2Begriffe .......................................................................................................................4Zeichnungseintragungen und Bezeichnung ...............................................................4Schraubenzeichnung .................................................................................................4Zeichnung der Verbindung .........................................................................................5Anforderungen ...........................................................................................................5Qualitätsmerkmale .....................................................................................................6Allgemeines ................................................................................................................6Äußere Qualitätsmerkmale ........................................................................................6Innere Qualitätsmerkmale ..........................................................................................8Festigkeitsmerkmale ................................................................................................11Prüfung der Qualitätsmerkmale ...............................................................................11Allgemeines ..............................................................................................................11Prüfung der äußeren Qualitätsmerkmale .................................................................13Sichtprüfung nach DIN EN 13018 ............................................................................13Maßprüfung ..............................................................................................................13Prüfung der inneren Qualitätsmerkmale ..................................................................13Probenentnahme ......................................................................................................13Probenpräparation ...................................................................................................13Festigkeitsuntersuchungen ......................................................................................14Allgemeines ..............................................................................................................14Scherzugprüfung ......................................................................................................14Schälzugprüfung ......................................................................................................16Kopfzugprüfung ........................................................................................................17Beurteilung der Fügeverbindung ..............................................................................19Äußere Qualitätsmerkmale ......................................................................................19Innere Qualitätsmerkmale ........................................................................................19Festigkeitsuntersuchungen ......................................................................................19Gesamtbeurteilung der Fügeverbindung ..................................................................19Fertigstellungslösung ...............................................................................................20Mitgeltende Unterlagen ............................................................................................20Literaturverzeichnis ..................................................................................................201233.13.2455.15.25.35.466.16.26.2.16.2.26.36.3.16.3.26.46.4.16.4.26.4.36.4.477.17.27.37.48910AnwendungsbereichDiese Norm gilt für die Prüfung von 2- und 3-Material-Verbindungen mit selbstlochenden und ge‐windefurchenden Schrauben in Leichtmetall- und Stahl-Werkstoffen im Fahrzeug-Karosseriebau.Das Verfahren eignet sich besonders für metallische Werkstoffe als Einschraubteil. Faserverstärk‐te Kunststoffe werden momentan nicht als Einschraubteil genutzt.Als vorgelochtes Klemmteil können nahezu beliebige metallische Werkstoffe sowie faserverstärkte Kunststoffe verwendet werden. Für die Ausführung mit ungelochtem Klemmteil entfallen hoch- und höchstfeste Stähle sowie faserverstärkte Kunststoffe als Klemmteil.Die Verbindung kann mit und ohne Klebstoff in der Fügeebene gefertigt werden. Die Anwendbar‐keit dieses Verfahrens setzt aufgrund von hohen Anpresskräften eine robotergeführte Schrauban‐lage voraus.In dieser Norm wird sowohl das loch- und gewindeformende Schrauben mit einem bzw. mehreren Vorlöchern, als auch ohne Vorlochoperation betrachtet. Sie soll durch einheitliche Prüfvorgaben vergleichbare Prüfergebnisse sicherstellen.1Seite 3VW 01132: 2015-02 Eine Besonderheit des Schraubverfahrens ist der Einsatz in Dünnblechbereichen von 0,6 mm bis 6,0 mm Wandstärke. Der Schraubenwerkstoff besitzt dabei eine höhere Werkstoffgüte als der Ein‐schraubwerkstoff. Bei der Ermittlung eines Überdrehmomentes versagt grundsätzlich das Gewinde des Einschraubwerkstoffs. Durch das Formen eines spielfreien Gewindes und des hohen Reib‐schlusses durch die Prozessführung wird immer eine gute Selbsthemmung erzeugt. Die Vorspann‐kräfte in der Schraube sind dadurch von geringer Bedeutung.Der Einsatzbereich ist auf den Schraubendurchmesser 3 mm bis 6 mm begrenzt. Materialdicken‐kombinationen müssen über Versuche abgesichert werden. Der Prozessablauf zum Einbringen loch- und gewindeformender Schrauben mit klemmteilseitigem Vorloch ist in Bild 1 und der Pro‐zessablauf zum Einbringen loch- und gewindeformender Schrauben ohne Vorlochoperation ist in Bild 2 dargestellt.Bild 1 – Prozessablauf zum Einbringen loch- und gewindeformender Schraubenmit klemmteilseitigem VorlochBild 2 – Prozessablauf zum Einbringen loch- und gewindeformender Schraubenohne VorlochoperationSeite 4VW 01132: 2015-02BegriffeDeutscher Verband für Schweißen und verwandte Verfahren e. V.Europäische Forschungsgesellschaft für Blechbearbeitung e. V.Faserverstärkter KunststoffMaximale Scherzugkräfte, Schälzugkräfte oder Kopfzugkräfte in kNMindestwert der Scherzugkräfte, Schälzugkräfte oder Kopfzugkräfte in kN Mittelwert der Scherzugkräfte, Schälzugkräfte oder Kopfzugkräfte in kN ProduktdatenmanagementTechnische Leitlinie Dokumentation Verbindungstechnik ApplikationWerkzeug- und Verbindungsdatenmanagement Spalt unter dem Schraubenkopf in mm Spalt zwischen den Fügepartnern in mmAbstand zwischen Mittelpunkt des Schraubenschaftes bis zum Punkt, bei dem das Spaltmaß zwischen den Fügepartnern X S ≤ 0,1 mm ist in mm minimaler Randabstand bzw. minimaler Abstand zur Beschnittkante in mm Fügeflanschbreite in mmminimaler Radienabstand bzw. minimaler Abstand zur Radienauslauflinie in mmProbenbreite in mm Probenlänge in mmFreie Einspannlänge der Proben in mm Länge der Überlappung in mm StandardabweichungZeichnungseintragungen und BezeichnungVon dieser Norm abweichende Festlegungen der Entwicklung sind in der Zeichnung anzugeben.SchraubenzeichnungIn die Zeichnung der Schraube sind außer den Maßangaben und Toleranzen folgende Angaben einzutragen:–Werkstoff der Schraube,–Härte der Schraube (HV im Querschliff gemessen mit Angabe des Messortes(Kopf/Schaft/Oberfläche/Kern etc.),–Beschichtungsart und -dicke, z. B. nach TL 245 und TL 233 (z. B. t 610; t 611; t 650),–im Falle einer zusätzlichen Gleitmittelbeschichtung ist Produktname und Auftragsdicke anzu‐geben,–für partielle Beschichtungen ist zusätzlich der Auftragsbereich in der Zeichnung darzustellen,–Angabe der Norm- oder Wiederholteilnummer,–Zeichnungshinweis: …Sprödbrüche durch prozessbedingte Wasserstoffanreicherung sind nichtzulässig“ siehe auch DIN EN ISO 4042 (Verbindungselemente und galvanische Überzüge)und DIN EN ISO 15330 (Verspannungsversuch),–Baumusterfreigabe,–Information über spezielle Funktionseigenschaften z. B. trilobularer Schaftanteil2 DVS EFB FVK F max F min F mittel PDM TLD VTA WVM X KS X S X SF a Bmin a Fa RALminb 0l 0l F l Üs 33.1Seite 5VW 01132: 2015-02Die Anforderung, die Schraubverbindungen nach dieser Norm zu prüfen, ist in Zeichnungen oder Lastenheften wie folgt anzugeben:Prüfung Loch- und gewindeformende Schrauben nach VW 01132Legende Schraube d 1Gewindenenndurchmesser d 2Scheibendurchmesser k Kopfhöhes Scheibendicke (angepresst)l g nutzbare Gewindelänge lNennlängeBauteil t 1Klemmteildicke t 2Einschraubteildicke bGewindelänge min.Bild 3 – Geometrische Kenngrößen der VerbindungZeichnung der VerbindungIn die Zeichnung der Verbindung sind folgende Angaben einzutragen:–Schraubenbezeichnung (Norm- bzw. Wiederholteilnummer),–Einschraubrichtung,–Fügepunktbezeichnung nach VTA,–Anzugsdrehmomente müssen mit einem geeigneten Werkzeug (Tool) dokumentiert werdenz. B. PDM, WVM, Fügedatenbank etc.AnforderungenGrundlage für die Beurteilung der Verbindung mit loch- und gewindeformenden Schrauben ist die freigegebene Bauteilzeichnung. Vom Umfang dieser Norm abweichende Anforderungen werden in der Zeichnung festgelegt und haben Vorrang. Zusätzlich notwendige Maßnahmen zur Erfüllung3.24Seite 6VW 01132: 2015-02spezieller Qualitätsanforderungen sind zwischen den Verantwortlichen der Planung, Konstruktion und Qualitätssicherung abzustimmen.Die Erstellung eines durchgängigen Prüfkonzeptes ist Aufgabe der Planung unter Berücksichti‐gung der Prüfnorm. Detaillierte Prüfanweisungen werden auf Grundlage der jeweils geltenden Nor‐men und Zeichnungsangaben durch den Betreiber erstellt.Die Prüfmethoden und die Prüfhäufigkeit werden entsprechend den Anforderungen an die Füge‐verbindung und der Prozesssicherheit zwischen der Planung, der Qualitätssicherung und dem Be‐treiber abgestimmt und festgelegt.Qualitätsmerkmale AllgemeinesDie Qualität der Verbindung mit loch- und gewindeformenden Schrauben wird generell über ein vorgegebenes Prozessfenster der Fertigungsanlage sichergestellt.Die Qualität der Verbindung mit loch- und gewindeformenden Schrauben ist durch entsprechende Prüfungen der äußeren und inneren Qualitätsmerkmale nachzuweisen (siehe Tabelle 1 und Tabelle 2).Wird eine Fügestelle als n. i. O. bewertet, so sind geeignete Maßnahmen zu ergreifen, um zu ei‐nem i. O.-Ergebnis zu gelangen. Das in der Zwischenzeit gefertigte Los ist zu kontrollieren und ge‐gebenenfalls fertigzustellen bzw. nachzuarbeiten.Prozessbegleitende Prüfungen der Schraubverbindungen müssen an Proben erfolgen, die unter gleichen Bedingungen wie die Bauteilverbindungen hergestellt werden und in ihren Eigenschaften dem zu prüfenden Fall entsprechen. Beim Einsatz von Klebstoff werden die Prüfungen …Innerer Qualitätsmerkmale“ immer mit ausgehärtetem Klebstoff und …Festigkeitsuntersuchungen“ immer mit nicht ausgehärtetem Klebstoff durchgeführt.Die Prüfung eines Nachziehdrehmomentes kann mit geeigneten Drehmomentschlüsseln am Bau‐teil durchgeführt werden. Wenn nicht gesondert vereinbart, ist die Prüfung der gefügten Proben vor einer Karosserie-Wärmebehandlung vorzunehmen. Fügestellen mit zusätzlichem Einsatz von Klebstoff lassen sich nachträglich nicht sinnvoll über ein Nachziehdrehmoment bewerten.Auf die Festigkeit der Verbindung mit loch- und gewindeformenden Schrauben kann in der Regel durch eine mechanisch-technologische Prüfung (z. B. Scherzug-, Schälzug- und Kopfzugprüfung)geschlossen werden.Bei der serienbegleitenden Prüfung kann bei einer i. O.-Beurteilung der inneren Qualitätsmerkmale auf die Scherzug-, Schälzug- und Kopfzugprüfung verzichtet werden.Spezielle Anweisungen zur Ausführung der Prüfung und zum Verhalten bei n. i. O.-Ergebnissen sind in einer Prüfanweisung festzulegen.Prüfhäufigkeit, Prüfumfang und Prüfverfahren sind in einem Prüfkonzept festzulegen und zwischen Planung, Betreiber, Qualitätssicherung und bei Bedarf der Technischen Entwicklung abzustimmen.Jedes Qualitätsmerkmal wird eigenständig bewertet.Äußere QualitätsmerkmaleGrenzwerte für äußere Qualitätsmerkmale sind in Tabelle 1 festgelegt.5 5.15.2Seite 7VW 01132: 2015-02Tabelle 1 – Grenzwerte für äußere Qualitätsmerkmale und BewertungNr.Merkmal DarstellungBeschreibungGrenzwerteBewertung 1.1Schraub-verbindung––vorhanden i. O.nicht vorhanden n. i. O.1.2Position––gemäß Zeichnungi. O.nicht gemäßZeichnungn. i. O.1.3Füge-richtung––gemäß Zeichnung i. O.nicht gemäß Zeichnung n. i. O.1.4Kopf-auflageDie Kopfauflage bzw. der Spalt unter dem Schrauben‐kopf X KS wird mit einer Prüflehre an der nicht zerstörten Karosserie überprüft.X KS < 0,05 mmi. O.X KS ≥ 0,05 mm n. i. O.mit Vorloch ohne Vorloch1.5Rand-abstandBei Flanschbreiten ≤ 18 mm müssen die Grenzwerte in‐dividuell festgelegt werden.a Bmin ≥d 22 +1 mmi. O.a Bmin <d 22 +1 mmn. i. O.1.6Radien-abstanda RALmin ≥d 22 +1 mmi. O.a RALmin <d 22+1 mmn. i. O.Seite 8VW 01132: 2015-02Innere QualitätsmerkmaleGrenzwerte für innere Qualitätsmerkmale sind in Tabelle 2 festgelegt.Tabelle 2 – Grenzwerte für innere Qualitätsmerkmale und BewertungNr.Merkmal Darstellung Beschreibung Grenzwerte Bewertung mit Vorloch ohne Vorloch2.1Kopf-auflageDie Kopfauflage bzw. der Spalt unter dem Schrau-benkopf X KS wird mit einer Messlehre an der nichtzerstörten Karosserie überprüft. Die Bewertung imSchliffbild ist nicht sinnvoll, da durch Präparations‐artefakte größere Spalte generiert werden können.–Bewertung nichtsinnvoll 2.2Gewinde im ver‐schraubtenMaterial–intakteGewindegängei. O.zerstörteGewindegängen. i. O.2.3Gewindeflankender Schraube (imBereich l g)–intakteGewindeflankeni. O.ausgebrochene oderabgearbeiteteGewindeflankenn. i. O. 5.3Seite 9 VW 01132: 2015-02Nr.Merkmal Darstellung Beschreibung Grenzwerte Bewertung mit Vorloch ohne Vorloch2.4Abdeckung desVorlochs imKlemmteil–vollständige Abdeckung i. O.keine vollständigeAbdeckungn. i. O.2.5Spalt zwischenFügepartnernDer Spalt zwischen den Fügepartnern muss nachdem definierten Abstand X SF = 9 mm ein SpaltmaßX S ≤ 0,2 mm aufweisen. Der Abstand X SF wird vomMittelpunkt des Schraubenschaftes gemessen. DasAnzugsdrehmoment muss erreicht werden Falls dieSpaltsituation mit Klebstoff gefüllt ist, sind auchSpalte X S > 0,2 mm zulässig.für a F = 18 mmX SF ≤ 9 mmi. O.Für a F > 18 mm ist dieVerbindung als i. O. zuwerten, auch wenn X SF> 9 mm, der Spalt je‐doch zur Flanschbe‐schnittkante geschlos‐sen ist und dasAnzugsdrehmomenterreicht wird.i. O.für a F = 18 mmX SF > 9 mmn. i. O.2.6PartielleKopfauflage–vollständige Kopfaufla‐gei. O.partielle Kopfauflagemit zusätzlicher Abdich‐tungi. O.partielle Kopfauflage n. i. O.Seite 10VW 01132: 2015-02Nr.Merkmal Darstellung Beschreibung Grenzwerte Bewertung mit Vorloch ohne Vorloch2.7Füllung derGewindeflanken–nicht vollständig gefüllt,Anzugsdrehmomenterreichti. O.vollständig gefüllt,Anzugsdrehmomentnicht erreichtn. i. O.2.8Durchbiegung desverschraubtenMaterials–Eine Durchbiegung des verschraubten Materialstritt insbesondere bei Materialdicken kleiner 1 mmauf. Hierbei ist besonders darauf zu achten, dassmindestens ein vollständiger, tragender Gewinde‐gang vorhanden ist.Durchbiegung, abermindestens ein voll‐ständiger, tragenderGewindegangi. O.Durchbiegung, aberkein vollständiger Ge‐windegang.n. i. O.FestigkeitsmerkmaleF min. und F mittel sind abhängig von der Materialdickenkombination und der (Nenn-)Festigkeit der durch loch- und gewindeformende Schrauben gefügten Werkstoffe. Erreichbare Werte müssen ex‐perimentell ermittelt werden.F min. wird wie folgt ermittelt:F min = F mittel - 2s(1)Die ausgewerteten Festigkeitswerte müssen dabei aus nach Abschnitt 5.3 i. O. geprüften Proben‐reihen ermittelt werden.Die Bewertung der Bruchart und Bruchfläche erfolgt gemäß Tabelle 3.Tabelle 3 – Brucharten und zugeordnete KennbuchstabenNr.MerkmalDarstellungAbkürzung3.1Aufreißen des Loches im Klemmteil F3.2Ausknöpfen desSchraubenkopfes aus dem Klemmteil K3.3Ausreißen des Schrau‐benschaftes aus dem Einschraubteil S 3.4Abscheren des Schraubenkopfes A 3.5Abscheren im Bereich des SchraubenschaftesEPrüfung der Qualitätsmerkmale AllgemeinesBei Bemusterungen ist eine Gesamtbeurteilung der Fügeverbindungen erforderlich. Dies umfasst den Nachweis, dass alle in dieser Norm beschriebenen Qualitätsmerkmale i. O. sind.Nach Optimierungen, Anpassungen von Prozessparametern usw. ist eine Freigabeprüfung nach ausgewählten, wie in der Serie angewandten Qualitätsmerkmalen, durchzuführen.Die zum Einsatz kommenden Qualitätsmerkmale der Serienprüfung (Linienprüfung und TLD-Raum oder entsprechend) werden im Team Planung, Fertigung, Qualitätssicherung und wenn nötig Kon‐struktion und Verfahrenstechnik abgestimmt und festgelegt. Diese Qualitätsmerkmale müssen in ihrer Gesamtheit geeignet sein, die Stabilität des Prozesses und damit die Qualität der Fügeverbin‐dung zu überwachen.Zu jedem Qualitätsmerkmal können Prüfverfahren nach der Matrix in Tabelle 4 ausgewählt werden.5.4 66.1Tabelle 4 – Prüfung der QualitätsmerkmaleQualitätsmerkmalPrüfungS i c h t p r üf u n gM a ßp r üf u n gM e t a l l o g r a f i eM e i ße l p r üf u n g F a l z öf f n u n gU l t r a s c h a l l p r üf u n gT h e r m o g r a f i eF a r b e i n d r i n g p r üf u n gS c h e r z u gS c h äl z u g K o p f z u g Äu ße r e Q u a l i t ät s m e r k m a l eSchrauben-verbindung x ––––––––––Position x ––––––––––Fügerichtung x ––––––––––Kopfauflage –x –––––––––Randabstand –x –––––––––Radienabstand –x –––––––––I n n e r e Q u a l i t ät s m e r k m a l eKopfauflage –x –––––––––Gewindeim verschraubten Material ––x––––––––Gewindeflanken der Schraube (im Bereich l g )––x ––––––––Abdeckung des Vorlochs im Klemmteil ––x ––––––––Spalt zwischen Fügepartnern ––x ––––––––Partielle Kopfauflage ––x ––––––––Füllung derGewindeflanken ––x ––––––––Durchbiegung des verschraubten Materials––x ––––––––F e s t i g k e i t s m e r k m a l eScherzugkraft ––––––––x ––Schälzugkraft–––––––––x –Kopfzugkraft ––––––––––xPrüfung der äußeren QualitätsmerkmaleDie Anzahl, die Position und die Fügerichtung der Verbindung mit loch- und gewindeformenden Schrauben muss entsprechend der gültigen Zeichnung gegeben sein.Der Rand- und Radienabstand muss mittels Messschieber oder ähnlichem geprüft werden. Die Unregelmäßigkeiten der äußeren Qualitätsmerkmale sind nach Tabelle 1 zu bewerten.Sichtprüfung nach DIN EN 13018Die Sichtprüfung ist ein zuverlässiges Verfahren zur Bewertung der äußeren Qualitätsmerkmale von Verbindungen mit loch- und gewindeformenden Schrauben. Die Fügeverbindungen sind mit bloßem Auge zu prüfen.MaßprüfungDie Maßprüfung ist ein Verfahren unter Anwendung von Messmitteln, wie z. B. Messschieber oder Messuhr, zur Erfassung geometrischer Kenngrößen.Prüfung der inneren QualitätsmerkmaleDie Unregelmäßigkeiten der inneren Qualitätsmerkmale sind nach Tabelle 2 zu bewerten.Prozessüberwachung und zerstörungsfreie Prüfung sind anstatt zerstörender Prüfung zulässig. Die Ergebnisse sind jedoch regelmäßig durch zerstörende Prüfung zu verifizieren.ProbenentnahmeDie Probenentnahme soll nach einem Schnittplan erfolgen. Zur Prüfung werden die zu untersuch‐enden Schraubverbindungen mittig längs der Schraubenachse geschnitten und metallografische Schliffe angefertigt. Die Schnittrichtung sollte senkrecht zum Flanschbeschnitt erfolgen.ProbenpräparationDie Schliffflächen sind so zu präparieren, dass die in Tabelle 2 aufgezeigten Q-Merkmale eindeutig beurteilbar sind. Bei Serienprüfungen sind in der Regel Makroschliffe ausreichend. Prozessbeglei‐tende Prüfungen erfolgen anhand von Makroschliffen. Bei Unregelmäßigkeiten und zur Analyse müssen Mikroschliffe erstellt werden. Bei Freigabeprüfungen müssen bei der Schliffbildanalyse die tatsächlichen Blechdicken im Schraubbereich vermessen werden. Es sollen jeweils 5 Schliffe pro Materialpaarung genommen werden. Die Untersuchung der Verbindung erfolgt bei geeigneter Ver‐größerung, um die gesamte Verbindung und das Umfeld der Verbindung erfassen zu können. Soll‐te es notwendig sein, Schliffe einzubetten, so müssen Materialpaarungen, die FVK beinhalten,stets kalt eingebettet werden.6.2 6.2.16.2.26.36.3.16.3.2Festigkeitsuntersuchungen AllgemeinesScherzugkräfte, Schälzugkräfte und Kopfzugkräfte werden vorzugsweise an Arbeitsproben (Pro‐bebleche) ermittelt, die unter gleichen Bedingungen wie die Bauteilverbindungen hergestellt werden und in ihren Eigenschaften dem zu prüfenden Fall entsprechen. Beim Einsatz von Kleb‐stoff werden die Prüfungen immer mit nicht ausgehärtetem Klebstoff durchgeführt.Dies gilt für:–das Probenmaterial (Werkstoff, Dicke, Festigkeit, Oberflächenbeschaffenheit und Oberflä-chenbehandlung)–die Fügevorrichtung und Fügewerkzeuge–die Angabe zum Klebstoff (bei Vorhandensein)–die Wärmebehandlung der FügepartnerIm Prüfprotokoll müssen folgende Angaben vorhanden sein:–die Fügeparameter Setzkraft und Anzugsdrehmoment –die Material-Dickenkombination –die Fügerichtung–die Probenform und verwendete ÜberlappungslängeAlternativ dazu ist es zulässig, Festigkeitskennwerte an Bauteilproben aus Realbauteilen zu ermit‐teln. Dabei ist sicherzustellen, dass Messwerte nicht durch Präparationseinflüsse verfälscht werden.Für weitergehende Informationen bezüglich der Festigkeitsprüfung wird auf das DVS-EFB 3480-1verwiesen.Scherzugprüfung ProbengeometrieDie Probengeometrie ist in Bild 4 dargestellt. Der Einspannbereich ist dunkelgrau markiert. Für 2-Material-Verbindungen beträgt die Probenbreite 45 mm, die Länge der Einzelbleche mindestens 110 mm und die Überlappung der Fügepartner (Blech und Profil) 18 mm. Für Gusswerkstoffe und faserverstärkte Kunststoffe beträgt die Überlappung der Fügepartner 25 mm.Für 3-Material-Verbindungen müssen geeignete Überlappungslängen gewählt und in der Ergebnis‐darstellung aufgeführt werden.Für bauteilähnliche oder prozessbegleitende Prüfungen kann die Überlappungslänge der vorlie‐genden Flanschlänge im Fahrzeug angepasst werden. Dies muss jedoch in der Ergebnisdarstel‐lung aufgeführt werden.Der Fügepunkt befindet sich im geometrischen Mittelpunkt der Einzelblechüberlappung.Für die Gewährleistung einer Vergleichbarkeit der ermittelten Ergebnisse ist es notwendig, dass die freie Einspannlänge und die Überlappung konstant gehalten werden.Für alle Prüfungen ist eine Mindestanzahl von 5 Proben notwendig.6.4 6.4.16.4.2 6.4.2.1Bild 4 – Probengeometrie für ScherzugprüfungPrüfungsdurchführungBei der Scherzugprüfung werden die Maximalkraft der Verbindung und die Bruchart ermittelt. Die Bruchart muss entsprechend den Abkürzungen in Tabelle 3 im Prüfbericht festgehalten werden.freie Einspannlänge der Proben 95 mm Prüfgeschwindigkeit 10 mm/min Probenanzahl≥ 5Unterlegbleche zum Ausgleich der Blechdicke sind bei Einzelblechdicken der Proben von 3 mm und größer erforderlich.Für faserverstärkte Kunststoffe wird empfohlen, die Proben im Bereich der Einspannfläche mit ei‐ner geeigneten Verstärkung zu versehen, um ein Rutschen aus der Einspannung zu vermeiden.AnforderungenEin Abscheren des Schraubenkopfes (A) oder ein Abscheren im Bereich des Schraubenschaftes (E), siehe Tabelle 3, stellt ein besonderes Schadensbild dar. Hier ist eine Analyse der Bruchflä‐chen und deren Dokumentation notwendig.BeurteilungDie Beurteilung gilt für Freigabeprüfungen (Prozessqualifikation) und für die Serienüberwachung.Für die Freigabeprüfung sind 5 Proben nach Abschnitt 6.4.2.1 anzufertigen.Für die serienbegleitende Prüfung sind beim Auftreten von Unregelmäßigkeiten im Schliff 5 Proben nach Abschnitt 5.3 anzuliefern, die unter den Bedingungen der laufenden Serie gefertigt wurden (gleicher Werkstoff, Materialdicke, Wärmebehandlung, ...). Bei einer i. O.-Beurteilung nachAbschnitt 5.3 kann bei der serienbegleitenden Prüfung auf Scher-, Schäl- und Kopfzugprüfung ver‐zichtet werden.Die Mindestscherzugkraft und der Mindestmittelwert der Scherzugkräfte sind abhängig von der Materialdickenkombination und der (Nenn-)Festigkeit der verschraubten Werkstoffe. Erreichbare Werte müssen experimentell ermittelt werden, siehe Formel (1).Die ausgewerteten Festigkeitswerte müssen dabei aus nach Abschnitt 5.3 i. O. geprüften Proben‐reihen ermittelt werden.6.4.2.26.4.2.36.4.2.4。