高中数学解题思路大全—用待定系数法求三角函数最值 (1)
- 格式:doc
- 大小:396.00 KB
- 文档页数:3
求三角函数最值的四种方法求解三角函数最值问题的基本途径与其他函数最值问题相同,一方面要利用三角函数的特殊性质,例如有界性,另一方面要将问题转化为我们熟悉的函数的最值问题。
以下介绍几种常见的求解三角函数最值的策略。
1.配方转化策略对于能够化为形如y = a sin x + b sin x + c或y = a cos x +b cos x + c的三角函数最值问题,可以将其看作是sin x或cosx的二次函数最值问题,常常利用配方转化策略来解决。
例如,对于函数y = 5 sin x + cos 2x的最值问题,可以将其转化为y = -2 sin x + 5 sin x + 1,然后利用sin x的范围[-1.1]求得最小值为-6,最大值为4.2.有界转化策略对于能够通过变形化为形如y = A sin(ωx + φ)等形式的三角函数,可以利用其有界性来求解最值。
这是常用的求解三角函数最值问题的策略之一。
3.单调性转化策略借助函数单调性是求解函数最值问题常用的一种转化策略。
对于三角函数来说,常常是先化为y = A sin(ωx + φ) + k的形式,然后利用三角函数的单调性求解。
4.导数法对于一些较为复杂的三角函数最值问题,可以利用导数法求解。
通过对函数求导,找到其临界点,然后比较临界点和函数在端点处的取值,即可求得函数的最值。
在求解三角函数最值问题时,需要注意将三角函数准确变形为sin x或cos x的二次函数的形式,正确配方,并把握sinx或cos x的范围,以防止出错。
1,即y=−x+2设点P的坐标为(x,y),则y−0=y−yPx−2=x−xP解得xP=cosx,yP=sinx代入直线方程得y=−(cosx−2)+2=4−cosx所以y的最小值为3,当x=π/2时取到最小值。
答案]3。
高中数学如何求解三角函数的极值和最值一、引言三角函数是高中数学中的重要内容,求解三角函数的极值和最值是数学分析的基本技能之一。
本文将介绍如何通过分析和计算来求解三角函数的极值和最值,以及一些常见的解题技巧。
二、求解三角函数的极值1. 极值的定义在数学中,极值是指函数在某个区间内取得的最大值或最小值。
对于三角函数而言,极值点就是函数图像上的顶点或谷底。
2. 求解极值的方法(1)利用导数法求解对于一元函数,可以通过求导数来确定其极值点。
对于三角函数而言,可以先求出函数的导数,然后令导数等于零,解方程得到极值点。
例如,考虑函数f(x) = sin(x),其导数f'(x) = cos(x)。
令f'(x) = 0,解得x = π/2 + kπ,其中k为整数。
因此,函数sin(x)在x = π/2 + kπ处取得极值。
(2)利用周期性求解由于三角函数具有周期性,可以利用周期性来求解极值。
例如,考虑函数f(x)= sin(2x),它的周期为π。
因此,只需求解f(x)在一个周期内的极值即可。
在区间[0, π]上,函数f(x)在x = π/4处取得最大值1,而在x = 3π/4处取得最小值-1。
三、求解三角函数的最值1. 最值的定义在数学中,最值是指函数在某个区间内取得的最大值或最小值。
对于三角函数而言,最值点就是函数图像上的最高点或最低点。
2. 求解最值的方法(1)利用周期性求解与求解极值类似,由于三角函数具有周期性,可以利用周期性来求解最值。
例如,考虑函数f(x) = sin(x),它的周期为2π。
因此,只需求解f(x)在一个周期内的最值即可。
在区间[0, 2π]上,函数f(x)在x = π/2处取得最大值1,而在x = 3π/2处取得最小值-1。
(2)利用函数图像求解通过观察函数的图像,可以直观地确定函数的最值点。
例如,考虑函数f(x) = cos(x),它的图像是一条波浪线。
从图像上可以看出,函数f(x)在x = 0处取得最大值1,而在x = π处取得最小值-1。
三角函数最值问题求法三角函数是高中数学中常见的一种函数类型,它与三角形的边长和角度之间的关系密切相关。
在解决三角函数最值的问题时,我们通常需要根据特定的条件和信息来确定函数的最大值或最小值。
下面将详细介绍三角函数最值问题的求解方法。
1.函数的定义域和值域分析:在解决三角函数最值问题之前,我们首先要对函数的定义域和值域进行分析。
不同的三角函数具有不同的定义域和值域,对于正弦函数和余弦函数,其定义域是整个实数集,值域是[-1,1];而对于正切函数,其定义域是除去kπ(k∈Z)的全体实数,值域是整个实数集。
2.函数的周期性利用:三角函数具有周期性的特点,即对于一些三角函数f(x),存在正整数T,使得对于任意实数x,有f(x+T)=f(x)。
利用函数的周期性特点,我们可以通过分析一个周期内的变化趋势,从而确定函数的最值。
常见的周期为π或2π。
在具体求解过程中,我们可以通过将函数的自变量进行换元,使其处于一个周期内进行分析。
3.导数的求解和极值点分析:如果一个三角函数是连续的,并且在一些区间内可导,则可以通过求导数的方法来确定指定区间上的局部最值。
我们可以通过求导数并令其等于零,求解出导数为零的点,然后通过第一、第二导数的正负性进行判断,得出函数的极值点和最值。
同时,我们还可以利用导数的符号变化来确定驻点和极值点的位置。
4.图像分析法:对于特定的三角函数问题,我们可以通过观察函数的图像来推测函数的最值。
通过绘制函数的图像,并结合定义域和值域的分析,我们可以直观地判断出函数在一些区间上的最值。
对于常见的正弦函数、余弦函数和正切函数,我们可以通过观察其图像的特点,确定函数在一个周期内的最值位置。
5.利用特殊三角函数的性质:在求解三角函数最值问题时,我们可以利用特殊的三角函数性质来进行分析。
例如,正弦函数和余弦函数在定义域内是交错递增和递减的,因此我们可以通过分析数值的正负性来确定函数在一些区间上的最值。
而正切函数在定义域上的周期是π,其在相邻两个零点之间是增函数还是减函数,从而确定函数的极值点。
求三角函数最值的常用解题方法
一. 转化为二次函数求解三角函数的最值,适用于题目中出现的三角函数分别为一次和二次时
例1.已知函数的最大值为1,求的值
解:
结论:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成
时,要考虑的取值及的条件,才能正确求出最值。
二. 使用辅助角公式(化一法)求解三角函数的最值
适用于题目中出现的三角函数同次时
—1—
例2.求函数的值域。
分析:降幂后发现式中出现了和,这时再化成一个角的三角函数便可求得。
解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分组成,其中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。
—2—
三.利用函数值域的有界性,求解三角函数的最值
例3.求函数的值域
解:
—3—
四.使用换元法求解三角函数的最值
例4.求函数的最值。
分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。
解:
—4—。
高中三角函数三角函数的不等式与最值问题在高中数学学习中,三角函数是一个重要的章节。
除了学习三角函数的定义、性质和图像等基本知识外,我们还需要掌握三角函数的不等式和最值问题的解决方法。
本文将为大家详细介绍高中三角函数的不等式与最值问题,并提供相应的解决思路和方法。
一、三角函数的不等式1. 正弦函数的不等式正弦函数的定义域为实数集,而正弦函数的值的范围在[-1, 1]之间。
因此,当我们解决正弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的正弦函数转化为关于θ的等价不等式;(3)根据正弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式sinθ > 0,我们可以按照上述步骤进行求解:(1)由于正弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式sinθ > 0转化为等价不等式:0 < sinθ < 1;(3)根据正弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (2kπ, 2kπ + π/2),其中k ∈ Z。
2. 余弦函数的不等式余弦函数的定义域为实数集,而余弦函数的值的范围在[-1, 1]之间。
因此,当我们解决余弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的余弦函数转化为关于θ的等价不等式;(3)根据余弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式cosθ ≥ 0,我们可以按照上述步骤进行求解:(1)由于余弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式cosθ ≥ 0转化为等价不等式:cosθ > -1 或cosθ < 1;(3)根据余弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (-2kπ, -2kπ + π/2) U (2kπ, 2kπ + π),其中k ∈ Z。
求三角函数最值的四种常用解题方法
求三角函数最值的常用解题方法
一.使用配方法求解三角函数的最值
例1.已知函数的最大值为1,求的值
解:
结论:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成
时,要考虑的取值及的条件,才能正确求出最值。
二.使用化一法求解三角函数的最值
例2.求函数的值域。
分析:降幂后发现式中出现了和,这时再化成一个角的三角函数便可求得。
—1—
解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分组成,其中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。
三.使用基本不等式法求解三角函数的最值
例3.求函数的值域
—2—
解:
解:
四.使用换元法求解三角函数的最值
例4.求函数的最值。
分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。
解:
—3—。
2020年第11期(上)中学数学研究11待定系数法解决一类三角函数的最值问题广东省中山纪念中学(528454)邓启龙高考真题(2018年高考全国卷I理科第16题)已知函数f(x)=2sin x+sin2x,则f(x)的最小值是___.分析函数f(x)中既有sin x,又有sin2x=2sin x cos x,初看感觉无从下手,只能通过求导来求最值,于是得到解法一.然后观察f(x)的结构,发现可以利用不等式来求最值,于是得到解法二,三,四.解法一只需考虑一个周期[0,2n].f(x)=2cos x+2cos2x=2(2cos2x+cos x—1)=2(cos x+1)(2cos x—1),令f'(x)=0得x=3,n,¥.易得当x=3时,f(x)取最大值学,当x=罟时,f(x)取最小值-学.解法二先求f(x)在一个周期[0,2n]上的最大值.令x€[0,2〕,则f(n—x)=2sin x—sin2x< f(x),f(n+x)=sin2x—2sin x W f(x),f(2n—x)=—2sin x—sin2x W f(x),所以f(x)的最大值在[。
冷]上取到.易知sin x在[0,n]上凸,由琴生不等式得f(x)=sin x+sin x+sin(n—2x)W3sin x+x+n—2x3当且仅当x=3时取等号.所以当x=3时,f(x)取最大值进.又因为f(x)是奇函数,所以当x=-3时,f(x)取最小值-乎.nx€[0,2],f(x)=2sin x+2sin x cos x=2sin x(1+cos x)sin2x(1+cos x)2=2\J(1—cos x)(1+cos x)3 =22__________________________________________ =3(1—cos x)•(1+cos x)•(1+cos x)-(1+cos x) 32/「3(1—cos x)+3(1+cos x)]4^/3 W制[-----------4------------------]=丁,n当且仅当3(1—cos x)=1+cos x,即 x=3时,f(x)取最大值学.又因为f(x)是奇函数,所以当x=-3时,f(x)取最小值-学.解法四f(x)=2sin x cos x+2sin x.假设当sin x= a,cos x=b时,f(x)取最大值,引入参数a,b>0,且22sin x cos x1sin x2cos x2a2+b2=1.由-------W)2+(十)2]得b2a22sin x cos x W—sin x+〒cos x.由sin x-aab2sin x W—sin2x+a.于是aa bsin2x+a2——得1sin2—sin x+aa 2sin x cos x+2sin x W—sin2x+-cos2x+abb+1•2.a2=------sin x+〒cos x+a,ab由—+.1=-且a2+b2=1得a=单,b=1.a b22于是2sin x cos x+2sin x W A/3sin2x+-\/3cos2x+~^=学.所以f(x)的最大值为学,当且仅当sin x=¥,cos x=1,即x=n+2kn(k€Z)时,f(x)取最大值.又因为f(x)是奇函数,所以当x=-£+2kn(k€Z)解法三同解法二得f(x)的最大值在[0,2]上取到.时,f(x)取最小值——2综上,a的取值范围是^一兰,+8)评注在给定区间上适当考虑某点(端点)的性质,取x 的特殊值,得到参数的取值范围,找到一个不等式成立的必要条件,从而缩小范围,然后再证明必要条件也是充分条件,即可求得结论,就是我们常说的必要性探路法.而端点效应是其中比较常见的一种题型,比如2019年新课标全国I卷文科第20题体现了这样的解题思路.结语不等式恒成立求参数范围问题,往往涉及函数、方程、不等式等高中数学核心知识,以及函数与方程、转化与化归、分类讨论、数形结合等数学思想,综合性强、难度大.解决此类问题的通法是构造函数,对参数进行分类讨论求解;也可以优先采用分离函数方法,将问题转化为求函数的最值,或借助数形结合思想求解;然而并非所有问题用这两种思路容易奏效,这时我们可以采用必要性探路,再证充分性的思路.学生在实际解题中,需结合具体问题进行具体分析,选择合适的解题思路与方法,让问题的解决简洁、高效.12中学数学研究2020年第11期(上)解法二把f(x)的表达式转化为三个角的正弦,且这三个角的和是定值,然后利用琴生不等式求岀函数最大值.解法三把f(x)的表达式转化为正弦与余弦的乘积,然后利用多元均值不等式求岀函数最大值,技巧性很强.解法四利用待定系数法,通过假设f(x)取最大值时sin x,cos x的取值引入参数,并利用结构特点和取等条件构造不等式,最后由系数的比例关系和参数满足的条件求岀参数,进而求岀函数最大值.变式探究若函数f(x)中既有sin x, sin2x,又有cos x,cos2x,即f(x)=p sin2x+q cos2x+r sin x+ s cos x,p,r,s20,如何求函数f(x)的最大值?此时解法一仍然适用,但是方程f'(x)=0不好解.由于系数p,q,r,s 的一般性,解法二和解法三就不适用了.本文通过探究发现,解法四的待定系数法仍然可以解决这一类三角函数的最值问题.假设当sin x=a,cos x=b时,f(x)=p sin2x+q cos2x+r sin x+s cos x取最大值,引入参数a,b>0, 22sin x cos x1sin x2cos x2且a+b2=L由矿•丁W—[(矿)2+(丁)2]pb2pa2sin2x+a2得p sin2x W一sin x+-----cos x.由sin x•a W---------------a b2r2ra cos2x+b2得r sin x W一sin x+------.由cos x•b W---------------得2a丁2z2s cos x W—b cos2x+~—.又q cos2x=q cos2x—q sin2x,于是p sin2x+q cos2x+r sin x+s cos xpb2pa222r2ra W—sin x+丁cos x+q cos x—q sin x-----sin x-----a b2a2s2sb+—b cos x+¥pb r2pa s2ra sb =(万一q+茲)sin x+(万+q+—b)cos x+空+空由pb-q+—■=pa+q+—;且a2+b2=1,解岀参数a2a b2ba,b,于是得到f(x)的最大值,当且仅当sin x=a,cos x=b 时,f(x)取最大值.下面通过例题来说明如何利用待定系数法解决这一类三角函数的最值问题.例1(第六届世界数学团体锦标赛青年组试题第5题)求函数f(x)=2^3sin2x+4sin x+8^3cos x的最大值.解f(x)=^/3sin x cos x+4sin x+^/3cos x.假设当sin x=a,cos x=b时,f(x)取最大值,引入参数a,b>0,22sin x cos x1sin x2cos x2且a2+b2=L由「厂•丁W—[(矿)2+(丁)2]/曰彳后•/W"3b.2^/3a2u-.-/得403sin x cos x W-------sin x+---------cos x.由sin x•a Wabsin2x+a2p^.”2.2c丄7”cos2x+b2得4sin x W—sin x+—a.由cos x・b W--------------a2得873cos x W cos2x+473b.于是b4^/3sin x cos x+4sin x+8^/3cos x27^b-2.27^a2丄2-2.9W-------sin x+---------------cos x+——sin x+2aa b a+cos2x+473bb27^b+2-2i27^a+4732i c i”g=------------sin x+-----------------------------cos x+2a+473b由ab27^b+—=27J475且a2+b2=1,消去b得a b12a4+24a3+a2—12a+2=0,解得a=1,b=g3.于是4^/3sin x cos x+4sin x+8^/3cos x W10sin2x+ 10cos2x+7=17.所以f(x)的最大值为17,当且仅当sin x=1,cos x=X3,即 x=n+2kn(k e Z)时,f(x)取226最大值.例2(《数学通讯》2018年第12期问题376)求函数y=sin x cos x+3sin(x+—)+sin(x—4)的最大值.1n n 解y=-sin2x+3sin(x+—)+sin(x——).令2124n1nt=x—4,得y=—cos2t+3sin(t+3)+sin t= 1cos2t+5sin t+3—3cos t.假设当sin t时,y取最大值,引入参数a,b>0,且由sin t•a=a,cos t=ba2+b2=1.sin2t+a25525W-------------彳得石sin t W厂sin2t+丁a.由224a4cos2t+b2刁曰W3,.W3 2.|3J3---------彳得-----cos t W-------cos t+----b.224b4=-cos2t—-sin2t,于是22」丄z5•丄373丄—cos2t+—sin t+-----------cos t2t1■ 2..5一-—..........4a=(4a一j)sin2t+1—cos t•b W又*cos2t1-—121.25.253^/323^/3 W—cos2t-----sin2t+------sin2t+——a+--------cos2t+---------b224a44b4=(4a一—)sin2t++—)cos2t+4a+翠b由4a一—=醤+—且a2+b2=1,消去b得16a4-40a3+36a2+40a-25=0,解得a=1,b=舟.十口15.3^3.22于是—cos2t+—sin t+-------cos t W2sin2t+2cos2t+1522215~4.所以y的最大值为~4,当且仅当sin t=;=X3,即t=n+2kn(k e Z)时取最大值.所5/615x=—+2kn(k e Z)时,y取最大值—.注如果把sin(x+—),sin(x-4)展开,将函数整理为p sin2x+r sin x+s cos x的形式,系数很复杂,最后得到的方程很难解.本文先作代换t=x-4,然后将函数整理为q cos2t+r sin t+s cos t的形式,系数简单,最后得到的方程也好解.7=4='1—,cos t以当2。
用待定系数法求三角函数最值作者:谢斌来源:《读写算·教研版》2015年第14期摘要:待定系数法,是中学数学中的一种重要求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出对应系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
关键词:待定系数法;三角函数;最值求解中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)14-274-02使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,其解题的关键是依据已知,正确列出等式或方程,转化为方程组来解决。
使用待定系数法解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决.如何列出一组含待定系数的方程,主要从以下几方面着手分析:1、利用对应系数相等列方程;2、由恒等的概念用数值代入法列方程;3、利用定义本身的属性列方程;4、利用几何条件列方程.要判断一个问题是否可用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解.例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达式,所以都可以用待定系数法求解,在此不一一列举说明。
下面主要谈一下待定系数法在求三角函数最值中的一种应用。
求三角函数的最值方法众多,常用的方法有:1、配方法(主要利用二次函数理论及三角函数的有界性);2、化为一个角的三角函数(主要利用和差角公式及三角函数的有界性);3、数形结合法(常用到直线斜率关系);4、换元法(如万能公式,将三角函数问题转化为代数问题);5、均值不等式法.在用均值不等式求三角函数最值时,“各数相等”及“和(或积)为定值”是两个需要刻意凑出的条件.从何处入手,怎样拆项,如何凑出定值且使等号成立,又能使解答过程简捷明快,这确实是既“活”又“巧”的问题。
三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。
三角函数最值问题的十种常见解法解法一:利用图像性质求解利用三角函数的图像性质,首先将函数图像画出来,观察函数在指定区间上的最大值和最小值所对应的点的坐标。
解法二:使用导数求解通过对三角函数进行求导,然后将导数等于零进行求解,可以得到函数的关键点,进而通过函数的变化趋势确定最值。
解法三:使用平均值不等式求解根据平均值不等式的性质,可以得到三角函数的最值。
例如,对于正弦函数sin(x),可以利用平均值不等式得到最值。
解法四:使用二次函数的性质求解将三角函数转化为二次函数的形式,然后利用二次函数的性质求解最值。
例如,可以将正弦函数sin(x)转化为二次函数的形式。
解法五:使用三角函数的周期性质求解三角函数的周期性质可以帮助我们确定最值所在的区间。
通过观察函数的周期性质,可以得到函数的最大值和最小值。
解法六:使用三角函数的反函数求解利用三角函数的反函数,可以将问题转化为求解反函数的最值问题。
通过对反函数的最值进行求解,可以得到原函数的最值。
解法七:使用三角函数的恒等式求解利用三角函数的恒等式,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用和差公式将三角函数的角度转化为相对简单的形式。
解法八:使用三角函数的基本关系求解利用三角函数的基本关系,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用正切函数和余切函数的基本关系求解最值。
解法九:使用三角函数的积分求解通过对三角函数进行积分,可以得到函数的积分表达式,并通过积分表达式求解最值。
例如,可以通过对正弦函数进行积分得到函数的积分表达式。
解法十:使用泰勒级数展开求解利用泰勒级数展开,可以将三角函数转化为幂级数形式,进而求解最值问题。
通过计算前几项幂级数的和,可以得到函数的近似值,并进一步求解最值。
·数学中的思想和方法·李文东(广东省中山市中山纪念中学 528454)李文东中学一级教师,硕士研究生,中山市优秀教师,在《数理天地》《数学通讯》《中学数学研究》《中学数学月刊》《高中数学教与学》等期刊上发表论文四十多篇。
求三角函数的最值是高考中一个重要的问题,解法较多,特别是对于一些比较复杂的三角函数常常需要用到较多的三角恒等变换知识.本文从不等式的角度去研究三角函数的最值,用均值不等式或柯西不等式求三角函数最值时,“各数相等”及“和(或积)为定值”是两个需要刻意凑出的条件,从何处入手,怎样拆项,如何凑出定值且使等号成立,又能使解答过程简捷明快,这确实既“活”又“巧”,对此问题,现利用待定系数法探析.例1 求函数f(x)=2sinx+sin2x的最大值.解 f(x)=2sinx(1+cosx),引入正参数k,根据柯西不等式和均值不等式有f2(x)=4k2sin2 x(k+kcosx)2≤4k2sin2 x(1+k2)(k2+cos2 x)≤4k2(1+k2)k2+cos2 x+sin2 x2()2=(1+k2)3k2,当且仅当k2=cosxk2+cos2 x=sin2x烅烄烆时等号同时成立.消去k2,得cosx+cos2 x=sin2 x,化简,得2cos2 x+cosx-1=0,解得cosx=12(cosx=-1舍去).所以f(x)的最大值为(1+k2)32k=槡3 32.拓展1 求函数f(x)=sinx·(a+cosx),a∈R的最大值. 解 引入正参数k,根据柯西不等式和均值不等式有:f2(x)=sin2 x(a+cosx)2=1k2sin2 x(ak+kcosx)2≤1k2sin2 x(k2+cos2 x)(a2+k2)≤a2+k2k2·sin2 x+k2+cos2 x2()2=a2+k2k2·k2+12()2.根据等号成立的条件,得acosx=k2sin2 x=k2+cos2 x,烅烄烆即2cos2 x+acosx-1=0,由acosx=k2>0,得(1)当a<0时,k2=-a(a2+槡8+a)4,此时fmax(x)·11·2021年第1期数学中的思想和方法《数理天地》高中版=槡2(a2 +槡8-3a)·4-a2-aa2+槡槡816;(2)当a≥0时,k2=a(a2+槡8-a)4,此时fmax(x)=槡2(a2 +槡8+3a)·4-a2+aa2+槡槡816.综上知,fmax(x)=槡2(a2 +槡8-3a)·4-a2-aa2+槡槡816,a<0槡2(a2 +槡8+3a)·4-a2+aa2+槡槡816,a≥0烅烄烆例2 求函数f(x)=sinx+12sin2x+25cosx的最大值.解 引入正参数λ,根据均值不等式得f(x)=sinx+sinxcosx+25cosx=sinx+25()(1+cosx)-25=1λsinx+25()(λ+λcosx)-25≤1λsinx+25+λ+λcosx2烄烆烌烎2-25≤1λ1+λ槡2+25+λ2烄烆烌烎2-25,根据等号成立的条件,得sinx+25=λ+λcosx,sinx=1λ2+槡1,cosx=λλ2 +槡1,从而20λ3-79λ2+20λ+21=(4λ-3)(5λ2-16λ-7)=0,又λ>0,所以λ=34或λ=8 +槡3 115,且1λ1+λ槡2+25+λ2烄烆烌烎2关于λ递减,所以λ=34,此时f(x)max=3825.拓展2 求函数f(x)=sinxcosx+asinx+bcosx,a,b∈R的最大值.感兴趣的读者可以一试.求解过程略.例3 设x∈0,π2(),求16sin4 x+32cos3 x的最小值.解 考虑到sin2 x+cos2 x=1,引入正参数α,β,利用均值不等式,得sin4 x+α4≥2α2sin2 x,cos3 x+cos3 x+β3≥3βcos2 x,于是16sin4 x+32cos3 x≥32α2sin2 x+48βcos2 x-16α4-16β3,令32α2=48β,根据取等条件,得α2+β2=1,解得α=槡32,β=12,所以16sin4 x+32cos3 x≥13.拓展3 求函数f(x)=asinnx+bcosnx(a,b>0),x∈0,π2[],n∈N*,n≥3的最小值.解 当n为偶数时,引入正参数α,β,利用均值不等式,得sinnx+α1+2n-2+α1+2n-2+…+α1+2n-2烐烏烑n2-1个≥n2αsin2 x,同理cosnx+β1+2n-2+β1+2n-2+…+β1+2n-2烐烏烑n2-1个≥n2βcos2 x,·21·《数理天地》高中版数学中的思想和方法2021年第1期于是asinnx+bcosnx≥n2(aαsin2 x+bβcos2 x)-an2-1()α1+2n-2-bn2-1()β1+2n-2.令aα=bβ,根据取等条件,得α2n-2+β2n-2=1,解得α=ba2n-2+b2n-2()n-22.此时asinnx+bcosnx≥n2aα-an2-1()α1+2n-2-bn2-1()β1+2n-2,将β=aαb代入化简,得asinnx+bcosnx≥aα=aba2n-2+b2n-2()n-22.而当n为奇数时,仿照例2的做法可得最小值和n为偶数时一样.所以fmin=aba2n-2+b2n-2()n-22.例4 当x∈0,π2()时,求函数f(x)=槡6 3sinx+2cosx的最小值.解 引入大于零的待定系数k,则函数f(x)=槡6 3sinx+2cosx可变形为f(x)=槡3 3sinx+槡3 3sinx+ksin2 x+1cosx+1cosx+kcos2 x-k≥3327槡k+33槡k-k=123槡k-k,当且仅当槡3 3sinx=ksin2 x,1cosx=kcos2 x,烅烄烆即sin2 x=33k槡2cos2 x=13k槡2烅烄烆时等号成立.由此可得3+13k槡2=1,所以k=8.故fmin(x)=123槡k-k=16,此时x=π3.拓展4 求函数f(x)=asinnx+bcosnx(a,b>0),x∈0,π2(),n∈N*的最小值.解 当n为偶数时,引入参数λ,f(x)=asinnx+bcosnx=asinnx+2λnsin2 x+2λnsin2 x+…+2λnsin2x烐烏烑n2个+bcosnx+2λncos2 x+2λncos2 x+…+2λncos2 x烐烏烑n2个-λ≥n+222λn()a[]+n+222λn()b[]-λ=n+222λn()nn+2a2n+2+b2n+2()-λ,等号成立的条件为asinnx=2λnsin2 x,bcosnx=2λncos2 x,烅烄烆由此可得λ=n2·a2n+2+b2n+2()n+22,于是fmin(x)=n+222λn()1-2n+2a2n+2+b2n+2()-λ=λn+2n·a2n+2+b2n+2()2λn()-2n+2-1[]=λn+2n-1()=2λn=a2n+2+bn+22()n+22.而当n为奇数时,仿照例2的做法可得最小值和n为偶数时一样.所以fmin(x)=a2n+2+b2n+2()n+22.·31·2021年第1期数学中的思想和方法《数理天地》高中版。
三角函数-秒杀技巧-最值问题三角函数是高中数学中的一个重要章节,也是考试中的一个难点和重要知识点。
在三角函数中,最为常见的就是求解最值问题,即给定一些函数的定义域,要求确定该函数的最大值或最小值。
下面将详细介绍三角函数的求解最值问题的秒杀技巧。
首先,我们先来回顾一下三角函数的基本性质。
三角函数是代数函数的一种,其定义域是实数集,值域是[-1,1]。
在解决三角函数最值问题时,我们还需要利用到单位圆、周期性、奇偶性等特点。
其次,我们要了解最值问题的一般思路。
对于求解最大值问题,一般是先找到函数的极值点,在极值点中找到最大值。
而求解最小值问题,则是先找到函数的不可求之点,然后求取其他点的最小值。
在找到极值点和不可求之点之后,可以通过画函数图像、用导数等方法求解最值。
接下来,我们将详细介绍三角函数最值问题的秒杀技巧。
1. 利用单位圆:单位圆是一个半径为1的圆,它的圆心为原点O(0,0)。
对于三角函数来说,单位圆的图像非常重要。
利用单位圆的图像,我们可以快速判断三角函数的最大值和最小值。
例如对于正弦函数sin(x),它的最大值是1,最小值是-1;对于余弦函数cos(x),它的最大值也是1,最小值也是-1、通过记忆这些最大值和最小值,我们可以快速判断一个三角函数的最值问题。
2. 利用周期性:三角函数都是周期函数,即在定义域内存在一个正整数n,使得f(x + 2πn) = f(x)。
由于周期性的存在,三角函数的最值问题可以转化为在一个周期内求解。
例如对于正弦函数sin(x),它的周期是2π,因此在0到2π之间寻找最值即可;对于余弦函数cos(x),它的周期也是2π。
3. 利用奇偶性:三角函数中的正弦函数和正割函数是奇函数,余弦函数、余割函数和正切函数是偶函数。
利用奇偶性,我们可以快速判断三角函数的最值问题。
例如对于正弦函数sin(x),它的最大值一定在定义域的中点取到;对于余弦函数cos(x),它的最小值一定在定义域的中点取到。
求三角函数解析式方法总结超全面(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。
A (振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期) ϕ:初相,求φ常有代入法、五点法、特殊值法等一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2π 第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π 第五点,即图像最后一个端点,为φ+wx =π2例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。
(其中πϕπω<<->>,0,0A )变式练习1、已知函数)sin(ϕω+=x A y (A >0,ω>0,|ϕ|<π)解析式。
师说新语332019年第25期求三角函数最值及值域常用的策略◎ 任彩霞/平遥现代工程技术学校三角函数的最值问题是三角函数中重要的一个知识点,题型较多、方法较碎,是同学们学习的一个难点,由于题型灵活,容易考查思维能力,因而也是高考中热点题型,现对三角函数最值求法中常见的策略加以归类,常用方法加以总结,以达快速正确求解。
一、利用三角函数的有界性求最值1、形如y=asinx+bcosx+c 型,引入辅助角公式化为22b a +sin(x+φ)+c ,再求值域。
例1、求函数f(x)=2sinx+cos(x+3π)的值域解:f(x)=2sinx+21cosx -23sinx=(2-23)sinx+21cosx=)sin()21()232(22φ++−x ,故f(x)∈[]2、形如y=asin 2x+bsinxcosx+ccos 2x 型,通过降幂转化为Asinx+Bcosx ,再求值域。
例2、f(x)=23asinx·cosx-2asin 2x+1(a>0)的值域解:f(x)= 3asin2x+acos2x-a+1=2asin(2x+6π)-a+1∵a>0,sin(2x+6π)-a+1∴f(x)∈[-3a-1,a+1]二、用换元法化为二次函数求值域1、形如y=sin 2x+bsinx+c 型,令sinx=t 转化为二次函数再求值域。
例3、k<-4,求y=cos 2x+k(cosx-1)的值域解:y=2cos 2x-1+kcosx-k y=2cos 2x+kcosx-k-1,设t=cosx ,t ∈[-1,1]则y=2t2+kt-k-1,对称轴x=-4k,由于k<-4,则-4k >1,故当t=1时,ymin=1,当t=-1时,ymax=1-2k ,即y ∈[1,1-2k]2、形如y=asinx·cosx+b (sinx ±cosx )+c 型,令sinx ±cosx=t转化为二次函数在]2,2[−上的值域问题例4、求函数y=sinx·cosx+sinx+cosx 的值域。
用待定系数法求三角函数最值用均值不等式求三角函数最值时,“各数相等”及“和(或积)为定值”是两个需要刻意凑出的条件,从何处入手,怎样拆项,如何凑出定值且使等号成立,又能使解答过程简捷明快,这确实既“活”又“巧”,对此问题,现利用待定系数法探析。
例1. 设x ∈(0,π),求函数xsin 22x sin y +=的最小值。
分析:拿到此题,很容易想到下面的解法。
因为 s inx >0, 所以2xsin 22x sin 2x sin 22x sin y =∙≥+=。
故y min =2。
显然,这种解法是错误的!错误的原因是没有考虑“=”号成立的条件。
由x sin 22x sin =得sinx=2,这样的x 不存在,故为错解。
事实上,此题是可以用均值不等式来解答的,但需要拆项,如何拆,既能使其积为定值,又能使“=”号成立,这确实是一个难点,笔者认为,待定系数法就能很好地解决这个问题,为此,先引入一个待定系数λ(0<λ<2,使xs i n 2x s i n 2x s i n y λ-+λ+=。
由均值不等式及正弦函数的有界性,得λ-+λ≥λ-+λ∙≥22xsin 2x sin 2x sin 2y 。
当且仅当x sin 2x sin λ=且sinx=1,即λ=21时,上式等号成立。
将λ=21代入,得y min =25。
另解:y=)x sin 4x (sin 21+。
令sinx=t(0<t ≤1=,易证)t 4t (21y +=在(0,1]上单调递减,所以25)141(21y min =+=。
例2. 当x ∈(0,2π)时,求函数x cos 2x sin 36y +=的最小值。
分析:因为x ∈(0,2π),所以sinx >0,cosx >0,引入大于零的待定系数k ,则函数x cos 2x sin 36y +=可变形为x cos 1x cos 1x sin k x sin 33x sin 33y 2++++=+kcos 2x -k ≥33k 27+3k 3-k=12k k 3-,等号成立当且仅当⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧==32232222k 1x cos k 3x sin ,x cos k x cos 1,x sin k x sin 33即,时成立。
三角函数最值问题的十种常见解法t=sinx+cosx,则y=t+sinx*cosx,利用关系式sinx*cosx≤1可得y≤t+1,而t的取值范围为[-√2,√2],当t=√2时,y取得最大值√2+1.五.利用导数法求极值对于一些复杂的三角函数最值问题,可以利用导数法求解.例如对于y=2sinx+3cosx+4sin2x,求其最大值.分析]解:y'=2cosx-3sinx+8cos2x,令y'=0,得cosx=3/10或cosx=-1/2,代入原式可得y的最大值为(7+8√6)/5.六.利用三角函数的周期性对于周期函数,可以利用其周期性来求解最值问题.例如对于y=3sin(2x+π/6)+4cos(2x-π/3),求其最大值.分析]解:由于sin和cos函数都是周期为2π的函数,因此可以将y化简为y=3sin2x+4cos2x+3√3,利用三角函数的性质可得y的最大值为7+3√3.七.利用三角函数的单调性对于单调函数,可以利用其单调性来求解最值问题.例如对于y=2sinx+3cosx,求其最小值.分析]解:y的导数y'=2cosx-3sinx,y'的符号与sinx和cosx的符号相同,因此y在[π/2,π]上单调递减,在[0,π/2]上单调递增,因此y的最小值为y(π/2)=2.八.利用三角函数的对称性对于一些具有对称性的三角函数,可以利用其对称性来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:y=sin2x+cos2x=1,因此y的最大值为1,最小值也为1.九.利用三角函数的积分性质对于一些三角函数的积分性质,可以利用其求解最值问题.例如对于y=sin2x/x,求其最大值.分析]解:y'=2cos2x/x-sin2x/x²,令y'=0,得x=tanx,代入原式可得y的最大值为2.十.利用三角函数的平均值不等式对于一些三角函数,可以利用其平均值不等式来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:由平均值不等式可得(sin2x+cos2x)/2≥sinx*cosx,因此y的最大值为1,最小值也为1.sin x+\cos x=1+2\sin x\cos x$,设$t=\sin x+\cos x$,则$2\sin x\cos x=\frac{t^2-1}{2}$,$\therefore y=\frac{t+\frac{t^2-1}{2}}{2}=\frac{t^2+t-1}{4}$,其中$t\in[-\sqrt{2},\sqrt{2}]$。
待定系数法求函数最值待定系数法是一种数学优化算法,它被广泛用于求解函数最值问题。
当给定一些限制条件,并且无法在原始函数上直接进行求解时,可以考虑通过待定系数法来解决,从而求出函数的最大值或最小值。
本文将介绍待定系数法的基本原理,以及应用的具体步骤。
一、待定系数法概述待定系数法是一种数学优化算法,它最早被数学家G.F.Von Neumann在1947年提出。
它的基本原理是:在满足相关约束条件的前提下,找到一组待定系数(lambda),使得该组待定系数确定的函数有最大值/最小值。
二、待定系数法的原理待定系数法是一种在满足相关约束条件的情况下求解函数最值的数学优化算法。
它将函数最值求解问题转化为一个模型优化问题。
具体而言,它首先构建一个模型函数,该模型函数由两部分组成,一部分是约束条件,另一部分是原始函数,而原始函数部分的求解则依赖于一组待定系数(lambda)的取值。
待定系数法的基本原理如下:1、将目标函数固定为最优化函数,并确定约束条件;2、使用一组合适的待定系数,解决约束优化问题,求解最优结果;3、计算结果,比较最优结果和期望结果;4、如果结果满足期望,则求解成功,反之,重新选取待定系数,再次求解。
三、应用步骤1、设定目标函数,明确求解方式(最大值/最小值);2、确定相应的约束条件,分析目标函数的可行域;3、设置适当的待定系数,使原始目标函数转换为可行域中最优化函数;4、求解最优化函数,求出最优解;5、比较最优解和期望结果;6、检查结果,并以此修改待定系数,直至求解成功。
四、实例下面通过一个实例来说明待定系数法的应用步骤。
实例:求min(3x+2y),约束条件为x+y=4解:1、设定目标函数:min(3x+2y),求解方式:求最小值2、确定相应的约束条件:x+y=43、设置适当的待定系数:令模型函数为:f(x,y,λ) = 3x+2y +(x+y-4)其中λ为待定系数,λ(x+y-4)为约束条件4、求解最优化函数f(x,y,λ) = 3x+2y +(x+y-4)对f(x,y,λ)求偏导数:f/x=3+λf/y=2+λf/λ=x+y-4=0结合上面三式,可以得:3+λ=2+λ即λ=1代入约束条件,可以得出x+y=4,得x=3,y=15、比较最优解和期望结果最优解:x=3,y=1,此时f(x,y,λ)=3+2+1(3+1-4)=-2,即最小值为-26、检查结果,求解成功本文中介绍的是待定系数法的基本原理和应用步骤,以及一个实例,通过研究可以发现,这种方法非常有效,可以用来求解函数最值问题,而且应用起来也非常容易和快捷。
用待定系数法求三角函数最值
用均值不等式求三角函数最值时,“各数相等”及“和(或积)为定值”是两个需要刻意凑出的条件,从何处入手,怎样拆项,如何凑出定值且使等号成立,又能使解答过程简捷明快,这确实既“活”又“巧”,对此问题,现利用待定系数法探析。
例1. 设x ∈(0,π),求函数x
sin 22x sin y +=的最小值。
分析:拿到此题,很容易想到下面的解法。
因为 s inx >0, 所以2x
sin 22x sin 2x sin 22x sin y =∙≥+=。
故y min =2。
显然,这种解法是错误的!错误的原因是没有考虑“=”号成立的条件。
由
x sin 22x sin =得sinx=2,这样的x 不存在,故为错解。
事实上,此题是可以用均值不等式来解答的,但需要拆项,如何拆,既能使其积为定值,又能使“=”号成立,这确实是一个难点,笔者认为,待定系数法就能很好地解决这个问题,为此,先引入一个待定系数λ(0<λ<2,使x
s i n 2x s i n 2x s i n y λ-+λ+=。
由均值不等式及正弦函数的有界性,得λ-+λ≥λ-+λ∙≥22x
sin 2x sin 2x sin 2y 。
当且仅当
x
sin 2x sin λ=且sinx=1,即λ=21时,上式等号成立。
将λ=21代入,得y min =25。
另解:y=)x
sin 4x (sin 21+。
令sinx=t(0<t ≤1=,易证)t 4t (21y +=在(0,1]上单调递减,所以25)141(21y min =+=。
例2. 当x ∈(0,
2
π)时,求函数x cos 2x sin 36y +=的最小值。
分析:因为x ∈(0,2π),所以sinx >0,cosx >0,引入大于零的待定系数k ,则函数x cos 2x sin 36y +=可变形为x cos 1x cos 1x sin k x sin 33x sin 33y 2++++=+kcos 2x -k ≥33k 27+3k 3-k=12k k 3-,等号成立
当且仅当⎪⎪⎩
⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧==32232222k 1
x cos k 3x sin ,x cos k x cos 1,x sin k x sin 33即,时成立。
由sin 2x+cos 2x=1,。
得1k 1332=+,即k 2=64,又k >0,所以k=8。
故函数y 的最小值为168212k k 123=-⨯=-,此时x=
3
π。
例3. 设x ∈(0,
2
π),求函数y=sinx+x sin 12的最小值。
分析:因为x ∈(0,2π),所以sinx >0,y=sinx+x sin 12可变形为x sin 12x sin 2x sin y 2++=。
由均值不等式得32413x
sin 12x sin 2x sin ≥++。
但x sin 12x sin 2≠,故上式不能取等号。
下面引入待定系数k 进行配凑解之。
解:因为x ∈(0,
2
π), 所以sinx >0。
因为
,1<k<0,x
sin k 1x sin k x sin 1222-+= 故x sin k 1)x sin k 2x sin 2x sin (y 22-+++= ≥1
k 14k 33-+, 等号当且仅当
x sin k 2x sin 2=且sinx=1,即k=21时等号同时成立。
从而21k 14k 33=-+,故函数y=sinx+
x
sin 12的最小值为2。
例4. 求函数y=sin 2x ·cos 2x+
x cos x sin 122∙的最小值。
分析:易得x 2sin 44x 2sin y 22+=,由均值不等式得2x
2sin 44x 2sin 22≥+。
但x
2sin 44x 2sin 22≠,故上式不能取等号。
于是引入待定正实数λ,μ,且λ+μ=4,则有x
2sin 44x 2sin y 22+=
=x
2sin x 2sin 4x 2sin 222μ+λ+ ≥x
2sin x 2sin 4x 2sin 2222μ+λ∙ ≥μ+λ。
当且仅当x
2sin 4x 2sin 22λ=且sin 22x=1时等号同时成立,此时415,41=μ=λ,所以当sin 22x=1时,y 有最小值为417。