大学物理热学气体动理论
- 格式:ppt
- 大小:1.23 MB
- 文档页数:56
第四章⽓体动理论总结第四章⽓体动理论单个分⼦的运动具有⽆序性布朗运动⼤量分⼦的运动具有规律性伽尔顿板热平衡定律(热⼒学第零定律)实验表明:若 A 与C 热平衡 B 与C 热平衡则 A 与B 热平衡意义:互为热平衡的物体必然存在⼀个相同的特征--- 它们的温度相同定义温度:处于同⼀热平衡态下的热⼒学系统所具有的共同的宏观性质,称为温度。
⼀切处于同⼀热平衡态的系统有相同的温度。
理想⽓体状态⽅程: 形式1:mol M PV =RT =νRTM形式2:222111T V p T V p =形式3: nkT P =n ----分⼦数密度(单位体积中的分⼦数) k = R/NA = 1.38*10 –23 J/K----玻⽿兹曼常数在通常的压强与温度下,各种实际⽓体都服从理想⽓体状态⽅程。
§4-2 ⽓体动理论的压强公式VNV N n ==d d 1)分⼦按位置的分布是均匀的2)分⼦各⽅向运动概率均等、速度各种平均值相等kj i iz iy ix iv v v v ++=分⼦运动速度单个分⼦碰撞器壁的作⽤⼒是不连续的、偶然的、不均匀的。
从总的效果上来看,⼀个持续的平均作⽤⼒。
2213212()323p nmvp n mv n ω===v----摩尔数R--普适⽓体恒量描述⽓体状态三个物理量: P,V T 压强公式122ω=mv理想⽓体的压强公式揭⽰了宏观量与微观量统计平均值之间的关系,说明压强具有统计意义;压强公式指出:有两个途径可以增加压强 1)增加分⼦数密度n 即增加碰壁的个数2)增加分⼦运动的平均平动能即增加每次碰壁的强度思考题:对于⼀定量的⽓体来说,当温度不变时,⽓体的压强随体积的减⼩⽽增⼤(玻意⽿定律);当体积不变时,压强随温度的升⾼⽽增⼤(查理定律)。
从宏观来看,这两种变化同样使压强增⼤,从微观(分⼦运动)来看,它们有什么区别?对⼀定量的⽓体,在温度不变时,体积减⼩使单位体积内的分⼦数增多,则单位时间内与器壁碰撞的分⼦数增多,器壁所受的平均冲⼒增⼤,因⽽压强增⼤。
气体动理论知识点总结气体动理论是研究气体的微观运动状态及宏观性质的一门物理学理论,是现代物理学中较为重要的分支之一。
气体动理论不仅对实际问题的探究有着重要的作用,它的理论体系及方法也为其他学科提供了有力的支持。
下面将围绕着气体运动状态、气体的性质以及气体的热力学定律三个方面,介绍气体动理论中的相关知识点。
一、气体运动状态气体动理论认为,气体分子的运动状态决定了气体的宏观控制状态。
因此,研究气体分子的运动状态对于了解气体的性质及可控性具有重要的意义。
1.分子移动气体分子无序地、自由地运动,并且分子的速度是高度非一致性的。
分子的速度与温度、分子的种类有关。
分子受温度影响,速度随温度的升高而增加。
2.分子运动轨迹气体分子在空间中做无规则运动,但可以将其平均运动速度视为直线运动。
分子的运动具有随机性,在时间、位置上无法精确定位。
3.分子碰撞气体分子之间存在碰撞,碰撞时能量和动量都会发生变化,同时碰撞前和碰撞后分子的速度方向也会发生改变。
二、气体的性质气体的性质不仅涉及气体的物理状态,还涉及气体的化学性质,气体与其他物质的相互作用,气体的电学性质等方面,其中,最为重要的性质包括以下几个方面:1.流动性:气体具有流动性,能够流动并具有一定的流动性质。
2.扩散性:气体分子具有无序运动状态,具有自由的运动方式。
在一定条件下,气体分子能够通过物质间的空隙扩散到其他区域。
3.压缩性:气体分子间的间隔较大,气体分子之间的相互作用力较弱,分子之间可以变形并发生相对位移,气体具有较好的压缩性。
4.热膨胀性:在一定温度下,气体分子具有较大的运动能,随着温度的升高,气体分子之间的反向作用力会减小,会引起体积的增加。
5.气体的状态方程:气体在不同温度下具有不同的压强、体积关系,可以利用理想气体状态方程(P V/ nRT)来描述气体的状态。
三、气体的热力学定律气体动理论依据物理实验,建立了气体的热力学学说体系,包括状态方程、热力学过程、热力学定律等。