工程力学(下)第17章思考题
- 格式:ppt
- 大小:442.50 KB
- 文档页数:9
大学《工程力学》课后习题解答-精品2020-12-12【关键字】情况、条件、动力、空间、主动、整体、平衡、建立、研究、合力、位置、安全、工程、方式、作用、结构、水平、关系、分析、简化、倾斜、支持、方向、协调、推动(e)(c)(d)(e)’CD2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点(2) AC 与BC 2-3 水平力F A 和D 处的约束力。
解:(1) 取整体(2) 2-4 在简支梁,力的大小等于20KN ,如图所示。
若解:(1)(2)求出约束反力:2-6 如图所示结构由两弯杆ABC 和DE 构成。
构件重量不计,图中的长度单位为cm 。
已知F =200 N ,试求支座A 和E 的约束力。
解:(1) 取DE (2) 取ABC2-7 在四连杆机构ABCD 试求平衡时力F 1和F 2解:(1)取铰链B (2) 取铰链C 由前二式可得:F FF ADF2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。
试求在与O D平行的力F作用下,各杆所受的力。
已知F=0.6 kN。
解:(1)间汇交力系;(2)解得:AB、AC3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。
求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) (b) (c) 3-2 M ,试求A 和C解:(1) 取 (2) 取 3-3 Nm ,M 2解:(1)(2) 3-5 大小为AB 。
各杆 解:(1)(2)可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:AB A3-7 O1和O2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。
4日1-1试画出以下各题中圆柱或圆盘的受力争.与其它物体接触处的摩擦力均略去.12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N =⨯+-==⨯--=∴==∑∑AC 与BC 两杆均受拉.2-3 程度力F 感化在刚架的B 点,如图所示.如不计刚架重量,试求支座A 和D 处的束缚力.解:(1) 取整体(2) 22D A F2-4 在简支梁AB 的中点C 感化一个竖直45o 的力F,力的大小等于20KN,如图所示.若梁的自重不计,试求两支座的束缚力.解:(1) 研讨AB ,(2)类似关系:B A F F FCDE cde CD CE ED ∆≈∆∴==几何尺寸:11 222CE BD CD ED =====FFF AF D求出束缚反力:12010 22010.4 45arctan 18.4B A o oCE F F kNCDED F F kNCDCECD α=⨯=⨯==⨯===-= 2-6 如图所示构造由两弯杆ABC 和DE 构成.构件重量不计,图中的长度单位为cm.已知F =200N,试求支座A 和E 的束缚力.解:(1)取 (2) 取3-1已知梁,支座A和B解:(a) A B M F F l∴==(b) 受力剖析,画受力争;A.B 处的束缚力构成一个力偶;0 0 B B A B M M Fl M F lM F F l=⨯-==∴==∑(c)受力剖析,画受力争;A.B 处的束缚力构成一个力偶;列均衡方程:cos cos A B MM l M F F l θθ==∴==∑3-3 齿轮箱的两个轴上感化的力偶如题图所示,它们的力偶矩的大小分离为M 1=500Nm,M 2=125Nm.求两螺栓处的铅垂束缚力.图中长度单位为cm.解:(1);(2) 500125750 50750 A B M N F F N-===∴==∑3-5 四连杆机构在图示地位均衡.已知OA=60cm,BC=40cm,感化BC 上的力偶的力偶矩大小为M 2=1N.m,试求感化在OA 上力偶的力偶矩大小M 1和AB 所受的力F AB .各杆重量不计.解:(1) 研讨BC 杆,列均衡方程:22015 0.4sin 30sin 30BB o oM M F N BC ====⨯BF F B(2) 研讨AB (二力杆),受力如图:可知:'' 5 A B B F F F N===(3) 研讨OA 杆,受力剖析,画受力争:列均衡方程:113 M M M Nm==∴=∑4-1 试求题4-1图所示各梁支座的束缚力.设力的单位为kN,力偶矩的单位为kN ⋅m,长度单位为m,散布载荷集度为kN/m.(提醒:盘算非均布载荷的投影和与力矩和时需应用积分). 解:(b):(1) 整体受力剖析,(2) 选坐标系Axy ,(20AB B MF +⨯=∑0B =(c):(1) 研讨AB 杆,受力剖析,画出受力争(平面随意率性力系); (2) 选坐标系Axy ,0A B AF (e)F x F20: 2cos3004.24 kNo y Ay B B F F dx F F =-⨯+==∑⎰0: sin 3002.12 kNo xAx B Ax FF F F =-==∑束缚力的偏向如图所示.(e):(1) 研讨C ABD 杆,受力剖析,画出受力争(平面随意率性力系);(2) 选坐标系Axy ,(021 kNAB B MF F ==∑0.80: 2020015 kNyAy B Ay Fdx F F F =-⨯++-==∑⎰束缚力的偏向如图所示.4-13 运动梯子置于滑腻程度面上,并在铅垂面内,梯子两部分AC 和A B 各重为Q ,重心在A 点,彼此用搭钮A 和绳索DE 衔接.一人重为P 立于F 处,试求绳索DE 的拉力和B .C 两点的束缚力.解:(1):研讨整体,受力剖析,(2) 选坐标系Bxy ,)()0: -2cos 2cos 0B C C M F Q l a F l F αα=-+⨯=∑0: 202yB C B FF F Q P a F Q P l=+--==+∑(3) 研讨AB ,受力剖析,画出受力争(平面随意率性力系);xq x(4) 选A 点为矩心,()0:0A D M F F h α=+⨯=∑4-16 由AC 和CD 4-16图所示.已知均布载荷集度q =10 kN/m,力偶M =40 kN ⋅m,a =2 m,不计梁重,试求支座A .B .D 的束缚力和搭钮C 所受的力.解:(1) 研讨CD 杆,(2) 选坐标系Cxy ,20D a ⨯=∑0: 025 kNy C D C F F q dx F F =-⨯-==∑⎰(3) 研讨ABC 杆,受力剖析,画出受力争(平面平行力系);(4) 选坐标系Bxy ,'()0B C M F x F a -⨯=∑'080 kNyB C B FF F =-==∑束缚力的偏向如图所示.4-17 刚架ABC 和刚架CD 经由过程搭钮C 衔接,并与地面经由过程搭钮A .B .D 衔接,如题4-17图所示,载荷如图,试求刚架的支座束缚力(尺寸单位为m,力的单位为 kN,载荷集度单x(a):(1) 研讨CD 杆,它是二力杆,又依据D 点的束缚性质,可知:F C =F D =0;(2) 研讨整体,受力剖析,画出受力争(平面随意率性力系);(3) 选坐标系Axy ,60B F ⨯=∑180 kNy Ay B Ay F ==束缚力的偏向如图所示.(b):(1) 研讨CD 杆,受力剖析,画出受力争(平面随意率性力系);(2) 选C 点为矩心,3015 kN D q dx x F ⨯⨯+⨯=(3) 研讨整体,);(4) 选坐标系35030AyM⨯+⨯=∑300: 010 kNyAy B D B FF q dx F F F =-⨯-+==∑⎰束缚力的偏向如图所示.=50x5-5 感化于半径为120 mm 的齿轮上的啮合力F 推进皮带绕程度轴AB 作匀速迁移转变.已知皮带紧边拉力为200 N,松边拉力为100 N,尺寸如题5-5图所示.试求力F 的大小以及轴承A .B 的束缚力.(尺寸单位mm).解: (1) 研讨整体,8-2 试画出8-1解:(a) (b)(c) (d) 8-14 图示桁架,杆与d 2=20mm,两杆材料雷同,F =80kN 感化,试校解:(1) 对节点A(2) 列均衡方程0 sin 0 cos30x AB yAB FF FF =-=∑∑解得:41.4 58.6AC AB F kN F kN ====(2)分离对两杆进行强度盘算;[][]1282.9131.8ABAB ACAC F MPa A F MPa A σσσσ====所以桁架的强度足够.8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A 处推却铅直偏向的载荷F 感化,试肯定钢杆的直径d 与木杆截面的边宽b .已知载荷F =50kN,钢的许用应力[σS ] =160MPa,木的许用应力[σW ] =10MPa.解:(1) 对节点A;50AB F kN ==(2) []322 20.070.71010 84.1ABAC ACW d mm F MPa b mm A b σσσ≥⨯==≤=≥所以可以肯定钢杆的直径为20mm,木杆的边宽为84mm. 8-16 题8-14所述桁架,试定载荷F 的许用值[F ].解:(1) 由8-14得到AB.AC 两杆所受的力与载荷F 的关系;AC AB F F ==(2) 应用强度前提,分离对两杆进行强度盘算;[]211160 154.54ABAB F MPa F kN A d σσπ==≤=≤[]222160 97.14ACAC F MPa F kN A d σσπ==≤=≤取[F ]=97.1kN.8-18图示阶梯形杆AC ,F =10kN,l 1= l 2=400mm,A 1=2A 2=100mm 2,E =200GPa,试盘算杆AC 的轴FFF ABF AC向变形△l .解:(1)(2) 分段盘算个杆的轴向变形;33112212331210104001010400200101002001050 02 N N F l F l l l l EA EA .mm⨯⨯⨯⨯∆=∆+∆=+=-⨯⨯⨯⨯=-AC 杆缩短.8-26 图示两头固定等截面直杆,横截面的面积为A ,推却轴向载荷F 感化,试盘算杆内横截面上的最大拉应力与最大压应力.解:(1)xA B(2) 用截面法求出AB .BC .CD 段的轴力;123 N A N A N BF F F F F F F =-=-+=-(3) 用变形调和前提,列出补充方程;AB BC CD l l l ∆+∆+∆=代入胡克定律;231 /3()/3/3 0N BC N CDN ABAB BC CD A A B F l F l F l l l l EA EA EA F l F F l F l EA EA EA ∆=∆=∆=-+-+-=求出束缚反力:/3A B F F F ==FACB(b)(4) 最大拉应力和最大压应力;21,max ,max 2 33N N l y F F F FA A A A σσ====-8-27 图示构造,梁BD 为刚体,杆1与杆2用统一种材料制成,横截面面积均为A =300mm 2,许用应力[σ]=160MPa,载荷F =50kN,试校核杆的强度.解:(1) 对BD=(2) 由变形调和关系,代之胡克定理,可得;21212 2N N N N F l F lF F EA EA ==解联立方程得:122455N N F F F F ==(3) 强度盘算;[][]3113222501066.7 160 530045010133.3 160 5300N N F MPa MPaA F MPa MPaA σσσσ⨯⨯====⨯⨯⨯====⨯所以杆的强度足够.8-33 图示接头,推却轴向载荷F 感化,试校核接头的强度.已知:载荷F =80kN,板宽b =80mm,板厚δ=10mm,铆钉直径d =16mm,许用应力[σ]=160MPa,许用切应力[τ] =120MPa,许用挤压应力[σbs ] =340MPa.板件与铆钉的材料相等.解:(1)[]21499.5 120 14QSF F MPa MPaA d ττπ===≤=(2) 校核铆钉的挤压强度;[]14125 340 b bs bs b FF MPa MPaA d σσδ===≤=(3) 斟酌板件的拉伸强度; 对板件受力剖析,画板件的轴力争;校核1-1160 MPa校核2-2] 160 MPa =所以,接头的强度足够.10-2. 解:(c)(1) (2) 11111 (0/2) (0/2)S F F x l M Fx x l =-=-≤≤ ()21221 (/2) (/2)S F F l x l M F l x l x l ==--≤≤(3) 画剪力争与弯矩图 F xq(d)(1) )S F l 21 (0)42M x x x l =-≤(2) 画剪力争与弯矩图10-5(b)(1) 求束缚力;(2) 画剪力争和弯矩图 (c)(1) 求束缚力; q AxF xM A xF S(2) 画剪力争和弯矩图; (d)(1) 求束缚力;(2) 画剪力争和弯矩图;(e)(1) 求束缚力;(2) 画剪力争和弯矩图 (f)(1) 求束缚力;(2) 11-6图示悬臂梁,折正应力,解:(1)(2) (3) 盘算应力: 最大应力:F SM xFzK 点的应力:11-7图示梁,由No22槽钢制成,弯矩M =80N.m,并位于纵向对称面(即x-y 平面)内.试求梁内的最大曲折拉应力与最大曲折压应力.解:(1)79 b mm =(2) 最大曲折拉应力(产生鄙人边缘点处)()30max880(7920.3)10 2.67 17610x M b y MPaI σ-+-⋅-⨯-⨯===⨯(3) 最大曲折压应力(产生在上边缘点处)30max88020.3100.92 17610x M y MPa I σ---⋅⨯⨯===⨯6max max max227.510176 408066ZM M MPabh W σ⨯====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯MMz。
试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解: 试画出以下各题中✌杆的受力图。
✌☎☞☎☎☎✌☎☞☎☞☎☞☎☞☎✌☎☞解: 试画出以下各题中✌梁的受力图。
☎☎☞ ☞☎☞☎☞☞☎☞☎☎☞☎ 试画出以下各题中指定物体的受力图。
☎♋✆ 拱✌;☎♌✆ 半拱✌部分;☎♍✆ 踏板✌;☎♎✆ 杠杆✌;☎♏✆ 方板✌;☎♐✆ 节点 。
解:☎☞☎☎☎☎☞ ⌧☎☎☎☎☎☎ 试画出以下各题中指定物体的受力图。
☎♋✆ 结点✌,结点 ;☎♌✆ 圆柱✌和 及整体;☎♍✆ 半拱✌,半拱 及整体;☎♎✆ 杠杆✌,切刀 ☜☞及整体;☎♏✆ 秤杆✌,秤盘架 及整体。
☎☞☎☎☞☞ ☎☎☎✌☎解:☎♋✆☎♌✆☎♍✆☎♏✆✌✌❆☞ ✌☞❼ 杆✌、 在 处铰接,另一端均与墙面铰接,如图所示,☞ 和☞ 作用在销钉上,☞ ☠,☞ ☠,不计杆重,试求两杆所受的力。
解:☎✆ 取节点 为研究对象,画受力图,注意✌、 都为二力杆,☎✆ 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ ✌与 两杆均受拉。
水平力☞作用在刚架的 点,如图所示。
如不计刚架重量,试求支座✌和 处的约束力。
解:☎✆ 取整体✌为研究对象,受力分析如图,画封闭的力三角形:☞☞⌧☞☞ ☞✌☞☎✆ 由力三角形得211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴=== 在简支梁✌的中点 作用一个倾斜 ☐的力☞,力的大小等于 ☠,如图所示。
若梁的自重不计,试求两支座的约束力。
解:☎✆ 研究✌,受力分析并画受力图:☎✆ 画封闭的力三角形:相似关系:B A F F FCDE cde CD CE ED∆≈∆∴== 几何尺寸:11 22CE BD CD ED =====求出约束反力:☞☞☞♎♍♏☞12010 22010.4 45arctan 18.4B A o oCE F F kNCDED F F kN CDCECD α=⨯=⨯==⨯===-= 如图所示结构由两弯杆✌和 ☜构成。
第17章习题解答【17-1】解 首先写出S 点的振动方程若选向上为正方向,则有:-=0 21cos 0-=ϕ 0=-A sin 0>0, sin 0<0即 πϕ320-= 初始位相 πϕ320-= 则 m t y s )32cos(02.0πω-= 再建立如图题17-1(a )所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为:ux t =∆ 则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0 若坐标原点不选在S 点,如图题17-1(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为:uL x t -=∆ 则该波的波动方程为:m u L x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0 若P 点选在S 点左侧,如图题17-1(c )所示,则m u L x t y ⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0 【17-2】解(1)由图题17-2可知,波长 =0.8m振幅 A=0.5m频率 Hz Hz u v 1258.0100===λ 周期 s vT 31081-⨯== (2)平面简谐波标准动方程为:⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u x t A y 由图可知,当t=0,x=0时,y=A=,故=0。
将A 、(v)、u 、代入波动方程,得: m x t y ⎥⎦⎤⎢⎣⎡-=)100(250cos 5.0π 【17-3】解 (1)由图题17-3可知,对于O 点,t=0时,y=0,故2πϕ±= 再由该列波的传播方向可知,0<0取 2πϕ= 由图题17-3可知,m OP 40.0==λ,且u=0.08m/s ,则s rrad s rad uv /52/40.008.0222ππλππω==== 可得O 点振动表达式为:m t y )252cos(04.00ππ+= (2)已知该波沿x 轴正方向传播,u=0.08m/s ,以及O 点振动表达式,波动方程为: m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ (3)将x==代入上式,即为P 点振动方程:m t y p ⎥⎦⎤⎢⎣⎡-=ππ3252cos 04.0 (4)图题17-3中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。
——————————————工程力学习题——————————————第一章绪论思考题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么?4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R。
习题2-1图2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角α。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2习题2-2图(b)F 1F 1F 2习题2-3图(a )F 1习题2-4图2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。
2-6 画出图中各物体的受力图。
F 12习题2-5图(b)(a)(c)(d)AC2-7 画出图中各物体的受力图。
(f)(g) 习题2-6图(b)(a )DC2-8 试计算图中各种情况下F 力对o 点之矩。
(d)习题2-7图习题2-8图 P(d)(c)(a ) A2-9 求图中力系的合力F R 及其作用位置。
习题2-9图( a )1F 3 ( b )F 3F 2( c) 1F /m( d )F 32-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
2-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
( a )q 1=600N/m2( b )q ( c )习题2-10图B习题2-11图第三章静力平衡问题习题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm,压力p=6N/mm2,若α=30︒, 求工件D所受到的夹紧力F D。
1—1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去. 解:1-2试画出以下各题中AB 杆的受力图。
(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3试画出以下各题中AB 梁的受力图.(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b ) 半拱AB 部分;(c) 踏板AB ;(d ) 杠杆AB;(e) 方板ABCD;(f ) 节点B 。
解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b) CB(c)BF D1-5 试画出以下各题中指定物体的受力图.(a ) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c ) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
解:(a)(d)FC(e)WB(f)F FBC(c)(d)AT F BAF (b)(e)(b )(c )(d)(e)2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445N ,F 2=535N ,不计杆重,试求两杆所受的力。
C AA C’CDDBF 1解:(1)取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2—3 水平力F 作用在刚架的B 点,如图所示.如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)211 1.1222D A DD A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
第1章静力学基础思考题1-1 说明下面两个式子的意义。
(1)F1=F2(2)F1=F2解:(1)式中F表示力矢量;因此F1=F2表示力F1和F2的大小相等,方向相同。
(2)式中F表示力的大小;因此F1=F2表示力F1和F2的大小相等。
1-2 能否说合力一定比分力大,为什么?解:不一定。
例如,大小相等、方向相反,且作用在同一直线上的两个力的合力为零。
1-3 二力平衡原理与作用和反作用定律有何异同?解:二力平衡原理是指:作用在刚体上的两个力,使刚体保持平衡的充要条件是:这两个力的大小相等,方向相反,且作用在同一直线上。
作用和反作用定律是指:任何两个物体间的作用,总是大小相等、方向相反、沿同一作用线分别作用在两个物体上。
可以看出,二力平衡原理描述的是,两个不同的力作用在同一个物体上的情况;作用和反作用定律描述的是两个不同物体之间相互作用的情况。
但它们有一个相同点,即上述两种情况下的一对力均满足大小相等、方向相反。
1-4 约束反力的方向和主动力的方向有无关系?解:约束反力的方向总是与约束限制物体位移的方向相反。
对于有些约束类型,如具有光滑接触表面的约束,其约束反力必然作用在接触点处,作用线沿着接触面的公法线方向,且指向被约束物体。
又如绳索类柔性约束,其约束反力只能是沿柔性体的轴线而背离被约束物体的拉力。
而对于圆柱铰链约束等,其约束反力的作用点位置(即接触点位置)、方向和大小由构件所受主动力确定。
因此,约束反力的方向是否和主动力的方向有......专业资料...仅供学习.参考.分享关,取决于约束类型。
1-5 什么叫二力构件?分析二力构件受力时与构件的形状有无关系?解:所谓二力构件,是指只有两点受力而处于平衡状态的构件,如下图所示。
二力构件受力时,二力大小相等、方向相反,且都沿两作用点的连线方向;与构件的形状无关。
1-6 图1-18所示物体的受力图是否正确?如有错误如何改正?(a)(b)图1-18解:图1-18(b)所示受力图错误,正确的受力图所图1-18(c)所示。
工程力学习题答案第一章静力学基础知识思考题:1. X ;2. V ;3. V ;4. V ;5. K 6. K 7. V ;8. V习题一1•根据三力汇交定理,画出下面各图中A 点的约束反力方向。
解:(a )杆AB 在 A B 、C 三处受力作用。
u由于力p和uuv R B 的作用线交于点Q 如图(a )所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 0两点的连线。
uP 3uvB 处受绳索作用的拉力uuv R B (b )同上。
由于力交于0点,根据三力平衡汇交定理, 可判断A 点的约束反力方向如 下图(b )所示。
的作用线 2.不计杆重,画出下列各图中 AB 杆的受力图。
uP 解:(a )取杆AB 和E 两处还受光滑接触面约束。
约束力UJVN E uuvuuN A 和 N E,在A的方向分别沿其接触表面的公法线, 外,在 并指向杆。
其中力uuvN A 与杆垂直,通过半圆槽的圆心 Q力 AB 杆受力图见下图(a )。
和C 对它作用的约束力 NBo------- r -------- —y —uuv N C铰销此两力的作用线必须通过(b )由于不计杆重,曲杆 BC 只在两端受 故曲杆BC 是二力构件或二力体,和 B 、C 两点的连线,且B O两点的连线。
见图(d).第二章力系的简化与平衡思考题:1. V ;2.>;3. X ;4. K 5. V ;6.$7.>;8. x ;9. V .1.平面力系由三个力和两个力偶组成, 它们的大小和作用位置如图示,长度单位为cm 求此力系向O 点简化的结果,并确定其合力位置。
uvR R 解:设该力系主矢为 R ,其在两坐标轴上的投影分别为Rx、y。
由合力投影定理有:。
4.梁AB 的支承和荷载如图, 小为多少?解:梁受力如图所示:2. 位置:d M o /R 25000.232 火箭沿与水平面成F ,100 0.6100 80 2000 0.5 580m 23.2cm,位于O 点的右侧。
——————————————工程力学习题——————————————第一章绪论思考题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么?4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R。
习题2-1图2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角α。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2习题2-2图(b)F 1F 1F 2习题2-3图(a )F 1习题2-4图2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。
2-6 画出图中各物体的受力图。
F 12习题2-5图(b)(a)(c)(d)AC2-7 画出图中各物体的受力图。
(f)(g) 习题2-6图(b)(a )DC2-8 试计算图中各种情况下F 力对o 点之矩。
(d)习题2-7图习题2-8图 P(d)(c)(a ) A2-9 求图中力系的合力F R 及其作用位置。
习题2-9图( a )1F 3 ( b )F 3F 2( c) 1F /m( d )F 32-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
2-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
( a )q 1=600N/m2( b )q ( c )习题2-10图B习题2-11图第三章静力平衡问题习题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm,压力p=6N/mm2,若α=30︒, 求工件D所受到的夹紧力F D。