X射线衍射和电子衍射
- 格式:ppt
- 大小:17.98 MB
- 文档页数:83
1、分析电子衍射与X 衍射有何异同? 答:相同点:① 都是以满足布拉格方程作为产生衍射的必要条件。
② 两种衍射技术所得到的衍射花样在几何特征上大致相似。
不同点:① 电子波的波长比x 射线短的多,在同样满足布拉格条件时,它的衍射角很小,约为10-2rad 。
而X 射线产生衍射时,其衍射角最大可接近π2。
② 在进行电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,使衍射条件变宽。
③ 因为电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。
④ 原子对电子的散射能力远高于它对x 射线的散射能力,故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。
2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系? 答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相对应晶面的衍射结果,可以认为电子衍射斑点就是与晶体相对应的倒易点阵某一截面上阵点排列的像。
关系:① 倒易矢量g hkl 垂直于正点阵中对应的(hkl )晶面,或平行于它的法向N hkl ② 倒易点阵中的一个点代表正点阵中的一组晶面③ 倒易矢量的长度等于点阵中的相应晶面间距的倒数,即g hkl =1/d hkl对正交点阵有a规则的平行四边形斑点;B. 同心圆环;C. 晕环;D.不规则斑点。
2、 薄片状晶体的倒易点形状是( C )。
A. 尺寸很小的倒易点;B. 尺寸很大的球;C. 有一定长度的倒易杆;D. 倒易圆盘。
3、 当偏离矢量S<0时,倒易点是在厄瓦尔德球的( A )。
A. 球面外;B. 球面上;C. 球面内;D. B+C 。
4、 能帮助消除180º不唯一性的复杂衍射花样是( A )。
A. 高阶劳厄斑;B. 超结构斑点;C. 二次衍射斑;D. 孪晶斑点。
物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。
三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。
所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力?为什么?在对这些问题展开讨论之后,小结在最后将会被给出。
希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了!首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。
最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law):2d*sinθ=nλ(n是自然数)。
前面已经明确本文的动机,所以这里着重分析它们的差异。
i)表观上的差异,X-ray是光子(电磁波)、不带电没有磁性,电子带负电,中子不带电、质量较大而且具有磁性,这些是显而易见的常识,不多说。
ii)本质上的差异,参考图1所示:X射线是电磁波,没有静止质量,均匀介质中速度不变,波动行为在时空上的dispersion呈现简单的线性关系;而电子、中子是物质波,具有质量,均匀介质中运动速度可以变化,时空上的dispersion呈现平方项。
正是这样的本质差别导致波长(动量)与频率(能量)之间的关系在电磁波(这里是X-ray)和物质波(这里是电子、中子)之间的截然不同。
当然,物质波在运动速度接近光速的时候其dispersion会发生本质的转变,转变点如图1所示,不过这样的情况在实际的结构分析中碰不到,所以不用担心电子/中子在和光子的dispersion完全一致时的异常,反正迄今还没有见过这样的实验。
X射线衍射与电子衍射比较采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。
1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。
当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。
电子衍射虽电子衍射与X射线衍射有相同的几何原理。
但它们的物理内容不同。
在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。
除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。
2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。
由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。
此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。
会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。
物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。
三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。
判断晶体类型的方法一、引言晶体是由原子、离子或分子按照一定的规律排列而成的固体,具有高度的有序性和周期性。
晶体类型的判断是材料科学和化学领域中非常重要的问题,因为不同的晶体类型具有不同的物理和化学性质,对于材料制备和应用具有重要意义。
本文将介绍几种判断晶体类型的方法,包括X射线衍射法、电子衍射法、红外光谱法等。
二、X射线衍射法X射线衍射法是目前最常用的判断晶体类型的方法之一。
其基本原理是利用X射线与晶体中原子排列产生相互作用时所发生的干涉现象来确定晶胞结构和原子位置。
具体步骤如下:1. 制备样品:将待测样品制成粉末状,并均匀地撒在玻片上。
2. 测量样品:将玻片放入X射线衍射仪中进行测量。
在测量过程中需要控制好温度和湿度等因素,以保证数据准确性。
3. 分析结果:通过对测量数据进行分析,可以得到样品的晶胞结构和原子位置等信息。
三、电子衍射法电子衍射法是一种利用电子束与晶体中原子排列产生相互作用时所发生的干涉现象来确定晶胞结构和原子位置的方法。
其基本步骤如下:1. 制备样品:将待测样品制成薄膜状,并放置在透明的网格上。
2. 测量样品:将网格放入电子显微镜中进行测量。
在测量过程中需要控制好温度和湿度等因素,以保证数据准确性。
3. 分析结果:通过对测量数据进行分析,可以得到样品的晶胞结构和原子位置等信息。
四、红外光谱法红外光谱法是一种通过分析物质对不同波长红外辐射的吸收情况来确定物质分子结构和化学键类型的方法。
其基本步骤如下:1. 制备样品:将待测样品制成薄片状,并放置在透明的盘中。
2. 测量样品:将盘放入红外光谱仪中进行测量。
在测量过程中需要控制好温度和湿度等因素,以保证数据准确性。
3. 分析结果:通过对测量数据进行分析,可以得到样品的分子结构和化学键类型等信息。
五、总结以上介绍了三种判断晶体类型的方法,它们分别是X射线衍射法、电子衍射法和红外光谱法。
这些方法在材料科学和化学领域中具有广泛的应用,能够为材料制备和应用提供重要的帮助。
第九章 电子衍射1、 分析电子衍射与 X 射线衍射有何异同?(**)电子衍射原理与X 射线相似相同之处:都是满足布拉格方程作为产生衍射的必要条件,两种衍射技术所得到的衍射花样在几何特征上是大致相似的。
不同之处:1)电子波的波长比X 射线短得多,在同样满足布拉格条件时,它的衍射角θ很小,约为10e -2rad 。
而X 射线产生衍射时其衍射角最大可接近π/2。
(这是电子衍射花样特征不同与x 射线衍射的主要原因)2)在进行电子衍射操作时采用薄晶样品,薄样品的倒易阵点会沿着厚度方向延伸成杆状,因此,增加了倒易点阵与爱瓦德球相交截的机点,结果使略微偏离布拉格条件的电子束可能发生衍射。
3)因为电子波的波长短,采用爱瓦德球图解式,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似的看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内,这个结果使晶体产生的衍射花样能比较直接地反映晶体内各晶面的位向,给分析带来不少方便。
4)原子对电子的散射能力远高于对X 射线的散射能力(约高四个数量级),故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。
2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系?(**)答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间(倒易空间)点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相应晶面的衍射结果,可以认为电子衍射斑点就是就是与晶体相对应的倒易点阵中某一倒易面上阵点排列的像。
关系:1)倒易矢量ghkl 垂直于正点阵中对应的(hkl )晶面,或平行于它的法向Nhkl2)倒易点阵中的一个点代表正点阵中的一组晶面3)倒易矢量的长度等于正点阵中的相应晶面间距的倒数,即ghkl=1/dhkl 。
4)对正交点阵有a*//a,b*//b,c*//c,a*=1/a,b*=1/b,c*=1/c5)只有在立方点阵中,晶面法向和同指数的晶向市重合的,即倒易矢量ghkl 是与相应指数的晶向[hkl]平行6)某一倒易基矢垂直于正交点阵中和自己3、 何为零层倒易截面和晶带定理?说明同一晶带中各晶面及其倒易矢量与晶带轴之间的关系。