笔记-实变函数与泛函分析基础 (第三版) 程其襄、张奠宙等编
- 格式:pdf
- 大小:24.89 MB
- 文档页数:6
主要内容本章的中心内容是建立一种新的积分——勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上i般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下儿个方面:(1)勒贝格积分是一种绝对收敛积分,即兀兀)在E上可积当且仅当|/(兀)|在E上可积(/(x)在E上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设/(力在E上可积,则对任意£>0,存在》〉0,使当e u E且加£<5时,恒有(3)勒贝格积分的唯一性.即£|/(x)|ck = 0的充要条件是/(x) = 0 a.e. T E・由此可知,若f(x)与巩兀)几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近•设/(兀)是可积函数,对任意£>0,存在[°,切上的连续函数從无),使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理5.4. 1),勒贝格控制收敛定理(定理5. 4. 2),和法都定理(定理5.4. 3)在现代数学中都有广泛的应用.同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.|H|、关于勒贝格积分同黎曼积分之间的关系.我们知道,若[°,切上的有界函数/(兀)黎曼可积,则必勒贝格可积口二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可 积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化 为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要/(x, y)在R 〃xRq 上可积即 可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒 贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、 设/(x)是可测集E^R n上的非负简单函数,则f /(x)cLr -定存在。
《实变函数与泛函分析基础》目录简介内容简介本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。
《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。
这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。
《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。
目录第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼定理第五章习题第六章微分与不定积分1 维它利定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射4 柯西点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理1 泛函延拓定理2 C[a,b]的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题参考书目。
泛函分析张远航笔记所谓的泛函呢,就是一般函数,泛函分析当然就是一般函数的分析研究。
在学习泛函之前,需要有扎实的《实变函数》知识。
大学期间,曾用半年时间学过由南开大学刘炳初教授编著,科学出版社出版的《泛函分析》,讲课的是哈尔滨工业大学的包革军教授,他讲泛函的最大特点是把泛函与几何图形有机结合,把艰深的纯理论讲的惟妙惟肖。
在进入研究生学习阶段,《泛函分析》作为计算学研究生的基础理论课程,是必选的。
我们选用的教材是由武汉大学刘培德教授主编,武汉大学出版社出版的《泛函分析(第二版)》,该教材是面向本科生的,系里之所以考虑选择此教材,是由于考虑到有些学生在本科阶段没有或者很粗浅的认识了《泛函分析》这门课程,主讲该课程的是高云兰博士,她的方向就是算子方面的研究,所以讲解该课程那是轻车熟路了。
课时大约是48学时(粗略估计)。
由于以下两方面的原因:1)对于《泛函分析》认识很粗浅;2)第一次写读书笔记(尤其是专业课类),不知道如何从略。
所以读书笔记可能从在诸多问题,希望老师见谅!下面我从几个方面写本学期学习《泛函分析》的感受和认识。
我本着这样态度写该笔记:1)了解泛函是什么,泛函的发展(很多教材把这个从略)2)把空间的理论知识系统学习,对于其他理论的学习作抛砖引玉之用。
3)学习泛函的实际作用(也就是附录里的滤波器理论的应用)。
泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。
它是20世纪30年代形成的。
从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。
一、泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段。
这就是,由于对欧几里德第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。
这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。
博学慎行深思——记程其襄先生
张奠宙
【期刊名称】《高等数学研究》
【年(卷),期】2018(21)1
【摘要】程其襄教授留学德国十余年,于1943年获柏林大学博士学位.1946年回国后,先后在同济大学、华东师范大学任教.他的主要贡献是将德国数学学派的严谨性和深刻性带入中国,并以主持编写《数学分析》、《实变函数与泛函分析基础》等教材,影响了几代学生.
【总页数】4页(P86-89)
【作者】张奠宙
【作者单位】华东师范大学数学系,上海200062
【正文语种】中文
【中图分类】K825.46
【相关文献】
1.梦寄笔端走天涯——记我省著名文史学者程起骏先生 [J], 解生才
2.博学卓识,不倦追求--记赵俪生先生献身教育事业的一生 [J], 黄冕堂
3.德馨若水彩赋艺程——记山东水彩奠基人之一晏文正先生 [J], 张膑;窦凤至;
4.博学精进——舒芜先生访问记 [J], 崔放玲
5.博学多才实难得爱国之心更可贵———记著名学者张宗祥先生对传承中华文化的杰出贡献 [J], 张晰
因版权原因,仅展示原文概要,查看原文内容请购买。
主要内容本章的中心内容是建立一种新的积分−− 勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上一般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下几个方面:(1)勒贝格积分是一种绝对收敛积分,即)(x f 在E 上可积当且仅当)(x f 在E 上可积()(x f 在E 上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设)(x f 在E 上可积,则对任意0>ε,存在0>δ,使当E e ⊂且 δ<e m 时,恒有(3)勒贝格积分的唯一性.即0d )(=⎰Ex x f 的充要条件是..0)(e a x f =于E .由此可知,若)(x f 与)(x g 几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近.设)(x f 是可积函数,对任意0>ε,存在],[b a 上的连续函数)(x ϕ,使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理,勒贝格控制收敛定理(定理,和法都定理(定理同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.四、关于勒贝格积分同黎曼积分之间的关系.我们知道,若],[b a 上的有界函数)(x f 黎曼可积,则必勒贝格可积且二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要),(y x f 在q p R R ⨯上可积即可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。
《实变函数与泛函分析》教学大纲课程编码:110840课程名称:实变函数与泛函分析学时/学分:72/4先修课程:《数学分析》、《复变函数》适用专业:信息与计算科学开课教研室:分析与程教研室一、课程性质与任务1.课程性质:《实变函数与泛函分析》是大学数学系的重要专业方向课之一,它是数学分析的延续和发展。
2.课程任务:通过这门课程的教学应使学生掌握近代抽象分析的基本思想,培养学生综合运用分析数学的几何观点和方法,理解和研究分析数学中的许多问题,为进一步学习现代数学理论和理解现代科学技术提供必要的基础。
二、课程教学基本要求实变函数与泛函分析包括两部分内容:“实变函数”与“泛函分析”。
“实变函数”主要学习测度论、可测函数论、积分论、微分与不定积分;“泛函分析”是通过在集合中引入各种结构,包括代数结构,拓扑结构、测度结构、序结构以及这些基本结构的各种复合,形成了各种各样的抽象空间,本课程主要研究这些抽象空间中的距离空间,赋范线性空间,内积空间的性质及其映射(线性算子和线性泛函)性质。
三、课程教学内容第一章 集合1.教学基本要求通过本章的系统学习,使学生熟悉集合列的上极限集、下极限集、极限集的定义与交、并运算表示,集合的对等、基数概念;掌握有限集、可数集、不可数集的概念,可数集是最小的无限集的结论以及可数集的基本运算性质,自然数集、整数集、有理数集等的可数性,有理数集在实数轴上的稠密性。
2.要求学生掌握的基本概念、理论通过本章教学使学生熟悉集合列的上、下极限集、极限集的定义与交、并运算表示;掌握单调集合列{Ak}的概念及其极限集的求法。
熟悉集合的对等概念,熟悉对等是一个等价关系;熟悉集合对等的Cantor-Bernstein定理; 掌握集合对等的夹挤定理。
熟悉集合的基数概念;掌握有限集、可数集、不可数集的概念;掌握可数集是最小的无限集的结论以及可数集的基本运算性质; 掌握自然数集、整数集、有理数集等的可数性;掌握有理数集在实数轴上的稠密性;熟悉无理数集、实数集、区间点集等的不可数性。
实变函数与泛函分析基础(第三版)-----第三章_复习指导主要内容本章介绍了勒贝格可测集和勒贝格测度的性质.外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别.我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求.本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论.本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和型集逼近.正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用.本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集.复习题一、判断题1、对任意nE R ?,*m E 都存在。
(√ )2、对任意nE R ?,mE 都存在。
(× )3、设nE R ?,则*m E 可能小于零。
(× )4、设A B ?,则**m A m B ≤。
(√ ) 5、设A B ?,则**m A m B <。
(× ) 6、**11()n n n n m S m S ∞∞===∑。
实变函数读书笔记实变函数老师坚持不化题,平时笔记也是乱七八糟,说该挂多少人就挂多少人,最近一直忙着复习其他专业课,一、回归课本为主,找准备考方向学生根据自己的丢分情况,找到适合自己的备考方向。
基础差的学生,最好层层追溯到自己学不好的根源。
无论哪个学科,基本上都是按照教材层层关联的,希望基础不好的同学以课本为主,配套练习课本后的练习题,以中等题、简单题为辅、逐渐吃透课本,也渐渐提高信心。
只要把基础抓好,那么考试时除了一些较难的题目,基本上都可以凭借能力拿下,分数的高低仅剩下发挥的问题。
二、循序渐进,切忌急躁在复习的时候,由于是以自己为主导,有时候复习的版块和教学进度不同,当考试时会发现没有复习到的部分丢分严重。
导致成绩不高。
但是已经复习过的版块,却大多能够拿下。
这就是进步,不要因为用一时的分数高低做为衡量标准,复习要循序渐进,不要急躁。
复习就像修一条坑坑洼洼的路,每个坎坷都是障碍,我们只有认真的从起点开始,按照顺序慢慢推平。
哪怕前面依旧沟整,但是当你回头的时候,展现在你眼前的是一条康庄大道。
基本上,如果纯做题的话,1-2个月时间就能把各科的试题从第一章节到最后一个章节摸得差不多。
三、合理利用作业试题、试卷简单题、中等题一方面可以印证、检验自己的基础知识体系,又一方面可以提升我们复习的信心。
在选择作业上,简单题、中等题尤其是概念理解应用题一定要自己动手做,还要进行总结。
难题可以参考答案,但要认真思考其中的步骤推导思想和转化思想,这些都是考试所考察的。
语文要充分利用试卷,其中的成语、病句要注重收集,文言文虚实词记得要摘录。
英语单词注意把正确选项带人念熟。
同时思考阅读、完型题是如何找到有效的原文信息,他们有何特点和提示点?要这么去利用每一次作业和试卷,那么成绩将会短期内提高。
四、建立信心,不计一时得失有些学生自认为自己是差生,无可救药了。
但是事实上往往不是这样。
有些学生认为自己天生比别人笨,不如别人聪明。
《泛函分析》读书笔记Reading Notes about Functional Analysis崔继峰所谓的泛函呢,就是一般函数,泛函分析当然就是一般函数的分析研究。
在学习泛函之前,需要有扎实的《实变函数》知识。
大学期间,曾用半年时间学过由南开大学刘炳初教授编著,科学出版社出版的《泛函分析》,讲课的是哈尔滨工业大学的包革军教授,他讲泛函的最大特点是把泛函与几何图形有机结合,把艰深的纯理论讲的惟妙惟肖。
在进入研究生学习阶段,《泛函分析》作为计算数学研究生的基础理论课程,是必选的。
我们选用的教材是由武汉大学刘培德教授主编,武汉大学出版社出版的《泛函分析(第二版)》,该教材是面向本科生的,系里之所以考虑选择此教材,是由于考虑到有些学生在本科阶段没有或者很粗浅的认识了《泛函分析》这门课程,主讲该课程的是高云兰博士,她的方向就是算子方面的研究,所以讲解该课程那是轻车熟路了。
课时大约是48学时(粗略估计)。
由于以下两方面的原因:1)对于《泛函分析》认识很粗浅;2)第一次写读书笔记(尤其是专业课类),不知道如何从略。
所以读书笔记可能从在诸多问题,希望老师见谅!下面我从几个方面写本学期学习《泛函分析》的感受和认识。
我本着这样态度写该笔记:1)了解泛函是什么,泛函的发展(很多教材把这个从略)2)把空间的理论知识系统学习,对于其他理论的学习作抛砖引玉之用。
3)学习泛函的实际作用(也就是附录里的滤波器理论的应用)。
泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。
它是20世纪30年代形成的。
从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。
一、泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段。
这就是,由于对欧几里德第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。
大学数学易考知识点实变函数与泛函分析大学数学易考知识点:实变函数与泛函分析一、引言在大学数学课程中,实变函数与泛函分析是重要的学习内容之一。
本文将介绍实变函数与泛函分析的相关知识点,帮助读者更好地掌握这些内容。
主要包括实变函数的基本概念、性质以及泛函分析的基础理论。
二、实变函数的基本概念与性质1. 实数与实变函数实数是数学中的基本概念之一,是实变函数的定义域和值域所在的数集。
实数满足完备性、可比性和稠密性等性质,在实变函数的研究中起到重要的作用。
2. 实变函数的连续性实变函数的连续性是指函数在定义域上的无间断性质。
连续性可分为点连续和一致连续两种,其中点连续要求函数在每一个点上都连续,而一致连续要求函数在整个定义域上都连续。
3. 导数与微分导数是实变函数研究中的重要工具,描述了函数在一点附近的变化率。
函数可导的充分必要条件是其在该点连续,并且在该点的左、右导数相等。
微分是导数的重要应用,描述了函数在某一点处的局部线性逼近。
4. 实变函数的积分积分是实变函数研究中的重要内容,描述了函数在一定区间上的累积效应。
常见的积分有定积分和不定积分两种,其中定积分描述了函数在某一区间上的累积效应,不定积分描述了函数的原函数。
三、泛函分析的基础理论1. 赋范空间与内积空间赋范空间是泛函分析中研究的基本对象,是一个具有范数的向量空间。
内积空间是具有内积的向量空间,内积可用于定义范数和度量空间。
2. 泛函与线性算子泛函是指将向量映射到实数或复数的函数,是泛函分析中的重要概念。
线性算子是将一个向量空间映射到另一个向量空间的线性变换,是泛函分析中的关键工具。
3. 可分空间与完备空间可分空间是指在该空间中存在可数稠密子集的向量空间。
完备空间是指拓扑空间中的任何一个柯西序列都收敛于该空间中的某一点。
可分空间和完备空间是泛函分析中的两个重要概念。
4. 链式法则与逆函数定理链式法则是泛函分析中导数的重要性质,描述了复合函数的导数与原函数的导数之间的关系。
实变函数和泛函分析基础第三版答案泛函分析习题解答1、设(,)X d 为⼀度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。
解答:在⼀般度量空间中不成⽴00(,)(,)U x S x εε=,例如:取1R 的度量⼦空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],⽽(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C ab ∞是区间[,]a b 上⽆限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。
证明:(1)显然(,)0d f g ≥且(,)0d f g =?()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-?=+-?,[,]r t a b ??∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =?∈时有|()()|0f t g t -=?[,]t a b ?∈有 ()()f t g t =。
(2)由函数()1t f t t=+在[0,)+∞上单调增加,从⽽对,,[,]f g h C a b ∞∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三⾓不等式成⽴(,)(,)(,)d f g d f h d h g ≤+。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载实变函数与泛函分析要点地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容实变函数与泛函分析概要第一章集合基本要求:理解集合的包含、子集、相等的概念和包含的性质。
掌握集合的并集、交集、差集、余集的概念及其运算性质。
会求已知集合的并、交、差、余集。
了解对等的概念及性质。
掌握可数集合的概念和性质。
会判断己知集合是否是可数集。
理解基数、不可数集合、连续基数的概念。
8、了解半序集和Zorn引理。
第二章点集基本要求:理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。
掌握内点、聚点的概念、理解外点、界点、孤立点的概念。
掌握聚点的性质。
掌握开核、导集、闭区间的概念及其性质。
会求己知集合的开集和导集。
掌握开核、闭集、完备集的概念及其性质,掌握一批例子。
会判断一个集合是非是开(闭)集,完备集。
了解Peano曲线概念。
主要知识点:一、基本结论:聚点性质§2 中T1聚点原则:P0是E的聚点 P0的任一邻域内,至少含有一个属于E而异于P0的点存在E中互异的点列{Pn},使Pn →P0 (n→∞)开集、导集、闭集的性质§2 中T2、T3T2:设A⊂B,则A⊂B, eq \o(\s\up 7(·),\s\do 4(A)) ⊂eq \o(\s\up 7(·),\s\do 4(B)) , eq \o(\s\up 8(-),\s\do4(A)) ⊂ eq \o(\s\up 7(-),\s\do 4(B)) 。
T3:(A∪B)′=A′∪ B′.开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E⊂Rⁿ,Ė是开集,E´和 eq \o(\s\up 7(―),\s\do4(E)) 都是闭集。