第二章 导热基本原理1
- 格式:ppt
- 大小:10.78 MB
- 文档页数:44
第九章导热9-1 导热理论基础1. 导热的基本概念(1)温度场(temperature field)在τ时刻,物体内所有各点的温度分布称为该物体在该时刻的温度场。
一般温度场是空间坐标和时间的函数,在直角坐标系中,温度场可表示为t=fy),,,(τzx非稳态温度场:温度随时间变化的温度场,其中的导热称为非稳态导热。
稳态温度场:温度不随时间变化的温度场,其中的导热称为稳态导热。
(),,t f x y z=一维温度场二维温度场三维温度场(),t f xτ=()t f x=(),,t f x yτ=(),t f x y=(),,,t f x y zτ=(),,t f x y z=(2)等温面与等温线在同一时刻,温度场中温度相同的点连成的线或面称为等温线或等温面。
等温面与等温线的特征:同一时刻,物体中温度不同的等温面或等温线不能相交;在连续介质的假设条件下,等温面(或等温线)或者在物体中构成封闭的曲面(或曲线),或者终止于物体的边界,不可能在物体中中断。
(3)温度梯度(temperature gradient)在温度场中,温度沿x 方向的变化率(即偏导数)0lim x t t x x∂∂∆→∆=∆很明显,等温面法线方向的温度变化率最大,温度变化最剧烈。
温度梯度:等温面法线方向的温度变化率矢量:tt n∂=∂grad nn —等温面法线方向的单位矢量,指向温度增加的方向。
温度梯度是矢量,指向温度增加的方向。
6在直角坐标系中,温度梯度可表示为t t tt x y z∂∂∂=++∂∂∂grad i j kt t tx y z∂∂∂∂∂∂、、分别为x 、y 、z 方向的偏导数;i 、j 、k 分别为x 、y 、z 方向的单位矢量。
(4)热流密度(heat flux)d d q AΦ=热流密度的大小和方向可以用热流密度矢量q 表示d d AΦ=-q n热流密度矢量的方向指向温度降低的方向。
nt d Ad Φq在直角坐标系中,热流密度矢量可表示为x y z q q q =++q i j kq x 、q y 、q z 分别表示q 在三个坐标方向的分量的大小。