第8章 图与网络分析
- 格式:pptx
- 大小:360.26 KB
- 文档页数:59
《运筹学》综合练习题第一章 线性规划及单纯形法1、教材43页——44页题2、教材44页题3、教材45页题4、教材46页题5、教材46页题6、补充:判断下述说法是否正确LP 问题的可行域是凸集。
LP 问题的基本可行解对应可行域的顶点。
LP 问题的最优解一定是可行域的顶点,可行域的顶点也一定是最优解。
若LP 问题有两个最优解,则它一定有无穷多个最优解.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中∶≥"'j j x x ,在用单纯形法求得的最优解中,不可能同时出现0"'j j x x .当用两阶段法求解带有大M 的LP 模型时,若第一阶段的最优目标函数值为零,则可断言原LP 模型一定有最优解。
7、补充:建立模型(1)某采油区已建有n 个计量站B 1,B 2…B n ,各站目前尚未被利用的能力为b 1,b 2…b n (吨液量/日)。
为适应油田开发的需要,规划在该油区打m 口调整井A 1,A 2…A m ,且这些井的位置已经确定。
根据预测,调整井的产量分别为a 1,a 2…a m (吨液量/日)。
考虑到原有计量站富余的能力,决定不另建新站,而用原有老站分工管辖调整井。
按规划要求,每口井只能属于一个计量站。
假定A i 到B j 的距离d ij 已知,试确定各调整井与计量站的关系,使新建集输管线总长度最短。
(2)靠近某河流有两个化工厂(见附图),流经第一个工厂的河流流量是每天500万立方米;在两个工厂之间有一条流量为每天200万立方米的支流。
第一个工厂每天排放工业污水2万立方米;第二个工厂每天排放工业污水1.4万立方米 。
从第一个工厂排出的污水流到第二个工厂之前,有20%可自然净化。
根据环保要求,河流中工业污水的含量不应大于%,若这两个工厂都各自处理一部分污水,第一个工厂的处理成本是1000元/万立方米,第二个工厂的处理成本是800元/万立方米。
图与网络分析试题及答案一、填空题1.图的最基本要素是点、点与点之间构成的边2.在图论中,通常用点表示,用边或有向边表示研究对象,以及研究对象之间具有特定关系。
3.在图论中,通常用点表示研究对象,用边或有向边表示研究对象之间具有某种特定的关系。
4.在图论中,图是反映研究对象_之间_特定关系的一种工具。
5.任一树中的边数必定是它的点数减1。
6.最小树问题就是在网络图中,找出若干条边,连接所有结点,而且连接的总长度最小。
7.最小树的算法关键是把最近的未接_结点连接到那些已接结点上去。
8.求最短路问题的计算方法是从0≤f ij≤c ij开始逐步推算的,在推算过程中需要不断标记平衡和最短路线。
二、单选题1、关于图论中图的概念,以下叙述(B)正确。
A图中的有向边表示研究对象,结点表示衔接关系。
B图中的点表示研究对象,边表示点与点之间的关系。
C图中任意两点之间必有边。
D图的边数必定等于点数减1。
2.关于树的概念,以下叙述(B)正确。
A树中的点数等于边数减1 B连通无圈的图必定是树C含n个点的树是唯一的D任一树中,去掉一条边仍为树。
3.一个连通图中的最小树(B),其权(A)。
A是唯一确定的 B可能不唯一 C可能不存在 D一定有多个。
4.关于最大流量问题,以下叙述(D)正确。
A一个容量网络的最大流是唯一确定的B达到最大流的方案是唯一的C当用标号法求最大流时,可能得到不同的最大流方案D当最大流方案不唯一时,得到的最大流量亦可能不相同。
5.图论中的图,以下叙述(C)不正确。
A.图论中点表示研究对象,边或有向边表示研究对象之间的特定关系。
B.图论中的图,用点与点的相互位置,边的长短曲直来表示研究对象的相互关系。
C.图论中的边表示研究对象,点表示研究对象之间的特定关系。
D.图论中的图,可以改变点与点的相互位置。
只要不改变点与点的连接关系。
6.关于最小树,以下叙述(B)正确。
A.最小树是一个网络中连通所有点而边数最少的图B.最小树是一个网络中连通所有的点,而权数最少的图C.一个网络中的最大权边必不包含在其最小树内D.一个网络的最小树一般是不唯一的。