直流斩波电路
- 格式:ppt
- 大小:1.17 MB
- 文档页数:34
直流斩波电路是一种常用于电力电子器件中的控制电路,用于将直流电源转换成可控的脉冲电压输出,常用于调节、变换和逆变等应用中。
以下是六种典型的直流斩波电路及其性能研究:1. 单元斩波电路:单元斩波电路是最基本的斩波电路,通过单个开关器件(如晶闸管或晶体管)控制输出电压的开关,简单实用。
2. 双元斩波电路:双元斩波电路采用两个开关器件进行控制,可以提高输出电压的精度和稳定性,适用于一定功率范围内的应用。
3. 三元斩波电路:三元斩波电路引入第三个开关器件,通常用于中功率的直流斩波调节电路中,提高了输出波形的质量和稳定性。
4. 逆变斩波电路:逆变斩波电路是将直流输入转换为交流输出的电路,通过斩波技术实现对输出波形的调节和控制,适用于各种逆变器应用。
5. 多电平斩波电路:多电平斩波电路通过控制多个开关器件的状态,实现输出波形的多级调节,提高了输出波形的谐波失真程度和效率。
6. 多电压级斩波电路:多电压级斩波电路结构复杂,但能够实现更高精度的输出电压控制和更低的谐波失真,适用于高要求的功率电子应用。
性能研究包括但不限于以下几个方面:-效率和功率因数:研究直流斩波电路的效率和功率因数,评估其能量转换效率和功率因数对系统整体性能的影响。
-波形质量:分析输出波形的谐波含量、波形失真度等指标,评估直流斩波电路对输出波形的调节和控制能力。
-动态响应特性:研究直流斩波电路的动态响应特性,包括开关速度、响应时间等参数,评估其对系统动态性能的影响。
-稳定性和可靠性:考察直流斩波电路在不同工况下的稳定性和可靠性,包括温度变化、负载变化等条件下的性能表现。
-成本和复杂度:综合考虑直流斩波电路的成本和复杂度,评估其在实际应用中的经济性和可行性。
通过对六种典型直流斩波电路的性能研究,可以全面了解各种电路结构的优缺点,为选择合适的直流斩波电路结构和优化设计提供参考和指导。
(1)直流-直流变流电路(DC-DC )定义:将一种直流电变为另一固定电压或可调电压的直流电的装置。
(2)常见的直流-直流变流电路为直流斩波电路。
(3)基本直流斩波电路为:降压斩波电路和升压斩波电路。
降压斩波电路电路原理图(1)包含全控型器件V ,由IGBT 组成。
(2)包含续流二极管VD ,作用是保证IGBT 关断时给负载中电感电流提供通道。
(3)负载:直流电动机,两端呈现反电动势m E 。
(4)分析前提:假设负载中电感值很大,即保证电流连续。
工作原理分析(1)给出IGBT 的栅射极电压GE U 波形,即G i 波形,周期为T 。
(2)10t -(on t )期间:IGBT 导通,电源E 向负载供电,负载电压E U =o ,由于电感存在,因此负载电流不能突变,所以按指数曲线上升。
(3)T t -1(of f t )期间:控制IGBT 关断,负载电流经过续流二极管VD 续流,负载电压基本为0,负载电流呈现指数曲线下降。
(4)当负载电感值较大时,负载电流连续而且脉动小。
公式(1)负载电压平均值:E E Tt U on α==o ,其中α为占空比。
(2)电感L 极大时,负载电流平均值:R E U I m o -=o 。
计算题:例5-1总结(1)通过改变降压斩波电路的占空比大小,就可以改变输出负载电压的平均值。
电路原理图(1)包含全控型器件V ,由IGBT 组成。
(2)包含极大值的电感L 和电容C 。
(3)负载为电阻R 。
工作原理分析(1)当IGBT 导通阶段:● 电源E 向电感L 充电,充电电流为恒定电流1I ;●电容C 上的电压向负载R 供电,因C 值很大,因此输出电压为恒值o U 。
●通态时间为on t ,此阶段电感L 上积蓄能量为on t EI 1。
(2)当IGBT 关断阶段:●电源E 和电感L 共同向电容C 充电,并向负载R 提供能量。
● 此期间,电感L 释放的能量为off t I E U 1o )(-。
DC-DC直流斩波电路的原理一、引言DC-DC直流斩波电路是一种将直流电能进行调节和转换的电路,广泛应用于各种电子设备和系统中。
由于其具有效率高、体积小、稳定性好等优点,DC-DC 直流斩波电路已成为电力电子领域的重要分支之一。
本文将详细介绍DC-DC直流斩波电路的基本结构和工作原理,以及不同控制策略的斩波电路、应用和实例,以期为相关从业人员提供有益的参考。
二、DC-DC直流斩波电路的基本结构和工作原理DC-DC直流斩波电路的基本结构主要包括电源、开关、负载和滤波器等部分。
其工作原理是利用开关的快速通断,将直流电源的电压进行斩波,形成一定占空比的脉冲信号,再通过滤波器将脉冲信号转换成平滑的直流电压。
在斩波电路中,开关的通断时间以及占空比是关键参数,它们决定了输出电压的大小和波形。
当开关处于导通状态时,电流通过负载,输出电压等于电源电压;当开关处于断开状态时,电流为零,输出电压为零。
通过调节开关的通断时间,可以改变输出电压的大小和波形。
三、不同控制策略的斩波电路根据控制方式的不同,斩波电路可以分为定频控制、定宽控制和PWM控制等类型。
1.定频控制:保持斩波频率恒定,通过改变斩波的宽度来调节输出电压。
这种控制方式实现简单,但调节不够平滑。
2.定宽控制:保持斩波宽度恒定,通过改变斩波的频率来调节输出电压。
这种控制方式适用于对输出电压波形要求不高的场合。
3.PWM控制:通过对斩波的宽度进行PWM调制,实现对输出电压的连续调节。
这种控制方式调节效果好,但实现较为复杂。
四、斩波电路的应用和实例1.电池充电:利用斩波电路可以实现对电池的恒流、恒压充电,有效延长电池寿命。
例如,采用PWM控制的斩波电路为电动汽车电池充电,可以确保充电过程安全可靠。
2.稳压电源:斩波电路可以实现直流稳压电源,具有效率高、体积小等优点。
例如,将斩波电路应用于LED驱动电源,可以有效提高LED亮度并延长其使用寿命。
3.电机驱动:在电机驱动领域,斩波电路可以通过调节输入电压的大小和波形,实现对电机的速度和转矩的控制。