视频目标跟踪与分割汇报总结共28页文档
- 格式:ppt
- 大小:3.78 MB
- 文档页数:28
视频检测和运动目标跟踪方法总结目前常用的视频检测方法可分为如下几类:光流法,时域差分法,背景消减法,边缘检测法,运动矢量检测法[2]。
一、光流法光流法[1]是一种以灰度梯度基本不变或亮度恒定的约束假设为基础对运动目标进行检测的有效方法。
光流是指图像中灰度模式运动的速度,它是景物中可见的三维速度矢量在成像平面上的投影,表示了景物表面点在图像中位置的瞬时变化,一般情况下,可以认为光流和运动场没有太大区别,因此就可以根据图像运动来估计相对运动。
优点:光流不仅携带了运动目标的运动信息,而且还携带了有关景物三维结构的丰富信息,它能够检测独立运动的对象,不需要预先知道场景的任何信息,并且能够适用于静止背景和运动背景两种环境。
缺点:当目标与背景图像的对比度太小,或图像存在噪音时,单纯地从图像灰度强度出发来探测目标的光流场方法将会导致很高的虚警率。
且计算复杂耗时,需要特殊的硬件支持。
二、时域差分法时域差分法分为帧差法和改进的三帧双差分法。
1.帧差法帧差法[8]是在图像序列中的相邻帧采用基于像素点的时间差分, 然后阈值化来提取出运动区域。
视频流的场景具有连续性,在环境亮度变化不大的情况下,图像中若没有物体运动,帧差值会很小;反之若有物体运动则会引起显著的差值。
优点:时域相邻帧差法算法简单,易于实现,对背景或者光线的缓慢变化不太敏感,具有较强的适应性,能够快速有效地从背景中检测出运动目标。
缺点:它不能完全提取运动目标所有相关像素点,在运动实体内部不容易产生空洞现象。
而且在运动方向上被拉伸,包含了当前帧中由于运动引起的背景显露部分,这样提取的目标信息并不准确。
2.三帧双差分法三帧双差分法与相邻帧差法基本思想类似,但检测运动目标的判决条件上有所不同。
三帧双差分较两帧差分提取的运动目标位置更为准确。
三、背景消减法背景消减法[4]是将当前帧与背景帧相减,用阈值T判断得到当前时刻图像中偏离背景模型值较大的点,若差值大于T则认为是前景点(目标);反之,认为是背景点,从而完整的分割出目标物体。
本次实验是一种基于MATLAB的简易的从视频播放的帧图像中找出目标图像,并进行视频跟踪的实现方法。
通过对图像进行阈值处理(图像分割),再对分割后的图像求取形心,以对目标图像进行定位,并最后找到各幅帧图像的目标位置的方法,从而实现对95帧视频图像的实时跟踪。
图片存于帧图片文件夹!程序算法为Untitled6.m文件!基于MATLAB的图像跟踪算法2.1 95帧视频图像的读取由于视频是由95帧图像通过连续播放从而达到视频的效果的,所以要达到视频放映的效果,应首先对95帧图像序列进行顺序读取。
95帧图像存储在MATLAB的默认路径中,文件名为00000xxx.bmp。
要达到读取它们的目的,需要使用循环算法。
算法由一个名为read_seqim(i)的函数实现,以下是函数的源程序:function I=read_seqim(i)if nargin==0i=1;min=00000001;endname=num2str(i);if i<=9min=strcat('0000000',name,'.bmp');elseif i<=99min=strcat('000000',name,'.bmp');elsemin=strcat('00000',name,'.bmp');endI=imread(min);其中i为读取图像的序号,通过以上的函数可以很方便的实现对95帧图像中任意一帧的读取,从而为后面的处理提供方便。
2.2 图像的阈值处理(图像分割)阈值(Threshold),也叫门限。
阈值化(Thresholding),即按给定阈值进行图像的二值化处理。
阈值分割法可分为以下几种:☐简单阈值分割法;☐多阈值分割法;☐最大类间方差法;☐最佳阈值法。
许多情况,图像是由具有不同灰度级的几类区域组成。
如文字与纸张、地物与云层(航空照片)等,阈值分割是利用同一区域的具有某种共同灰度特性进行分割。
视频目标跟踪算法研究视频目标跟踪算法研究一、引言随着计算机视觉技术的快速发展,视频目标跟踪算法为机器学习和人工智能领域提供了重要的基础。
视频目标跟踪算法可用于实时监控、自动驾驶、智能安防等诸多应用领域,大大提升了智能系统的性能和功能。
本文旨在探讨视频目标跟踪算法的研究现状、方法和挑战。
二、视频目标跟踪算法概述视频目标跟踪是指在给定视频序列中,根据第一帧或者人为指定的初始目标位置,通过计算机视觉和机器学习技术,实现对目标在整个视频序列中的位置和状态的准确定位和追踪。
视频目标跟踪算法主要分为基于特征的方法和基于深度学习的方法两大类。
1. 基于特征的方法基于特征的方法利用目标在图像中的某些显著特征,如颜色、形状、纹理等进行目标跟踪。
这类方法的优点是计算简单,速度快,但对于目标外观的变化和光照条件的变化较为敏感。
常见的基于特征的方法有均值漂移算法、卡尔曼滤波算法等。
2. 基于深度学习的方法基于深度学习的方法利用深度神经网络对目标进行特征提取和表示,并通过监督或无监督学习的方式实现目标跟踪。
这类方法在处理目标外观变化和光照条件变化方面更具鲁棒性,但也需要大量的训练数据和计算资源支持。
常见的基于深度学习的方法有卷积神经网络(CNN)、循环神经网络(RNN)等。
三、视频目标跟踪算法研究现状目前,视频目标跟踪算法研究主要集中在以下几个方面:1. 多目标跟踪多目标跟踪是指同时追踪视频中多个目标。
由于多目标之间存在相互遮挡、相似外观等问题,多目标跟踪是一个比较复杂的问题。
研究者们通过引入关联滤波器、目标分割等技术,提出了一系列针对多目标跟踪的算法,取得了一定的进展。
2. 长时目标跟踪长时目标跟踪是指目标在视频中间断出现和消失的情况下的跟踪。
由于目标的外观和姿态在间断期间可能发生很大变化,长时目标跟踪是一个更加困难的问题。
目前,研究者们通过引入复杂的神经网络结构和目标模型更新机制,成功研发了一些针对长时目标跟踪的算法。
视频目标跟踪技术的研究及应用随着科技的不断发展,视频目标跟踪技术已经被广泛应用于安防、智能交通、医疗等领域。
本篇文章将从技术原理、优缺点分析、应用场景以及未来发展等方面进行探讨。
一、技术原理首先,我们需要了解视频目标跟踪技术的基础知识。
视频目标跟踪技术是指通过计算机视觉等技术手段,对视频中的特定目标进行跟踪、定位和识别的过程。
技术实现的一般思路是首先在视频帧中通过目标检测算法检测出待跟踪的目标,然后通过跟踪算法对目标进行追踪。
其中,跟踪算法又分为基于特征和基于深度学习的两种方式。
基于特征的目标跟踪算法常用的是判别式跟踪算法,该算法利用目标的特征对目标进行跟踪,如颜色、纹理、形状等。
常见的包括KCF、TLD、MOSSE等算法。
这些算法快速、高效,能够在实时处理视频时满足实施要求,但对于目标的遮挡、快速移动等场景表现不够理想。
而基于深度学习的目标跟踪算法是近年来的新兴技术,相较于基于特征的算法具有更好的对抗目标姿态变化、光照变化、背景干扰等方面的鲁棒性。
例如,Siamese网络、SiamRPN等算法拥有高效的推理速度及较好的识别性能。
相比基于特征的算法,基于深度学习的算法所需要的计算能力和硬件设备要求比较高,因此它们常常采用GPU进行加速。
二、优缺点分析目标跟踪技术在应用中的优缺点也是需要我们考虑的。
优点:1.实时性:目标跟踪技术能够实现实时处理,能够在毫秒级别内完成对目标的跟踪,满足实时性的需求。
2.鲁棒性:基于深度学习的目标跟踪算法具有很强的鲁棒性,适用于复杂的环境中,能够应对光照变化和背景混杂等复杂问题。
3.可扩展性:针对不同场景的跟踪需求,目标跟踪技术应用灵活多样,可根据需求进行定制。
缺点:1.精度:针对一些目标需要进行精确定位的场景,目标跟踪技术的精度相对于检测技术仍有提升空间。
2.计算量:基于深度学习的目标跟踪算法所需要的计算量相较于基于特征的算法更高,因此需要较高的计算资源。
3.可靠性:在目标跟踪过程中,一些干扰项如背景混杂等因素会影响目标跟踪的可靠性,因此需要综合考虑处理复杂环境的能力。
视频监控目标的跟踪与识别研究共3篇视频监控目标的跟踪与识别研究1随着现代社会的不断进步和发展,各种技术手段不断涌现并得到广泛的应用。
其中,视频监控技术作为一种日益普及的安全监控手段,已经在各个领域得到了广泛的应用,如公共安全、交通监控、金融安全等。
视频监控技术有助于提高社会安全水平和防控能力,因此,也越来越受到重视。
视频监控系统中,追踪和识别是最基本的功能之一。
通过追踪和识别,视频监控系统可以实现对目标的跟踪和监测,并能给安全防范和管理带来更多的便利和效益。
而实现目标的跟踪和识别,在现实场景中面临着很多挑战和难点。
此外,随着技术的不断更新和升级,视频监控系统的效果也是越来越突出。
目标跟踪是视频监控系统的核心功能之一,在保证监控效果的同时,也是关键技术之一。
目标跟踪的关键是提取目标物体的特征信息,并对目标的位置和运动状态进行准确的判断和预测。
在实现目标跟踪的过程中,需要克服物体变形、光照变化、目标遮挡等因素的干扰。
针对这些因素,可以引入多种算法和技术手段进行处理和优化,从而实现目标的高效跟踪和检测。
目标识别是视频监控系统中另外一个重要的技术方向。
目标识别的主要目的是通过对目标物体的颜色、形状、纹理等特征信息的判别,实现对目标物体的自动识别和分类。
采用目标识别技术可以帮助视频监控系统更快、更精准地检测并定位到目标物体,同时还能够降低误检率和漏检率。
在实现目标识别的过程中,可以利用计算机图像识别以及机器学习等技术手段,实现目标物体识别和分类。
视频监控目标的跟踪与识别研究是一个涉及多个学科领域的复杂问题,需要从多个角度进行分析和研究。
面对复杂的现实环境和监控场景,视频监控目标的跟踪和识别技术需要不断的进步和优化才能更好地发挥效果,及时发现目标的异常行为,保障监控的有效性。
除了技术手段的提高,还需要加强对视频监控系统安全性的建设与提升,不断提升监测控制的精准性和敏感度,更好地为社会的安全与发展做出贡献总之,视频监控目标的跟踪与识别技术是保障社会安全的重要手段之一。
视频目标分割总结视频目标分割分类最近听了阿里巴巴王文冠老师“基于深度学习技术的视频分割”的讲座(可能需要报名比赛才能观看),我感到受益匪浅,学习到了许多关于视频目标分割(VOS)的知识,在这里进行整理总结。
关于视频目标分割的分类,有的综述文章分为无监督VOS,半监督VOS,交互式VOS,弱监督VOS等,这里将视频目标分割任务分类成无监督VOS,半监督VOS,交互式VOS,背景移除或运动物体分割,视频语义分割/实例分割。
1.无监督VOS:在测试阶段,不要求任何用户输入,通常是自动分割视频中最关键,最显著的目标。
2.半监督VOS:在测试阶段,用户提供第一帧或者关键帧的目标掩膜(mask),然后分割剩下帧中的目标。
3.交互式VOS:在测试阶段,依靠用户的迭代交互来分割感兴趣的对象,目的是获取高精度的分割结果,需要大量的人力参与。
4.背景移除或运动目标提取:通常假定摄像机静止或运动缓慢,然后自动分割出运动的前景目标。
5.视频语义分割/实例分割:是图像语义分割/实例分割的拓展,不仅要求分割出视频中感兴趣目标,还要根据语义或者实例关系区分不同目标。
值得注意的是,无监督VOS和半监督VOS的区分并不是根据监督学习和无监督学习的分类方式区分,这两者都可以利用有标签的视频数据进行训练,区分是根据测试阶段的用户参与方式来进行的,并且这两者关注的都是分割前景和背景,并不关注分割目标的类别信息。
此外,单独把背景移除提出来,应该是想强调这里指的是基于深度学习的背景移除方法。
这篇博客简单介绍各个方向的传统方法,着重介绍基于深度学习的视频目标分割。
解决思路总结关于解决思路,这里主要讨论的是无监督VOS,半监督VOS和视频实例分割的基本方法。
随着时间的推移,出现了更多优秀的工作。
RANet结合了基于传播和基于匹配的思路,利用孪生网络encoder结构获取第一帧的模板特征和当前帧特征,通过Correlation操作获取相似性特征图,根据第一帧前景和背景,经过RAM模块筛选前景和背景特征,再与预测的前一帧mask合并,通过decoder结构获取最终分割mask。