自动分割视频运动目标的一种实现方法
- 格式:pdf
- 大小:261.88 KB
- 文档页数:4
使用AI技术进行视频分析的技巧一、AI技术在视频分析中的应用概述随着人工智能(AI)技术的快速发展,更多领域开始利用该技术来实现自动化和智能化。
视频分析作为其中之一,通过使用AI技术来识别、提取和分析视频内容,已经取得了显著成果。
本文将介绍使用AI技术进行视频分析的一些基本技巧。
二、基于图像识别的视频物体检测1.图像理解与区分在视频物体检测过程中,首先需要对每帧图像进行理解与区分。
这包括使用计算机视觉算法来识别并追踪特定物体、人脸、文字等。
例如,可以使用卷积神经网络(CNN)进行物体检测和分类任务,从而准确地定位和标记出视频中的各种物体。
2.目标跟踪与运动分析接下来,目标跟踪是一个关键环节,它可以帮助我们对运动对象进行持续追踪。
通过基于AI技术开发的跟踪算法,我们可以在整个视频序列中追踪目标并收集其相关信息。
这些信息包括对象轨迹、速度以及可能的行为模式。
基于运动分析,我们还可以进一步预测对象在未来的位置和动作。
3.场景理解与分割除了物体检测和跟踪,AI技术还能够对整个场景进行理解与分割。
例如,可以使用语义分割算法将视频图像中的像素进行分类,识别出不同区域的语义信息,如道路、行人、车辆等。
这对于交通监控、安防系统等领域具有重要意义。
三、基于语音识别的视频音频处理1.语音识别与转录在视频分析中,往往不仅涉及对图像内容的分析,还包括对音频内容的处理。
通过使用AI技术中的语音识别算法,我们可以将视频中存在的人类语言转换为可供机器理解和处理的文本。
这为后续文本分析、情绪识别以及信息提取提供了基础。
2.音频特征提取除了文本转录外,通过AI技术还可以从视频音频中提取其他相关特征。
例如,通过声纹识别算法可以用来验证说话者身份,而情感分析则可以帮助判断说话者当前所表达情绪。
四、基于机器学习的视频关系挖掘1.表示学习与特征提取AI技术中的机器学习算法可以帮助我们发掘视频数据中的关系和模式。
首先,需要进行表示学习,将复杂的视频数据转换为机器能够理解和处理的形式。
通航机场场面运动目标检测方法通航机场场面运动目标检测方法随着航空业的发展,通航机场成为一个重要的部分,它起着联系城市与世界的桥梁作用。
在通航机场中,大量的飞机、车辆和行人穿梭往来,因此,高效准确地对场景中的运动目标进行检测和跟踪,对保障航空安全和优化机场运行具有重要意义。
本文将介绍一种通航机场场面运动目标检测方法,以提高机场运行的安全性和效率。
一、目标检测方法的概述目标检测是计算机视觉领域的一项重要任务,旨在从图像或视频中自动识别和定位特定的目标。
目前,常见的目标检测方法包括基于传统的图像处理方法和基于深度学习的方法。
本文提出的通航机场场面运动目标检测方法主要基于深度学习方法,由于其在目标检测任务上具备更强的性能。
二、数据预处理在通航机场场面运动目标检测过程中,首先需要对采集到的图像或视频数据进行预处理。
预处理的目标是将输入数据转化为适合深度学习算法处理的形式。
常见的数据预处理方法包括图像分割、人脸检测和背景建模等。
例如,对于通航机场的图像场景,可以通过图像分割的方法将图像中的目标物体提取出来,减少处理的复杂性。
三、深度学习网络的构建本文采用卷积神经网络(Convolutional Neural Network,CNN)作为目标检测的模型。
CNN是一种深度学习网络结构,具备较强的图像特征提取能力。
在通航机场场面运动目标检测中,CNN可以通过学习大量的图像样本,提取出目标物体的特征信息。
常见的CNN模型包括AlexNet、VGGNet、GoogLeNet和ResNet等。
四、目标检测模型的训练与优化在构建好CNN模型后,需要使用标注的图像数据进行模型的训练与优化。
训练数据包括标注了目标位置信息的图像样本,通过网络的前向传播和反向传播过程,不断调整模型的参数,使得网络能够准确地预测出目标的位置。
训练过程中,常采用的优化算法包括随机梯度下降(Stochastic Gradient Descent,SGD)、自适应矩估计(Adaptive Moment Estimation,Adam)等。
帧间差分法运动目标检测过程及原理帧间差分法是一种常用的运动目标检测方法,依靠帧与帧之间的差异来实现对运动目标的检测。
其原理是通过计算相邻帧之间的差异,将运动目标从静态背景中分离出来,从而实现目标检测。
1. 获取视频流或者图像序列,并将其转换为灰度图像。
该过程可以使用OpenCV等图像处理库实现。
2. 按照时间顺序,每隔一定的时间间隔(例如,每秒钟、每隔几帧)取一帧图像,形成连续的图像序列(也可以直接读取视频流)。
如果采用的是视频流,还需将视频流的时间基准与实际时间对齐。
3. 对于每一帧图像,先将其与上一帧图像做差,得到当前帧的差分图像。
若没有前一帧图像,则将当前帧图像作为背景参考。
4. 对于差分图像,可以应用阈值分割算法(例如Otsu算法、自适应阈值法等)来将其二值化。
此时,目标物体所在的像素值区域将为前景,而背景则为另一种像素值。
5. 对于二值化后的图像,可以应用形态学处理(例如开操作、闭操作等)来去除噪声点和孔洞,从而更准确地提取目标轮廓。
6. 最后,可以利用cv2.findContours()函数查找目标的轮廓。
这些轮廓可以代表单个运动目标或者多个运动目标。
且可以通过测量轮廓的面积、宽度、高度、位置等属性,进一步对目标进行分类与识别。
总结起来,帧间差分法是一种基于视频或图像序列的运动目标检测方法,它的优点是实现简单、速度较快,且对于CMOS或CCD摄像头等图像采集设备不稳定、背景不纯,亮度不均等问题具有较好的适应性。
不足之处在于对于复杂的场景或目标缩放、旋转、部分遮挡等情况,其检测效果容易受到影响。
因此,在实际应用中,我们需根据具体情况选择不同的算法方法来实现更准确、可靠的目标检测。
视频运动目标检测方法研究与分析视频运动目标检测是计算机视觉领域的一个重要研究方向,它广泛应用于智能视频监控、交通流量统计、自动驾驶、医学图像分析等领域。
目标检测任务的难度主要在于在不同场景下,不同光照条件下,物体会呈现出不同的外观变化,同时还存在图像噪声、遮挡、部分遮挡等问题,这些因素都会对目标检测结果造成干扰。
一、传统视频目标检测方法1. 基于帧间差分法帧间差分法是电子监控领域最早使用的目标检测算法之一,其基本思路是将相邻两帧图像进行相减得到差值图,然后根据设定的阈值进行像素分类。
若差分结果大于阈值,则判断该像素点为运动像素点;反之,若差分结果小于阈值,则认为该像素点是背景像素点。
帧间差分法简单易行,速度较快,但由于只考虑了像素值的变化,无法区分运动目标和噪声或背景像素,且当目标的运动速度较慢、光照条件发生变化时,容易产生误检测。
2. 基于背景建模法背景建模法是一种通过学习并建模背景图像来实现目标检测的算法。
该方法常用的技术有Mixture of Gaussian(高斯混合模型)、Self-Organizing Background Subtraction (自组织背景减法)等。
Mixture of Gaussian方法建立了一个高斯混合模型来对背景进行建模,通过计算像素值与模型高斯分布之间的距离来判断像素点是否属于背景。
该方法在处理室外环境下的背景建模效果优异,但在室内环境下易受到光照变化和阻挡干扰,容易产生误检测。
二、深度学习相关方法在深度学习技术的快速发展下,深度神经网络被广泛应用于目标检测任务中。
1. R-CNN方法系列R-CNN方法系列是一种基于卷积神经网络的目标检测算法。
其主要思路是将输入图像划分为多个候选框,然后通过卷积神经网络对每个候选框进行特征提取。
最后,通过SVM分类器和回归器来计算候选框的置信度和坐标信息,以确定目标类别和位置。
R-CNN方法系列在目标定位和分类任务上取得了不错的效果,但缺点是算法速度较慢,不适用于实时应用场景。
基于OpenMV的运动目标控制和自动追踪系统的设计目录1. 内容描述 (2)1.1 系统背景及意义 (3)1.2 系统目标和功能需求 (4)1.3 系统组成和原理介绍 (5)2. 系统硬件平台 (6)3. 软件设计与实现 (7)3.1 系统软件架构设计 (8)3.2 运动目标检测算法分析 (9)3.2.1 背景减持算法 (10)3.2.2 形态学分析算法 (11)3.2.3 跟踪算法介绍 (12)3.3 OpenMV开发环境搭建 (13)3.4 串口通信协议设计 (15)3.5 上位机控制软件设计与实现 (17)4. 系统调试与测试 (18)4.1 单元测试 (20)4.2 集成测试 (20)4.3 应用场景测试 (22)4.4 测试结果分析 (23)5. 系统性能分析 (24)5.1 实时性与精度分析 (26)5.2 功耗与稳定性分析 (27)5.3 可扩展性与应用扩展 (29)6. 结论与展望 (30)6.1 总结主要研究成果 (31)6.2 存在问题及改进方向 (32)6.3 未来发展趋势 (33)1. 内容描述本文档旨在详细介绍基于的运动目标控制和自动追踪系统的设计与实现。
该系统结合了先进的计算机视觉技术和机器学习算法,实现对动态目标的实时跟踪与控制。
系统首先通过视觉传感器获取视频流,并利用其内置的物体检测功能对运动目标进行实时检测和定位。
通过图像处理和分析,提取出目标的关键特征,如形状、颜色、运动轨迹等。
在此基础上,系统采用先进的运动目标控制算法,包括目标预测、路径规划和运动控制等模块。
这些模块协同工作,实现对目标运动的精确跟踪和控制。
生成相应的控制指令并发送给执行机构,实现对目标的精确追踪。
此外,系统还具备自动追踪和异常处理功能。
在目标失去跟踪时,系统能够自动重新检测和定位目标,并重新规划跟踪路径。
同时,系统还具备一定的异常处理能力,能够应对光照变化、遮挡、目标突然移动等特殊情况,保证系统的稳定性和可靠性。
基于视频的人数统计方法综述
一、基于图像处理的方法
1.静态图像分割方法:通过对视频帧进行分割,提取出人物的轮廓,然后将轮廓进行计数。
这种方法对于背景复杂、光照变化较大的场景比较适用,但是对于人群密集的场景容易出现漏计现象。
2.运动目标检测方法:通过对视频帧进行运动目标检测,将目标提取出来,然后进行计数。
这种方法对于人数密集、运动速度较快的场景比较适用,但是对于人数较少、运动速度较慢的场景计数效果较差。
3.混合方法:将静态图像分割方法和运动目标检测方法进行结合,通过对视频帧进行分割和运动目标检测,提高计数的准确性和鲁棒性。
二、基于深度学习的方法
1.基于卷积神经网络的方法:通过训练一个卷积神经网络模型来实现人数统计。
首先在大规模数据集上对网络进行训练,然后将训练好的模型应用到新的视频数据中,通过网络的输出进行人数统计。
这种方法的优点是能够自动学习图像特征,适用于各种场景,但是需要大量的训练数据和计算资源。
2.基于循环神经网络的方法:通过将视频帧序列作为输入,通过循环神经网络模型进行处理,得到人数统计结果。
这种方法能够考虑到视频中的时序信息,适用于处理视频中人数变化较大的场景,但是对于视频中的长期依赖关系处理效果较差。
综上所述,基于视频的人数统计方法根据不同的场景和需求可以选择合适的方法进行研究和应用。
不论是基于图像处理的方法还是基于深度学
习的方法,都需要在具体应用中进行优化和改进,以提高人数统计的准确性和实时性。
MATLAB中的运动检测与目标追踪方法引言运动检测和目标追踪是计算机视觉领域的重要研究内容之一。
通过使用MATLAB等工具,可以实现各种运动检测和目标追踪算法,以应用于视频监控、自动驾驶等领域。
本文将介绍MATLAB中常用的运动检测与目标追踪方法,包括光流法、帧差法、背景建模法等,并探讨它们的优缺点及应用场景。
一、光流法光流法是一种通过分析连续两帧图像中像素的运动来检测运动的方法。
其核心思想是计算每个像素点在两帧图像中的位移向量,从而得到运动信息。
MATLAB中提供了光流法的实现函数,例如vision.OpticalFlow和opticalFlowLK等。
光流法的优点是计算简单,对算法要求不高,可以很容易地处理多对象的运动,适用于快速移动的目标。
然而,由于其基于两帧图像的位移变化进行计算,对于长时间运动或场景变换较大的情况下,光流法容易产生累积误差。
二、帧差法帧差法是一种通过比较连续两帧图像的像素值来检测运动的方法。
其基本原理是通过计算两帧图像之间的差异,得到表示目标位置的二值图像。
MATLAB中的imabsdiff函数可以方便地实现帧差法。
帧差法的优点是实时性好,对于动态场景具有较好的适应性。
然而,由于该方法是基于像素值差异来检测运动,对于光照变化、场景噪声等因素较为敏感,容易产生误检测的问题。
三、背景建模法背景建模法是一种通过将场景背景与前景目标进行分离,从而检测目标运动的方法。
其核心思想是先建立环境的背景模型,然后将当前帧图像与背景模型进行比较,得到表示前景的二值图像。
在MATLAB中,可以使用vision.ForegroundDetector函数实现背景建模。
背景建模法的优点是对于静态场景具有较好的适应性,能够有效抑制光照变化和场景噪声带来的干扰。
然而,该方法对于场景动态变化较快、背景模型建立较为困难的情况下,容易产生误检测和漏检测的问题。
四、区域增长法区域增长法是一种通过将连续像素点聚类,从而检测目标区域的方法。
视频镜头分割及关键帧提取技术研究
随着数字媒体技术的不断发展和普及,视频内容的处理和分析变得日益重要。
其中,视频镜头分割和关键帧提取技术是视频内容分析的关键步骤。
本文将对这两种技术进行研究和探讨。
视频镜头分割是指将视频划分为不同的镜头,每个镜头代表了一个连续的时间段,具有相似的内容和视觉特征。
镜头分割的主要目标是找到镜头间的转换点,即镜头边界。
传统的视频镜头分割方法通常基于颜色直方图、运动特征和纹理特征等,但是由于视频内容的复杂性和多样性,传统方法往往存在一定的局限性。
因此,近年来,基于深度学习的方法在视频镜头分割领域取得了显著的进展。
通过使用卷积神经网络(CNN)等深度学习模型,可以从视频中自动学习到更加丰富和抽象的特征表示,从而提高镜头分割的准确性和鲁棒性。
关键帧提取是指从视频中选择一些具有代表性和重要意义的关键帧,以表示整个视频的内容。
关键帧提取的目标是识别出最能够代表视频内容的帧,并且尽量减少冗余信息。
传统的关键帧提取方法通常基于图像质量、颜色直方图和运动特征等,但是这些方法往往无法充分考虑到视频的语义信息。
因此,近年来,基于深度学习的方法也被应用于关键帧提取领域。
通过使用循环神
经网络(RNN)等深度学习模型,可以对视频的时序信息进行建模,从而提取出更加具有代表性和语义信息的关键帧。
总的来说,视频镜头分割和关键帧提取技术在视频内容分析中起着重要的作用。
通过研究和应用深度学习模型,可以有效地提高这两种技术的性能和效果。
未来,随着深度学习算法的不断发展和优化,视频内容分析领域将迎来更加广阔的发展空间,为我们提供更加丰富和便捷的视频内容处理和分析方法。
2021年2月第2期Vol. 42 No. 2 2021小型微型计算机系统Journal of Chinese Computer Systems一种自适应运动目标检测算法及其应用李善超,车国霖,张果,杨晓洪(昆明理工大学信息工程与自动化学院,昆明650500)E-mail :991186428@ qq. com摘要:针对ViBe 算法在动态背景下存在鬼影消除时间长、算法适应性差、前景检测噪声多的问题,本文提出一种基于ViBe 算法框架的改进算法.该算法釆用鬼影检测法标记第1帧中的鬼影区域,并向位于鬼影区域的背景模型中强制引入背景样本,从而快速抑制鬼影;在像素分类过程中,引入自适应分类阈值,解决全局阈值易受动态噪声干扰的问题;在背景模型更新中,根 据像素分类的匹配值来动态决定更新因子,提高算法适应场景变化的能力.定性与定量的对比实验结果表明,本文算法相较于ViBe 算法能够有效地检测动态背景下的运动目标,应用于河流漂浮物检测场景中也有较好的效果.关键词:ViBe ;动态背景;运动目标检测;自适应方法;河流漂浮物检测中图分类号:TP391文献标识码:A 文章编号:1000-1220(2021)02-0381-06Adaptive Moving Target Detection Algorithm and Its ApplicationLI Shan-chao ,CHE Guo-lin ,ZHANG Guo,YANG Xiao-hong(Faculty of Information Engineering and Automation ,Kunming University of Science and Technology ,Kunming 650500,China)Abstract : Aiming at the problem that ViBe algorithm has long ghost elimination time , poor algorithm adaptability and high foreground detection noise in dynamic background , this paper proposes an improved algorithm based on ViBe algorithm framework. The algorithmuses the ghost detection method to mark the ghost region in the first frame , and forces the background sample into the background model in the ghost region to quickly suppress the ghost. In the pixel classification process , the adaptive classification threshold is intro ・ duced to solve the problem that the global threshold is susceptible by dynamic noise interference. In the background model update , theupdate factor is dynamically determined according to the matching number of the pixel classification to improve the algorithm's abilityto adapt to scene changes. The comparison experimental results of qualitative and quantitative shows that the algorithm in this paper can effectively detect moving targets in dynamic background compared to the ViBe algorithm , and it also has a better effect in the de tection of river floating objects.Key words : ViBe ; dynamic background ; moving target detection ; adaptive method ; river floating debris1引言运动目标检测在智能视频监控的应用中扮演着重要的角 色,是计算机视觉领域的一个研究热点⑴•运动目标检测的 实质是在视频序列中定位运动中的目标,而准确的前景检测 是目标分类、目标跟踪和行为识别研究的重要基石⑺叫运动目标检测算法按类别可分为帧差法⑴、光流法⑷、背景建模 法"向3种.帧差法原理简单且易于设计,然而其检测结果存 在空洞和鬼影的问题.光流法虽然精度高,但由于其计算量大,不适用于对实时性有较高要求的场景.背景建模法是在初 始化过程中构建出由背景样本组成的模型,并将当前帧与背 景模型进行差分,从而对像素进行分类,最后得到运动目标.其具有精度高实时性好的特点.背景模型的准确性决定了背景建模法的检测精度,主要影响检测精度的因素有鬼影问题、 动态背景、噪声干扰等⑴.高斯混合模型(GMM ,Gaussian mixture model)[8]是运动目标检测算法中最为经典的算法,其本质是基于像素样本统 计信息的背景建模方法,能够对复杂背景进行准确建模,然而 其计算复杂度较高GMG 算法切是统计背景模型的概率,采 用贝叶斯逐像素分割,但在动态场景中其检测精确度较低.核 密度估计算法(KDE,Kernel Density Estimation)[10]是一种非 参数背景建模方法,其通过大量的背景样本估算背景像素的概率密度函数,从而根据像素背景概率来分类像素,然而其内 存占用与计算复杂度都较高.Bamich 等人⑴•切于2009年提出一种非参数化视频背景提取算法(ViBe , Visual BackgroundExtractor),该算法是为每个像素设置一个样本集,并与新帧像素进行阈值比较,从而对像素进行分类,其具有实时性好、鲁棒性高和易于集成于嵌入式设备的特点.然而ViBe 算法仍 存在一些不足,限制了其在动态场景中的应用.例如:1)当初 始化图像中存在运动中的目标时,ViBe 算法会在后续帧中检 测到鬼影,降低了算法的检测精度且鬼影消除时间长;2)ViBe 算法在动态场景中检测精度低,容易受动态噪声干扰;3) ViBe 算法的背景模型更新策略无法适应背景动态的变化.针对ViBe 算法存在的问题,本文提出一种自适应运动目收稿日^:2020-03-06 收修改稿日期:202045-11基金项目:国家重点研发计划项目(2017YFB0306405)资助;国家自然科学基金项目 (61364008)资助.作者简介:李善超,男,1994年生,硕士研究生,研究方向为数字图像处理;车国霖,男,1975年生,硕士,副教授,研究方向为 智能控制;张 果,男,1976年生,博士,副教授,研究方向为智能測控;杨晓洪,女,1964年生,高级工程师,研究方向为综合自动化.382小型微型计算机系统2021年标检测算法.本文将从以下3个方面对ViBe算法进行改进.1)采用鬼影检测法标记鬼影区域并强制引入背景样本,加速鬼影的抑制;2)采用自适应匹配阈值的方法进行像素分类,提高算法抗干扰的能力;3)根据像素分类的匹配值动态调整更新因子,提高算法适应场景变化的能力.本文采用CDNET 数据集中dynamicBackground视频类中的5个视频序列和3组河流漂浮物的视频序列进行研究,以本文算法和其他5种算法为例,定性、定量对实验结果做出质量评价和分析.研究结果表明,本文算法相较于ViBe算法在召回率、精确率和F 度量值方面均有提高,错误分类比更低,达到了预期的目标.2ViBe算法原理ViBe算法是基于样本随机聚类的背景建模算法,具有运算效率高、易于设计、易于集成嵌入设备的特点,能够实现快速的背景建模和运动目标检测.算法的步骤包括背景模型初始化、像素分类过程和背景模型更新.2.1背景模型初始化1)背景模型定义:ViBe算法的背景模型是由N个背景样本组成的,v(x)是像素x的像素值,则背景模型M(x)定义如公式(1)所示:=|Vj(x),v2(x),v N(x)|(1)2)背景模型初始化:ViBe算法利用视频序列第1帧建立背景模型,从第2帧开始算法就可以有效地检测运动目标.背景模型初始化是在像素x的8邻域Nc(x)中选取一个像素值作为背景样本,重复N次,如公式(2)所示:(N g(x)=Ui,¾,--,¾IJ(2)〔M(x)=1v(ylyeN c(x))I3)随机选取策略:背景建模时,背景样本始终采用随机选取邻域像素的策略,以使背景模型更加稳定可靠.2.2像素分类过程ViBe算法采用计算欧氏距离来进行像素的分类. S”(v(x))是以像素值v(x)作中心,匹配阈值R为半径的二维欧氏空间,若v(x))与M(x)的交集H{•}中元素个数不小于最小匹配数则认为像素x是背景像素,如公式(3)所示:H{Sx(v(x))n I V,(x),v2(x),—,v w(x)I I(3) 2.3背景模型更新1)保守更新机制:ViBe算法通过保守更新机制进行背景模型更新,即如果像素被分类为背景像素,则以i/e(e是更新因子)的概率替代背景模型中的任一样本.假设时间是连续且选择过程是无记忆性的,在任一dt时间后,背景模型的样本随时间变化的概率如公式(4)所示:P(t,t+dt)=e-1"(^)d,(4)公式(4)表明,背景模型样本值的预期剩余寿命都呈指数衰减,背景模型的样本更新与时间无关.2)随机更新机制:ViBe算法通过随机更新机制进行样本替换,使得每个样本的存在时间成平滑指数衰减,提高了算法适应背景变化的能力,避免了旧像素长期不更新带来的模型劣化的问题.3)空间传播机制:ViBe算法也将背景像素引入邻域的背景模型中,保证了邻域像素空间的一致性.例如,用背景像素替换任一邻域(x)中的任一样本.ViBe算法首次将随机聚类技术应用于运动目标检测中,使得算法在背景模型初始化、像素分类过程、背景模型更新3个方面都比较简单,保证了算法的实时性,因此ViBe算法被广泛应用于现实生活中3提出的改进算法ViBe算法采用随机采样、非参数化和无记忆的更新策略,使得其具有较好的性能,但其在动态场景下仍然存在不能快速抑制鬼影、难以消除动态噪声以及无法适应场景动态变化的问题,本文将从以下3个方面对ViBe算法进行改进.3.1鬼影检测ViBe算法利用第1帧建立背景模型,但也不可避免的将第1帧中存在的运动目标前景像素引入到背景模型中,导致鬼影问题和彫响算法的检测精度.假设背景模型M(x)是由第1帧中的前景像素样本f(x)组成的,当运动目标离开时,ZU)不在背景像素值b(x)的S”(b(x))圆内,背景像素被错误的分类为前景,如公式(5)所示,则在第1帧中运动目标所在的区域就会出现虚拟的前景(鬼影).rM(x)=|/;(x)J2(x),―J N(x)}(s&(x))nM(x)=0本文针对这一问题,应用鬼影检测法标记出第1帧中的鬼影区域,并向位于鬼影区域的背景模型中强制引入背景样本,减少其中前景像素的数量,从而快速抑制鬼影.鬼影检测法借鉴了帧间差分法并对其进行改进,其原理是提取视频序列的前3帧图像,第1帧图像分别与后两帧图像做差分运算,设定差分阈值并对差分后的图像进行二值化分类,将二值化结果做逻辑或操作和形态学操作,即得到标记有第1帧运动目标的鬼影模板Ghost(x),在鬼影模板Ghost(x)中大于0的位置是第1帧中鬼影区域的.具体定义如公式(6)、公式(7)和公式(8)所示:if I厶(x)-厶+|(兀)I>Tif\IM一人+|(x)lwTM)={o-/“2(x)IWTGhost(x)=£>i(x)or D2(x)(6)(7)(8)式中:D(x)为二值化图像,人(x)为第R帧输入图像,一般A=1为图像差分阈值,。
目标追踪算法目标追踪算法是计算机视觉领域中的一种重要技术,用于在视频序列中跟踪特定目标的位置和运动。
目标追踪算法在很多实际应用中都有重要的作用,比如视频监控、无人驾驶、人机交互等领域。
目标追踪算法通常包括以下几个关键步骤:目标检测、目标跟踪和目标状态更新。
目标检测是指在视频序列中找到感兴趣的目标,并确定它们的位置和形状。
目前常用的目标检测算法包括基于特征的方法(比如Haar特征,HOG特征等)和基于深度学习的方法(比如卷积神经网络)。
这些算法可以通过训练模型来学习目标的外观特征,并在视频序列中寻找与模型匹配的目标。
目标跟踪是指在目标检测的基础上,通过时间序列的信息来估计目标在视频序列中的位置和运动。
常用的目标跟踪算法包括基于颜色特征的方法(比如MeanShift算法),基于纹理特征的方法(比如Correlation Filters算法)和基于深度学习的方法(比如Siamese网络)。
这些算法可以通过不断更新目标的位置和形状来实现目标的跟踪。
目标状态更新是指根据目标的跟踪结果,更新目标的状态信息,比如目标的位置、速度和运动方向等。
常用的目标状态更新算法包括卡尔曼滤波和粒子滤波。
这些算法可以通过利用目标的先验信息和观测信息来估计目标的状态,并预测目标的未来位置和运动。
除了上述这些基本步骤,目标追踪算法还可以根据具体应用需求进行进一步的改进和优化。
比如,可以考虑目标的形变、遮挡、姿态变化和多目标跟踪等问题。
同时,目标追踪算法也可以与其他计算机视觉任务相结合,比如目标识别、目标分类和目标分割等。
总之,目标追踪算法是计算机视觉领域中的一个重要研究方向,它的发展对于实现自动化、智能化的视觉系统具有重要意义。
不断改进和优化目标追踪算法,将有助于实现更加准确、鲁棒和高效的目标追踪技术,推动计算机视觉技术在各个应用领域的广泛应用。
运动的目标识别与跟踪简述运动的目标识别与跟踪是指利用计算机视觉技术对视频中的运动目标进行自动识别和跟踪。
这一技术在各种领域都有着广泛的应用,比如智能监控系统、无人驾驶汽车、体育竞技分析等。
本文将简要介绍运动的目标识别与跟踪的基本原理和常见方法。
运动的目标识别与跟踪主要包括两个方面的内容。
首先是目标识别,即在视频中准确地识别出感兴趣的运动目标。
其次是目标跟踪,即在视频序列中连续地跟踪目标的位置和运动状态。
目标识别和跟踪在实际应用中通常是相互衔接的,目标识别的结果会作为跟踪的输入,而跟踪的结果又会反馈到目标识别中。
目标识别是运动的目标识别与跟踪的第一步,其主要目标是从视频序列中准确地找出目标的位置和外观特征。
在目标识别中,通常会采用目标检测和目标分类两种方法。
目标检测是指在视频帧中定位出目标所在的位置,通常可以采用边缘检测、颜色分割、纹理特征等方法。
目标分类是指对检测到的目标进行分类,通常可以采用模式识别、机器学习、深度学习等方法。
在目标跟踪中,主要任务是连续地跟踪目标在视频序列中的位置和状态。
目标跟踪通常会受到目标运动、遮挡、光照变化等因素的影响,因此需要采用一些高级的图像处理和模型预测技术。
常见的目标跟踪方法包括卡尔曼滤波、粒子滤波、神经网络等。
在实际应用中,运动的目标识别与跟踪技术可以应用于各种领域。
在智能监控系统中,可以利用目标识别和跟踪技术对监控区域内的行人、车辆等目标进行实时监测。
在无人驾驶汽车中,可以利用目标识别和跟踪技术对周围的交通、行人等目标进行感知和决策。
在体育竞技分析中,可以利用目标识别和跟踪技术对运动员的动作、位置等进行实时分析和统计。
运动的目标识别与跟踪是一项重要的计算机视觉技术,其在各种领域都有着广泛的应用前景。
随着计算机视觉和人工智能等技术的不断发展,相信运动的目标识别与跟踪技术会在未来发展出更多的新方法和应用。
一种基于光流的行人目标跟踪与分割方法姜守帅;高阳;吕佳;陈林资【摘要】为了对非限制场景中的行人目标实现跟踪和分割,研究了一种基于光流的行人目标跟踪与分割方法.采用传统光流场的计算方法,获取行人运动所产生的光流场,将光流场中像素点的幅值信息及像素点在帧间运动的方向角度信息相结合,使光流场中所包含的前景目标物体的运动信息更加完整,更具鲁棒性.根据行人在连续帧间运动时,行人和背景之间边界位置像素点亮度变化的特点,实现对行人目标的跟踪.采用改进的内外映射方法,获取动态目标内部像素点,实现对视频前景行人目标的分割.实验结果表明,该方法能够准确地实现对非限制场景中行人目标的跟踪与分割.【期刊名称】《桂林航天工业学院学报》【年(卷),期】2017(022)004【总页数】9页(P389-397)【关键词】光流;运动目标分割;内外映射;行人跟踪【作者】姜守帅;高阳;吕佳;陈林资【作者单位】桂林航天工业学院机械工程系,广西桂林 541004;桂林航天工业学院机械工程系,广西桂林 541004;桂林航天工业学院机械工程系,广西桂林 541004;桂林航天工业学院机械工程系,广西桂林 541004【正文语种】中文【中图分类】TP391.41对非限制场景中动态目标检测方法[1]的研究是近年来机器视觉领域和模式识别领域的一个研究热点,同时也是一个研究难点。
对动态目标分割理论的研究一般是在对静态图像进行检测分割[2-3]的理论基础上发展起来的。
随着动态目标分割算法的不断改进发展,它已经成为模式识别,视频编辑,人类的运动学分析等众多领域的基础。
并且非限制场景中高效快速的动态目标分割方法既可以大大节省后续处理的时间,又可以大大提高后续处理的精度,使对整体处理的难度大大降低,从而使工作效率大大提高。
静态图像分割技术[4-5]的发展已日臻完善,而非限制场景中动态目标分割技术目前正处于快速发展的阶段,各类算法层出不穷。
但是实际应用中视频分割技术对其鲁棒性有很大要求,即在人类视觉系统能够承受的范围内相对稳定、准确地分割视频中的前景运动目标。
一种基于CNN的运动对象分割算法蒋鹏;陈松【摘要】提出一种基于细胞神经网络的运动对象分割算法.通过引进除噪模板和改进边缘检测模板,去除了图像采集和处理过程中的噪声影响,得到比较满意的图像边缘信息.实验结果验证了算法的有效性,而且处理速度与图像大小无关,能够实现图像实时处理.%Based on cellular neural networks ( CNN ) , a moving objects segmentation method are proposed. By introducing noise removing templates and improving edge detection templates,which remove the noise of acquisition and processing, and satisfying information about image edge is got. Experimental results demonstrate the effectiveness of the method, such as calculation speed independent of image size,real-time performance.【期刊名称】《科学技术与工程》【年(卷),期】2011(011)032【总页数】4页(P7944-7947)【关键词】细胞神经网络;除噪模板;边缘检测模板;运动对象【作者】蒋鹏;陈松【作者单位】重庆交通大学信息科学与工程学院,重庆 400074;重庆交通大学信息科学与工程学院,重庆 400074【正文语种】中文【中图分类】TP391.41图像分割较早就得到人们广泛的重视和研究,也在实际中得到大量的应用,视频分割与图像分割存在着紧密的联系,很多图像分割的方法都可以用到视频分割中去。
尽管对图像分割已进行了大量的研究,并已提出了上千种各式各样的算法,但尚没有一种适合于所有图像的通用的分割算法。
帧差法、光流法、背景减除法运动目标检测是指在序列图像中检测出变化区域并将运动目标从背景图像中提取出来。
通常情况下,目标分类、跟踪和行为理解等后处理过程仅仅考虑图像中对应于运动目标的像素区域,因此运动目标的正确检测与分割对于后期处理非常重要然而,由于场景的动态变化,如天气、光照、阴影及杂乱背景干扰等的影响,使得运动目标的检测与分割变得相当困难。
根据摄像头是否保持静止,运动检测分为静态背景和运动背景两类。
大多数视频监控系统是摄像头固定的,因此静态背景下运动目标检测算法受到广泛关注,常用的方法有帧差法、光流法、背景减除法等。
(l)帧差法帧差法是最为常用的运动目标检测和分割方法之一,基本原理就是在图像序列相邻两帧或三帧间采用基于像素的时间差分通过阈值化来提取出图像中的运动区域。
首先,将相邻帧图像对应像素值相减得到差分图像,然后对差分图像二值化,在环境亮度变化不大的情况下,如果对应像素值变化小于事先确定的阈值时,可以认为此处为背景像素:如果图像区域的像素值变化很大,可以认为这是由于图像中运动物体引起的,将这些区域标记为前景像素,利用标记的像素区域可以确定运动目标在图像中的位置。
由于相邻两帧间的时间间隔非常短,用前一帧图像作为当前帧的背景模型具有较好的实时性,其背景不积累,且更新速度快、算法简单、计算量小。
算法的不足在于对环境噪声较为敏感,阈值的选择相当关键,选择过低不足以抑制图像中的噪声,过高则忽略了图像中有用的变化。
对于比较大的、颜色一致的运动目标,有可能在目标内部产生空洞,无法完整地提取运动目标。
(2)光流法光流法的主要任务就是计算光流场,即在适当的平滑性约束条件下,根据图像序列的时空梯度估算运动场,通过分析运动场的变化对运动目标和场景进行检测与分割。
通常有基于全局光流场和特征点光流场两种方法。
最经典的全局光流场计算方法是L-K(Lueas&Kanada)法和H-S(Hom&Schunck)法,得到全局光流场后通过比较运动目标与背景之间的运动差异对运动目标进行光流分割,缺点是计算量大。
视频目标跟踪算法与实现目标跟踪是计算机视觉领域中的重要任务之一。
它可以用于监控、智能交通、虚拟现实等众多领域。
在视频目标跟踪中,我们的目标是根据输入视频序列找出感兴趣的目标,然后在不同帧之间追踪目标的位置。
为了实现视频目标跟踪,我们需要采用适当的算法。
目前,常用的视频目标跟踪算法可以分为两大类:基于特征的跟踪算法和深度学习算法。
基于特征的跟踪算法主要依靠图像特征来进行目标跟踪。
其中,常见的算法包括:1. 光流法:光流法利用相邻帧之间的像素亮度差异来估计目标的运动。
通过对光流向量的计算和分析,可以推断出目标的位置和速度。
然而,光流法容易受到光照变化和纹理丰富度等因素的影响,导致跟踪结果不准确。
2. 直方图匹配法:直方图匹配法利用目标区域的颜色直方图进行跟踪。
它通过计算帧间颜色直方图的相似度来判断目标的位置。
直方图匹配法简单易懂,但对目标的颜色分布要求较高,不适用于复杂场景。
3. 卡尔曼滤波器:卡尔曼滤波器是一种用于状态估计的优化算法,可以对目标的位置和速度进行预测和修正。
它可以利用先验知识和测量结果来逐步调整估计值。
卡尔曼滤波器具有较好的鲁棒性和实时性,但对目标运动模型的假设较为严格。
与基于特征的算法相比,深度学习算法能够更准确地捕捉目标的特征,从而实现更精确的目标跟踪。
深度学习算法通常采用卷积神经网络(Convolutional Neural Network,CNN)来提取特征,并使用适当的分类器或回归器来预测目标的位置。
常见的深度学习算法包括:1. 基于卷积神经网络的目标跟踪:利用卷积神经网络对输入帧进行特征提取,然后通过分类器或回归器来预测目标的位置。
这种方法能够较好地捕捉目标的纹理和形状特征,实现精确的目标跟踪。
2. 循环神经网络(Recurrent Neural Network,RNN):循环神经网络可以对目标的时序信息进行建模,从而实现更准确的目标跟踪。
它通过学习帧间的时序关系来预测目标的位置。