多进制数字相位调制系统课程设计
- 格式:doc
- 大小:318.65 KB
- 文档页数:17
本科毕业设计(论文)题目多进制数字信号调制系统设计学生姓名XX 学号0907050208教学院系电气信息学院专业年级通信工程2009级指导教师汪敏职称讲师单位西南石油大学辅导教师职称单位完成日期2013 年 6 月9 日Southwest Petroleum UniversityGraduation ThesisSystem Design of M-ary Digital Signal ModulationGrade: 2009Name:Liu ShaSpeciality: Telecommunications EngineeringInstructor: Wang MinSchool of Electrical Engineering and Information摘要由于数字通信系统的实际信道大多数具有带通特性,所以必须用数字基带信号对载波进行数字调制。
也因此,数字调制方法成为了当今的热点研究对象,其中最常用的一种是键控法。
在带通二进制键控系统中,每个码元只能传输1比特的信息,其频带利用率不高,而频率资源又是极其宝贵的,为了能提高频带利用率,最有效的办法是使一个码元能够传输多个比特的信息,这就是本文主要研究的多进制数字调制系统,包括多进制数字振幅调制(MASK)、多进制数字频率调制(MFSK)和多进制数字相位调制(MPSK)。
多进制键控系统可以看作是二进制键控系统的推广,可以大大提高频带利用率,而且因其抗干扰性能强、误码性能好,能更好的满足未来通信的高要求,所以研究多进制数字调制系统是很有必要的。
本文通过对多进制数字调制系统的研究,采用基于EP2C35F672C8芯片,运用VHDL硬件描述语言,完成了多功能调制器的模块化设计。
首先实现多进制数字振幅调制(MASK)、多进制数字频率调制(MFSK)和多进制数字相位调制(MPSK) 的设计,将时钟信号通过m序列发生器后产生随机的二进制序列,再通过串/并转换器转换成并行的多进制基带信号;其次分别实现数字调制模块2-M电平变换器、分频器以及四相载波发生器的设计;最后在顶层文件中调用并结合四选一多路选择器,从而完成多功能调制器的设计。
实验九Q P S K/O Q P S K调制与解调实验一、实验目的1、了解用CPLD进行电路设计的基本方法。
2、掌握QPSK调制与解调的原理。
3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。
二、实验内容1、观察QPSK调制的各种波形。
2、观察QPSK解调的各种波形。
三、实验器材1、信号源模块一块2、⑤号模块一块3、20M双踪示波器一台4、连接线若干四、实验原理(一)QPSK调制解调原理1、QPSK调制QPSK信号的产生方法可分为调相法和相位选择法。
用调相法产生QPSK信号的组成方框图如图12-1(a)所示。
图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。
设两个序列中的二进制数字分别为a和b,每一对ab称为一个双比特码元。
双极性的a和b脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b)中虚线矢量。
将两路输出叠加,即得如图12-1(b)中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。
(a)(b)图12-1 QPSK调制2、QPSK解调图12-2 QPSK相干解调器由于四相绝对移相信号可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其组成方框图如图12-2所示。
图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。
(二)OQPSK调制解调原理OQPSK又叫偏移四相相移键控,它是基于QPSK的改进型,为了克服QPSK中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。
若将QPSK中并行的I,Q两路码元错开时间(如半个码元),称这类QPSK为偏移QPSK或OQPSK。
通过I,Q路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。
调制与解调信号课程设计一、课程目标知识目标:1. 学生能够理解调制与解调信号的基本概念,掌握不同类型的调制方法及其原理;2. 学生能够描述调制与解调信号在通信系统中的作用和重要性;3. 学生能够运用数学表达式和图形来表示调制与解调过程。
技能目标:1. 学生能够运用所学知识,设计简单的调制与解调电路,并进行仿真实验;2. 学生能够分析调制与解调信号的特点,解释其在实际通信系统中的应用;3. 学生能够运用相关工具和软件进行调制与解调信号的观察、分析和调试。
情感态度价值观目标:1. 学生能够认识到调制与解调技术在现代通信领域的重要地位,增强对通信科学的兴趣和好奇心;2. 学生通过合作学习和实践操作,培养团队协作意识,提高问题解决能力和创新思维;3. 学生能够关注通信技术对社会发展的积极影响,树立正确的科学价值观。
课程性质:本课程属于电子信息类学科,以理论教学和实践操作相结合的方式进行。
学生特点:学生具备一定的电子基础和数学知识,对通信原理有一定的了解,但实践经验不足。
教学要求:注重理论与实践相结合,提高学生的动手能力和实际问题解决能力,培养学生对通信技术的兴趣和热情。
通过具体的学习成果分解,使学生在课程结束后能够达到上述目标。
二、教学内容本章节教学内容主要包括以下几部分:1. 调制与解调信号基本概念:- 调制信号的分类(模拟调制、数字调制)- 解调信号的分类(同步解调、异步解调)2. 常见调制方法及其原理:- 幅度调制(AM)、频率调制(FM)、相位调制(PM)- 二进制数字调制(ASK、FSK、PSK、QAM)3. 调制与解调信号在通信系统中的应用:- 调制解调器工作原理- 调制技术在无线电广播、电视、卫星通信等领域的应用4. 调制与解调电路设计及仿真:- 搭建调制与解调电路- 使用Multisim、MATLAB等软件进行仿真实验5. 教学内容的安排与进度:- 第一周:调制与解调信号基本概念,调制信号分类- 第二周:常见调制方法及其原理,教材第二章- 第三周:调制与解调信号在通信系统中的应用,教材第三章- 第四周:调制与解调电路设计及仿真,教材第四章教学内容根据课程目标进行科学性和系统性地组织,注重理论与实践相结合,使学生能够逐步掌握调制与解调信号相关知识,提高实际操作能力。
目录摘要 (I)Abstract (II)1 引言 (1)2 MPSK调制解调的原理 (2)2.1 MPSK调制原理 (2)2.2 4PSK信号产生 (3)2.3 4PSK信号的解调原理 (3)3 MPSK调制电路VHDL程序及仿真 (6)3.1 FPGA中MPSK的实现 (6)3.2 VHDL程序设计方法 (7)3.4仿真结果及分析 (8)4 MPSK解调程序及仿真结果 (10)4.1解调VHDL程序 (10)4.2 MPSK解调仿真结果 (12)5 心得体会 (13)6 参考文献 (14)摘要多进制数字相位调制也称多元调相或多相制。
它利用具有多个相位状态的正弦波来代表多组二进制信息码元。
本论文在FPGAP(Field-rogrammable Gate Array,现场可编程门阵列)上实现MPSK(多进制相移键控)调制解调的功能。
运用VHDL硬件描述语言进行编程,对整个MPSK系统进行仿真,得到仿真时序图,对程序代码进行XST综合,得到RTL视图。
仿真结果表明该设计的正确性以及可行性,更清晰直观的了解到MPSK调制解调的原理。
关键词:MPSK;FPGA实现;VHDL语言AbstractMulti-band digital phase modulation, also known as multi-phase or multiphase system. It is a sine wave having a plurality of phase states to represent a plurality of sets of binary information symbols. In this paper, to achieve MPSK (M-ary Phase Shift Keying) modulation and demodulation functions FPGAP (Field-rogrammable Gate Array, a field programmable gate array) on. Using VHDL hardware description language programming for the entire MPSK system simulation, simulation timing diagram of the program code XST synthesis, get RTL view. Simulation results show the correctness and feasibility of the design, intuitive to understand more clearly the principle of MPSK modulation and demodulation.Keywords: MPSK; FPGA realization; VHDL language1 引言FPGA(Field Programmable Gate Array)现场可编程逻辑门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC) 领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
它是当今数字系统设计的主要硬件平台,其主要特点就是完全由用户通过软件进行配置和编程,从而完成某种特定的功能,且可以反复擦写。
在修改和升级时,不需额外地改变PCB 电路板,只是在计算机上修改和更新程序,使硬件设计工作成为软件开发工作,缩短了系统设计的周期,提高了实现的灵活性并降低了成本。
数字调制技术是现代通信系统中的关键技术之一,调制器性能的优劣将直接影响通信质阜的好坏。
用可编程逻辑器件通过对器件内部的设计来实现系统功能,是一种基于芯片的设计方法。
将可编程逻辑器件应用于数字通信系统的调制解调,可大大减轻电路设计和电路板设计的丁作量和难度,有效地增强设计的灵活性,提高工作效率。
本文研究了基于FPGA的MPSK调制电路的实现方法,并给出了仿真结果。
2 MPSK 调制解调的原理2.1 MPSK 调制原理多进制数字相位调制也称多元调相或多相制。
它利用具有多个相位状态的正弦波来代表多组二进制信息码元,即用载波的一个相位对应于一组二进制信息码元。
如果载波有2^k 个相位,它可以代表 k 位二进制码元的不同码组。
多进制相移键控也分为多进制绝对相移键控和多进制相对(差分)相移键控。
在MPSK 信号中,载波相位可取M 个可能值,因此,MPSK 信号可表示为假定载波频率是基带数字信号速率的整数倍,则上式可改写为:()()cos()cos cos ()sin sin ()MPSK b c n c n b c n b n n n s t g t nT w t w t g t nT w t g t nT ϕϕϕ=-+=---∑∑∑上式中,g(t)是高度为1,宽度为Tb 的门函数,Tb 为M 进制码元的持续时间,亦即k (k =2log M )比特二进制码元的持续时间,n ϕ为第n 个码元对应的相位,共有M 种不同取值,令:()cos ()n b n I t g t nT ϕ=-∑,()sin ()n b n Q t g t nT ϕ=-∑这样可得: ()()cos ()sin MPSK c c s t I t w t Q t w t =-。
上式表明,MPSK 信号可等效为两个正交载波进行多电平双边带调幅所得已调波之和。
因此其带宽与MASK 信号带宽相同,带宽的产生也可按类似于产生双边带正交调制信号的方式实现。
下面以四相相位调制为例进行讨论。
四相调相信号是一种四状态符号,即符号有00、01、10、11四种状态。
所以,对于输入的二进制序列,首先必须分组,每两位码元一组。
然后根据组合情况,用载波的四种相位表征它们。
这种由两个码元构成一种状态的符号码元称为双比特码元。
同理,k位二进制码构成一种状态符号的码元则称为k比特码元。
2.2 4PSK信号产生四相PSK(4PSK)信号实际是两路正交双边带信号。
串行输入的二进制码,两位分成一组。
若前一位用A表示,后一位用B表示,经串/并变换后变成宽度加倍的并行码(A、B码元在时间上是对齐的)。
再分别进行极性变换,把单极性码变成双极性码,然后与载波相乘,形成正交的双边带信号,加法器输出形成4PSK信号。
显然,此系统产生的是π/4系统PSK信号。
如果产生π/2系统的PSK信号,只需把载波移相π/4后再加到乘法器上即可。
图1系统4PSK信号的产生原理框图2.3 4PSK信号的解调原理因为 4 PSK信号是两个正交的2 PSK信号的合成,所以可仿照 2 PSK信号的相干解调方法,用两个正交的相干载波分别检测A和B两个分量,然后还原成串行二进制数字信号,即可完成4 PSK信号的解调。
此法是一种正交相干解调法,又称极性比较法,原理图在如下图2 系统4PSK信号解调原理框图为了分析方便,可不考虑噪声的影响。
这样,加到接收机上的信号在符号持续内可时间表示两路乘法器的输出分别为LPF输出分别是根据π/4移相系统PSK信号的相位配置规定,抽样判决器的判决准则表在下页。
当判决器按极性判决时,若正抽样值判为1,负抽样值判为0,则可将调相信号解调为相应的数字信号。
解调出的A和B再经并/串变换,就可还原出原调制信号。
若解调π/2移相系统的PSK信号,需改变移相网络及判决准则。
表1 π/4 系统判决器判决准则3 MPSK 调制电路VHDL 程序及仿真3.1 FPGA 中MPSK 的实现图3 MPSK 调制方框图注:电路符号图中没有包含模拟电路部分,输出信号为数字信号。
基带信号通过串/并转换器xx 得到2位并行信号yy ;四选一开关根据yy 的数据,选择载波对应的相位进行输出,即得调制信号y 。
--文件名:MPSK--功能:基于VHDL 硬件描述语言,对基带信号进行MPSK 调制--说明:调制信号说明如下表所示。
FPGAclk start 基带信号 分频 0° 90° 180° 270°串并转换 四选一开关 调制信号表2 调制信号与相位对应表3.2 VHDL程序设计方法library ieee;use ieee.std_logic_arith.all;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity MPSK isport(clk :in std_logic; --系统时钟start :in std_logic; --开始调制信号x :in std_logic; --基带信号y :out std_logic); --调制信号end MPSK;architecture behav of MPSK issignal q:integer range 0 to 7; --计数器signal xx:std_logic_vector(1 downto 0);--中间寄存器signal yy:std_logic_vector(1 downto 0);--2位并行码寄存器signal f:std_logic_vector(3 downto 0); --载波fbeginprocess(clk)--通过对clk分频,得到4种相位;并完成基带信号的串并转换beginif clk'event and clk='1' thenif start='0' then q<=0;elsif q=0 then q<=1;f(3)<='1'; f(1)<='0'; xx(1)<=x;yy<=xx;elsif q=2 then q<=3;f(2)<='0'; f(0)<='1';elsif q=4 then q<=5;f(3)<='0'; f(1)<='1'; xx(0)<=x;elsif q=6 then q<=7;f(2)<='1'; f(0)<='0';else q<=q+1;end if;end if;end process;y<=f(0) when yy="11" elsef(1) when yy="10" elsef(2) when yy="01" elsef(3); --根据yy寄存器数据,输出对应的载波end behav;3.4仿真结果及分析图4 MPSK调制VHDL程序仿真全图图5 MPSK调制VHDL程序仿真局部放大图1图6 MPSK调制VHDL程序仿真局部放大图2从仿真结果我们可以看出MPSK数字调制的输出与输入相比存在明显的延迟,4PSK中每两位二进制码元组成一个四进制码元,对应一个相应的输出相位。