多进制数字调制技术
- 格式:pdf
- 大小:1.04 MB
- 文档页数:16
本科毕业设计(论文)题目多进制数字信号调制系统设计学生姓名XX 学号0907050208教学院系电气信息学院专业年级通信工程2009级指导教师汪敏职称讲师单位西南石油大学辅导教师职称单位完成日期2013 年 6 月9 日Southwest Petroleum UniversityGraduation ThesisSystem Design of M-ary Digital Signal ModulationGrade: 2009Name:Liu ShaSpeciality: Telecommunications EngineeringInstructor: Wang MinSchool of Electrical Engineering and Information摘要由于数字通信系统的实际信道大多数具有带通特性,所以必须用数字基带信号对载波进行数字调制。
也因此,数字调制方法成为了当今的热点研究对象,其中最常用的一种是键控法。
在带通二进制键控系统中,每个码元只能传输1比特的信息,其频带利用率不高,而频率资源又是极其宝贵的,为了能提高频带利用率,最有效的办法是使一个码元能够传输多个比特的信息,这就是本文主要研究的多进制数字调制系统,包括多进制数字振幅调制(MASK)、多进制数字频率调制(MFSK)和多进制数字相位调制(MPSK)。
多进制键控系统可以看作是二进制键控系统的推广,可以大大提高频带利用率,而且因其抗干扰性能强、误码性能好,能更好的满足未来通信的高要求,所以研究多进制数字调制系统是很有必要的。
本文通过对多进制数字调制系统的研究,采用基于EP2C35F672C8芯片,运用VHDL硬件描述语言,完成了多功能调制器的模块化设计。
首先实现多进制数字振幅调制(MASK)、多进制数字频率调制(MFSK)和多进制数字相位调制(MPSK) 的设计,将时钟信号通过m序列发生器后产生随机的二进制序列,再通过串/并转换器转换成并行的多进制基带信号;其次分别实现数字调制模块2-M电平变换器、分频器以及四相载波发生器的设计;最后在顶层文件中调用并结合四选一多路选择器,从而完成多功能调制器的设计。
多进制数字调制原理咱先得知道啥是数字调制哈。
你想啊,咱们生活中有好多信息,像你给朋友发的短信内容啊,手机上看的视频啥的,这些信息在传播的时候可不能就那么原封不动地“走”,得经过处理,这个处理的过程就有点像给信息穿上不同的“衣服”,这就是调制啦。
那多进制数字调制又是啥呢?普通的二进制数字调制呢,就像是只有两种选择,是或者不是,0或者1。
但是多进制数字调制就像是打开了一个多选项的大门。
比如说四进制数字调制,就有0、1、2、3这四个选项呢。
这就好比你去买冰淇淋,二进制的时候就只有香草味和巧克力味两种选择,四进制就像是突然多了草莓味和抹茶味。
多进制数字调制为啥要这么干呢?这是因为它能在同样的带宽下传输更多的信息。
就像一条小路上,二进制的时候一次只能运两种东西,多进制的时候就能运更多种类的东西啦。
比如说在无线通信里,咱们都想在有限的频段里传更多有用的信息,多进制数字调制就像是一个超级搬运工,能把更多信息一股脑儿地搬过去。
那多进制数字调制是怎么实现的呢?这就涉及到一些数学魔法啦。
咱们以四进制相移键控(QPSK)为例。
它是通过改变信号的相位来表示不同的数字信息的。
想象一下,信号就像一个小舞者在跳舞,它可以跳到四个不同的位置,每个位置就代表一个四进制的数字。
比如说,0度的相位可以代表0,90度的相位代表1,180度代表2,270度代表3。
这小舞者可机灵了,它根据要传输的数字信息,快速地跳到相应的位置,接收端呢,就看着这个小舞者跳到哪了,然后就知道传来的是啥数字啦。
再说说多进制数字调制的信号特点吧。
它的信号看起来可比二进制复杂多啦。
就像是一幅色彩更丰富的画,二进制的画可能只有黑白两种颜色,多进制的画就有好多种颜色混合在一起。
但是这种复杂也带来了一些挑战。
比如说在接收端,要更准确地判断这个复杂的信号到底代表啥数字就有点难度,就像你在一堆五颜六色的小珠子里找特定颜色组合的珠子一样。
在实际的通信系统里,多进制数字调制可是大功臣呢。
多进制数字调制技术及应用
多进制数字调制技术是一种将数字信号转化为不同进制数字的技术。
常用的数字进制有二进制、八进制、十进制和十六进制,不同进制数字可以用不同的符号表示。
在通信系统、计算机网络、数字信号处理、电力系统等领域都有广泛的应用。
在计算机领域,多进制数字调制技术被广泛应用于数据传输和存储。
计算机内部使用二进制数字表示数据,而外部输入输出的数据则常常使用八进制或十六进制数字表示,便于人们理解和操作。
同时,不同进制数字之间的转换也是计算机编程中的基本操作之一。
在通信系统中,多进制数字调制技术可以用于数字信号的编码和解码。
常见的数字调制方法包括ASK、FSK、PSK、QAM等,这些方法都可以将数字信号转化为不同进制数字进行传输。
例如,QAM技术常用的是十六进制数字表示,可实现高速数据传输和高传输效率。
在电力系统中,多进制数字调制技术可以用于电力系统的控制与保护。
例如,电力系统中的控制设备常使用二进制数字表示开关状态、变量状态等信息,以便进行控制和监测。
总之,多进制数字调制技术是一种非常重要的技术,在许多领域都有应用,它可以大大提高数据传输和处理的效率。
在数字化时代,我们需要更加深入地了解和
掌握这一技术。
新型调制技术的研究与应用随着信息技术的快速发展,调制技术也在不断地更新换代,新型调制技术正引领着传输行业的创新。
本文将探讨新型调制技术的研究与应用情况,以及其对未来传输行业的影响。
一、调制技术的发展与应用调制技术是指将数字信号转换为模拟信号或将模拟信号转换为数字信号的技术,常见的调制技术有幅度调制(AM)、频率调制(FM)、相位调制(PM)等。
这些传统调制技术虽然已经被广泛应用,但随着信息传输的需求越来越高,它们的局限性也逐渐暴露出来。
为了解决这些局限性,新型调制技术应运而生。
新型调制技术主要包括正交振幅调制(QAM)、多进制调制、相位偏移键控(PSK)、正交振幅相位调制(QPSK)等。
正交振幅调制(QAM)是将数字信号在两个正交轴上调制,可以将信号的带宽压缩,提高频谱利用效率。
多进制调制则是利用多进制的特性,可以在同样的频率带宽下传输更多的数据,提高信息传输速度。
相位偏移键控(PSK)和正交振幅相位调制(QPSK)则是可以同时对信号的相位和振幅进行编码,进一步提高了信息传输的稳定性和速度。
二、新型调制技术的研究新型调制技术的研究不断推动着信息传输技术的进步。
近年来,许多研究机构都对新型调制技术进行了研究探索。
例如,南加州大学的研究人员提出了一种基于图像压缩的新型调制技术,可以提高无线信号的速率和容量,有效降低误码率。
此外,盖茨基金会的研究人员也开展了新型调制技术的研究,提出了一种可以实现最高传输速率的新型调制方法。
这些研究都为新型调制技术的应用拓展提供了有力支撑,为未来的信息传输技术的发展提供了有力保障。
三、新型调制技术的应用新型调制技术的应用范围也越来越广泛。
目前,新型调制技术已经被广泛应用于卫星通信、数字广播、数字电视、移动通信基站等领域。
例如,运营商通过使用新型调制技术可以提高移动网络接入速度,提供更高质量的网络服务。
数字电视和数字广播也可以通过新型调制技术提高传输速度和信号质量。
另外,新型调制技术在卫星通信领域也具有广泛应用。
数字带通传输系统的频带利用率数字带通传输系统是现代通信系统中将模拟信号数字化后传送的一种通信系统架构。
数字带通传输系统有多种制式,其中最常用的是PCM (脉冲编码调制)制式。
在数字带通传输系统中,频带利用率的优化是一项非常重要的工作。
数字带通传输系统的频带利用率是指在特定的频谱资源内,所能传输的最大数据量。
在数字带通传输系统中,频带利用率的提高是通过单次符号所携带的信息量增大来实现的。
但是,随着单次符号所携带的信息量的增大,符号间的干扰也会随之增加。
因此,在进行频带利用率的提升时,需要在保证错误率低的前提下,实现更高的频带利用率。
数字带通传输系统提高频带利用率的主要措施包括以下几个方面:1. 多进制调制技术多进制调制技术是数字带通传输系统中实现高频带利用率的有效手段之一。
通过使用多进制调制技术,可以将每个符号所携带的信息量增大,进而提升频带利用率。
在多进制调制技术中,常见的调制方式有PSK(相位偏移调制)、QAM(正交振幅调制)等。
2. 码间干扰消除技术当单次符号所携带的信息量较大时,符号间的干扰也会随之增加。
在数字带通传输系统中,实现高频带利用率的另一个重要措施是码间干扰消除技术。
通过使用误码率反馈等技术,可以有效地降低码间干扰对传送信号的影响,提高频带利用率。
3. 自适应均衡技术在数字带通传输系统中,自适应均衡技术也是实现高频带利用率的重要手段。
在信号传输过程中,信号会受到多种因素的干扰和失真,例如噪声、多径信道等。
通过使用自适应均衡技术,可以有效地去除这些因素对信号造成的影响,提高频带利用率。
综上所述,数字带通传输系统的频带利用率可以通过多进制调制技术、码间干扰消除技术、自适应均衡技术等多种手段来实现。
在实际应用中,需要根据不同的应用场景和要求,选择合适的手段来提高频带利用率,从而实现更高效、更稳定的数字信号传输。