模流分析(MOLDFLOW)
- 格式:doc
- 大小:34.50 KB
- 文档页数:7
模流分析报告
单位:
作者:
学号:
日期:
一、模型修复及网格划分
二、浇口位置分析
材料:牌号为Hostacom M3 U42 L204110
推荐工艺:模具表面温度:55℃
熔体温度:230℃
最大剪切应力:0.25MPa
最大剪切速率:100000 1/s
模具温度范围(推荐):20-90℃
熔体温度范围(推荐):200-260℃
绝对最大熔体温度:300℃
顶出温度:112℃
浇口位置分析结果如下:
三、充填分析
分析总结
此次分析的模型需要极强的moldflow运用能力,分析耗时时间很长。
在纵横比修复过程中也遇到了很大的困难,但是在这期间同学们给予了我不少的帮助,使我猜能够顺利的完成这次分析。
虽然这次做的过程中出现了很多次的失败,但是我相信,在处理这些问题时所用到的和处理问题的方法在我以后的人生中会给予我很大的帮助。
目录1.Moldflow的应用流程2.成功案例分享(2个)3.Moldflow应用效益分析4.经验分享(4个)3、演讲内容简介§①、如何用Moldflow软件解决产品外观光泽度、生产效率和翘曲变形问题。
§分享成果:如何将理论知识与实践相结合,得出容易复制、可推广的破题思路。
§②、多维度挖掘产品变形的成因,建立全面、科学评估体系。
§分享成果:技术在于不断积累和更新,拥有强大的知识库才能规避各种缺陷,防重于治!Moldflow 流程介绍一、模具设计前期流程二、首次试模后流程M F 分析M F分析案例分享(一)——解决光泽度、生产效率与变形问题产品简介1、产品概况:产品是挂机空调上的一个零件,零件名称为导风门,位于出风口上,起摆风作用,在空调关机时,处于闭合状态,为一级外观件;产品尺寸:780 x 73 x 24 ;主体壁厚:中心3.5 MM,边沿2.5MM ;材料颜色牌号供应商ABS高光白HI-121LG2、产品要求:①、一级外观件,光泽度要求100以上;②、产品不能有缩痕和S形变形;③、装配间隙要求0.8MM以内;④、每模生产周期55 S ;1、产品外观面的光泽度不够, 不到97(要求100以上);2、生产效率低,周期60秒;变形:反翘变形8MM3、升高模温后满足光泽度,产品变形和间隙大,反翘8 MM,间隙2MM (要求变形±1.5,装配间隙≤0.8 MM)间隙:2 MM 一、目前存在的问题二、原始方案§1、现状:前模热水45℃,后模、滑块接常温水25℃生产。
§2、目的:§缩小前后模的温差,防止产品变形超差。
§3、缺陷:§①、产品表面光泽度不够;§②、生产效率低;前模45℃后模25℃滑块25℃三、原因分析及改善方案(光泽度)1、原因分析:前模热水45℃,偏低,导致产品外观光泽度不够。
2、改善方案:提高前模水温;①、思路:模温机水温从45℃开始往上调整,每次上调5℃;②、现场验证:每次调整后连续生产30分钟(让模具上升到一个相对稳定的温度),并测量光泽度,直到60℃时,发现产品的光泽度达到103 ,符合要求(要求100以上);③、进一步测试:再升高模温到65℃,经过检测,光泽度没有明显提高,反而导致产品冷却后变形超标。
MOLDFLOW模流分析结果解释解释结果的一个重要部分是理解结果的定义,并知道怎样使用结果。
下面将列出常用结果的定义及怎样使用它们的建议,越常用的结果将越先介绍。
屏幕输出文件(screen output)和结果概要(results summary)屏幕输出文件和结果概要都包含了一些分析的关键结果的总结性信息。
屏幕输出文件还包含如图169所示的附加输出,表明分析正在进行,同时还提供重要信息。
从它可以看出分析使用的压力和锁模力的大小、流率的大小和使用的控制类型。
图169. 充模分析的屏幕输出文件屏幕输出文件和结果概要都有与图170相似的部分。
它同时包含了分析过程中(第一部分)和分析结束时的关键信息。
使用这些信息可以快速查看这些变量,从而判断是否需要详细分析某一结果,以发现问题。
图170. 结果概要输出充模时间(Fill Time)充模时间显示的是熔体流动前沿的扩展情况,其默认绘制方式是阴影图,但使用云纹图可更容易解释结果。
云纹线的间距应该相同,这表明熔体流动前沿的速度相等。
制件的填充应该平衡。
当制件平衡充模时,制件的各个远端在同一时刻充满。
对大多数分析,充模时间是一个非常重要的关键结果。
压力(Pressures)有几种不同的压力图,每种以不同的方式显示制件的压力分布。
所有压力图显示的都是制件某个位置(一个节点)、或某一时刻的压力。
使用的最大压力应低于注射机的压力极限,很多注射机的压力极限为140 MPa (~20,000 psi)。
模具的设计压力极限最好为100 MPa (~14,500 psi)左右。
如果所用注塑机的压力极限高于140MPa,则设计极限可相应增大。
模具的设计压力极限应大约为注射机极限的70%。
假如分析没有包括浇注系统,设计压力极限应为注射机极限的50%。
象充模时间一样,压力分布也应该平衡。
压力图和充模时间图看起来应该十分相似,如果相似,则充模时制件内就只有很少或没有潜流。
具体的压力结果定义如下:•压力(Pressure)压力是一个中间结果,每一个节点在分析时间内的每一时刻的压力值都记录了下来。
景德镇陶瓷学院模流分析与solidworks院系:机电学院专业:材料成型及控制工程完成时间:2012-12-31一、注塑产品有限元模型的建立1.制品模型的几何清理本次设计的研究对象为实验室装化学剂塑料盒盖,将塑件的CAD模型导入UG中,对孔、倒角、倒圆角等一些小的几何特征进行初步的处理,以确保模型导入Moldflow/MPI模块,在MPI模块中进行有限元分析时不会出现错误。
2.制件有限元的初始划分将制件的CAD模型导入UG,转换为IGS文件格式读入MPI中,并对其进行初步的有限元划分,定义网格边长为2,定义弦高控制为0.15。
进行网格划分得到初始划分结果如图,初始统计结果如图所示模型的初始网格划分模型的初始网格统计由上面的网格统计对话框可以得到:表面三角形单元为4108个,节点单元为2058个,没有柱体单元,连通区域为1个,自由边为0个,共用边为8097个,交叉边为0个,配向不正确的单元为0个,相交单元为0个,完全重叠单元为0个,复制柱体为0个,最小纵横比1.161,最大纵横比29.6,平均纵横比为1.721,匹配百分比为91.8%,相互百分比为87.6%。
通过以上统计结果分析可以很清晰的看出初始有限元分析的问题所在,最大纵横比>6%,不能进行翘曲分析。
所以,应该对网格进行修复。
3.制件有限元模型的完善从模型的初始网格统计结果可以看出,模型的最大纵横比为7.207,大于6,直接利用纵横比诊断工具查找模型网格的纵横比,并且设置网格修复的最大纵横比为6,可以看出图中红色线条标记的网格单元为纵横比大于6的单元,诊断出纵横比较大的网格单元之后,利用网格和节点工具对网格单元进行修复处理。
得到最终较为理想的网格划分结果如图。
网格统计由上面的网格统计对话框可以得到:表面三角形单元为4102个,节点单元为2055个,没有柱体单元,连通区域为1个,自由边为0个,共用边为6153个,交叉边为0个,配向不正确的单元为0个,相交单元为0个,完全重叠单元为0个,复制柱体为0个,最小纵横比为1.161,最大纵横比为5.945,平均纵横比为1.656,匹配百分比为92.1%,相互百分比为88.5%。
基于MOLDFLOW的模流分析技术上机实训教程主编:姓名:年级:专业:南京理工大学泰州科技学院实训一基于Moldflow的模流分析入门实例1.1Moldflow应用实例下面以脸盆塑料件作为分析对象,分析最佳浇口位置以及缺陷的预测。
脸盆三维模型如图1-1所示,充填分析结果如图1-2所示。
图1-1 脸盆造型图1-2 充填分析结果(1)格式转存。
将在三维设计软件如PRO/E,UG,SOLIDWORKS中设计的脸盆保存为STL格式,注意设置好弦高。
(2)新建工程。
启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。
在“工程名称”文本框中输入“lianpen”,指定创建位置的文件路径,单击“确定”按钮创建一新工程。
此时在工程管理视窗中显示了“lianpen”的工程,如图1-4所示。
图1-3 “创建新工程”对话框图1-4 工程管理视图(3)导入模型。
选择“文件”,“输入”命令,或者单击工具栏上的“输入模型”图标,进入模型导入对话框。
选择STL文件进行导入。
选择文件“lianpen.stl”。
单击“打开”按钮,系统弹出如图1-5所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默认为毫米。
图1-5 导入选项单击“确定”按钮,脸盆模型被导入,如图1-6所示,工程管理视图出现“lp1_study”工程,如图1-7所示,方案任务视窗中列出了默认的分析任务和初始位置,如图1-8所示。
图1-6 脸盆模型图1-7 工程管理视窗图1-8 方案任务视窗(4)网格划分。
网格划分是模型前处理中的一个重要环节,网格质量好坏直接影响程序是否能够正常执行和分析结果的精度。
双击方案任务图标,或者选择“网格”,“生成网格”命令,工程管理视图中的“工具”页面显示“生成网格”定义信息,如图1-9所示。
单击“立即划分网格”按钮,系统将自动对模型进行网格划分和匹配。
网格划分信息可以在模型显示区域下方“网格日志”中查看,如图1-10所示。
模流分析简介elements计算精度高直接在3D 数模上进行有限元网格划分。
抽取零件的表面做为模具的形芯形腔面,然后进行网格抽取零件的中性面,然后在划分方法双面流中性面零件网格质量检查:自由边界Moldflow网格质量检查报告单元匹配网格大小对计算精度的影响分析输入GM PPC Requirement Gate Type分析输入流道系统分析输入7分析输入填充分析注射结束时的压力分布图填充分析两端压力分布不均匀,不好的填充方式两端压力分布均匀,好的填充方式注意:填充分析影响:填充分析影响:如果注射时剪切率超过材料的最大剪切率,可以使填充分析注意:零件内部的最大剪切应力不应该超过材料影响:如果零件内部的最大剪切应力超过材料的许可值,填充分析填充分析保压分析力)保压压力整个注塑过程的压力分布图保压分析注射/保压切换压力值影响:保压分析保压时间影响:保压分析最大锁模力不应该超过用于生产该零件的注塑机的最大锁模力。
影响:最大锁模力如果超过用于生产该零件的注塑机的最大锁模力,可能在零件上产生飞边。
最大锁模力19保压分析制件收缩率的目标值应该是模具收缩率的3影响:如果制件收缩率大于模具收缩率的会出现意想不到的翘曲。
需要进行专门的翘曲分析。
20保压分析注意:影响:如果缩印的深度大于0.1mm,在非皮纹面上将冷却分析冷却分析形芯模温图冷却分析冷却分析冷却分析翘曲分析制件变形分析翘曲分析翘曲分析GMNA PPC Check ListMoldflow Analysis Moldflow Analysis。
Moldflow模流分析实例教程PDF介绍本文档旨在为读者提供关于Moldflow模流分析的实例教程,并提供相关知识和步骤。
Moldflow是一种用于模具设计和注塑成型的数值模拟软件,这个软件可以帮助工程师预测塑料制品的成型过程,并优化模具的设计,从而提高产品质量和生产效率。
目录1.准备工作2.模型导入与准备3.模流分析设置4.结果分析与优化5.生成报告与导出PDF1. 准备工作在进行Moldflow模流分析之前,需要准备以下工作和材料:•3D CAD模型•目标塑料材料的物理特性参数•模具和注塑机的几何参数和运行条件2. 模型导入与准备首先,将CAD模型导入Moldflow软件中。
可以使用多种文件格式来导入CAD模型,如STL、STEP、IGES等。
导入后,需要对模型进行清理和修复,确保模型的几何形状完整和连续。
接下来,需要为模型设置注塑模具。
这一步骤包括确定模具的材料、几何参数、喷嘴位置等。
同时,还需要为注塑机设置运行条件,如温度、压力等。
3. 模流分析设置在进行模流分析之前,需要对分析进行设置。
这包括选择合适的计算网格尺寸、设置计算时间步长、指定材料属性等。
为了更好地模拟实际注塑过程,还需要设置模具和注塑机的运行周期。
可以通过定义开模时间、充模时间、冷却时间等来模拟真实的注塑流程。
4. 结果分析与优化在模流分析完成后,可以对结果进行分析和优化。
Moldflow软件提供了丰富的分析工具,如温度分布、注塑压力、填充时间等。
根据这些分析结果,可以对模具设计和注塑工艺进行优化,提高产品质量和生产效率。
5. 生成报告与导出PDF最后,可以生成模流分析报告并导出为PDF格式。
报告中包括模型几何信息、注塑工艺参数、分析结果等。
这些信息可以帮助工程师和决策者了解模具设计和注塑工艺的影响,并根据分析结果做出相应的调整和决策。
结论本文档提供了关于Moldflow模流分析的实例教程,从准备工作到结果分析与优化,逐步介绍了Moldflow的基本流程和操作步骤。
基于Moldflow透明屋顶流动分析【摘要】通过学习并利用MOLDFLOW软件来研究透明屋顶的填充分析、流动分析、冷却分析、翘曲分析。
在实际生产中只有具备丰富经验的工程师才能总体上把握塑料制品的流动性能与工艺参数的关系、而且也是针对几种常用的材料;而moldflow的诞生为塑料制品的生产带来了方便,通过用moldflow对透明屋顶结构的的分析、各种设计方案的对比得出制品的最佳浇口位置、最佳冷却系统方案、最佳的工艺参数配合、从而保证制品的质量。
通过合理地运用Moldflow系列软件,可以预先估计出设计好的注塑制品及其中可能存在的缺陷,同时结合工程师的实际经验,就可以在开模之前分析缺陷出现的原因,并最终解决这些问题,从而减少修模、试模的次数,提高一次成功率。
【关键词】模流分析(Moldflow analysis)【Summary】By learning and using software to study the transparent roof MOLDFLOW filling analysis, flow analysis, cooling analysis, warpage analysis.In actual production, only experienced engineers to grasp the general flow properties of plastic products and the relationship between process parameters, but also for several commonly used materials; and moldflow the birth of the production of plastic products bring convenience, by using moldflow transparent roof structure on the analysis, design comparison of various products derived best gate location, the best cooling system solutions with the best process parameters to guarantee the quality of products Moldflow series through the rational use of the software, we can anticipate the design of a good injection products and their defects may exist, combined with practical experience of engineers, you can die in the open before the defect has arisen due Fenxi, and eventually solve these problems, which reduce the repair mode, the number of test model, a success rate of increase.目录引言------------------------------------------------ ---------------6 一:概述--------------------------------- --------------------------8 1.1:Moldflow软件简介-----------------------------------------------8 1.2:Moldflow格模块的基本功能---------------------------------------8 1.2.1:快速试模分析(MPA)------------------------------------------8 1.2.2:高级成型分析(MPI)------------------------------------------8 1.3:MPI的格子模块的功能--------------------------------------------8 1.4:Moldflow的基本思想---------------------------------------------8 二:材料的性能分析--------------------------------------------------8 2.1:热塑性塑料、热固性塑料-----------------------------------------8 2.2:聚碳酸酯(PC)-------------------------------------------------9 2.3:成型特点-------------------------------------------------------9 2.4:主要用途-------------------------------------------------------9 三:注塑制品易出现的缺陷、原因和解决方法----------------------------9 3.1:欠注(Short Short)----------------------------------------------10 3.1.1:注塑设备选择不合理-------------------------------------------10 3.1.2:聚合物流动性能较差-------------------------------------------10 3.1.3:浇注系统实际不合理-------------------------------------------10 3.1.4:料温、模温太低----------------------------------------------10 3.1.5:注塑喷嘴温度低----------------------------------------------10 3.1.6:注塑压力、保压不足------------------------------------------10 3.1.7:制品结构设计不合理-------------------------------------------11 3.1.8:排气不良-----------------------------------------------------11 3.2:溢料(Flashing)-------------------------------------------------11 3.2.1:锁模力较低---------------------------------------------------11 3.2.2:模具问题-----------------------------------------------------11 3.2.3:注塑工艺不当-------------------------------------------------11 3.3:凹陷及缩痕(Sink Mark)----------------------------------------12 3.3.1:模具缺陷-----------------------------------------------------12 3.3.2:注塑工艺不当------------------------------------------------12 3.3.3:注塑原料不符合要求-------------------------------------------12 3.3.4:注塑制品结构设计不合理---------------------------------------12 3.4:气穴----------------------------------------------------------13 3.4.1:注塑工艺不当-------------------------------------------------13 3.4.2.模具缺陷-----------------------------------------------------13 3.4.3.注塑原料不符合要求-------------------------------------------13 3.5:熔接痕---------------------------------------------------------13 3.5.1:熔体流动性不足,料温较低--------------------------------------13 3.5.2:模具缺陷-----------------------------------------------------14 3.5.3:塑料制品结构设计不合理---------------------------------------14 3.5.4:模具排气不良-------------------------------------------------14 3.6:翘曲及扭曲----------------------------------------------------143.5.5:脱模剂使用不当-----------------------------------------------14 3.6.1:冷却不当-----------------------------------------------------14 3.6.2:分子取向不均衡-----------------------------------------------14 3.6.3:模具浇注系统设计有缺陷---------------------------------------15 3.6.4:脱模系统不合理-----------------------------------------------15 3.6.5:成型条件设置不当---------------------------------------------15 3.7:波流痕--------------------------------------------------------15 3.7.2:塑件表面的螺旋状波流痕---------------------------------------15 3.7.1:以浇口为中心的年轮装波流痕-----------------------------------15 3.7.3:塑件表面的云雾状波流痕---------------------------------------15 四:Moldflow 基本流程----------------------------------------------164.1:建立模型------------------------------------------------------16 4.2:设定参数------------------------------------------------------16 4.3:分析结果------------------------------------------------------16 五:透明屋顶的工程分析---------------------------------------------165.1:新建工程、导入模型--------------------------------------------16 5.2:创建模型网格层------------------------------------------------17 5.3:设置网格划分参数----------------------------------------------18 5.4:划分网格------------------------------------------------------18 六:网格诊断与修补-------------------------------------------------196.1:网格状态统计-------------------------------------------------20 6.2:网格修补------------------------------------------------------20 6.3:处理纵横比----------------------------------------------------20 6.4:网格修补------------------------------------------------------20 七:最佳浇口位置分析-----------------------------------------------22 八:分析系列与材料的选择-------------------------------------------23 8.1:选择分析类型--------------------------------------------------23 8.2:材料选择------------------------------------------------------24 九:建立浇注与冷却系统---------------------------------------------25 9.1:复制节点------------------------------------------------------25 9.2:创建浇口------------------------------------------------------26 9.3:创建主流道----------------------------------------------------27 9.4:设置注射位置--------------------------------------------------28 9.5:创建冷却系统--------------------------------------------------29十:工艺过程参数定义-----------------------------------------------30 十一:透明屋顶的“冷却+流动+翘曲”分析-----------------------------32 11.1冷却分析信息--------------------------------------------------33 11.2:流动分析信息-------------------------------------------------35 11.3:冷却分析结果-------------------------------------------------38 11.4:流动分析结果-------------------------------------------------39 11.5:翘曲分析结果-------------------------------------------------40 十二:TOP模型优化方案---------------------------------------------43 12.1:优化方案的分析前处理------------------------------------------43 12.2:工艺过程参数调整--------------------------------- ------------4412.3:分析计算与结果分析--------------------------------------------46 12.4:流动分析结果--------------------------------------------------50 12.5:冷却分析结果--------------------------------------------------50 12.6:翘曲分析结果--------------------------------------------------51 十三:结论----------------------------------------------------------55 十四:致谢----------------------------------------------------------55 十五:参考文献------------------------------------------------------56引言自从学了moldflow软件、我就深深的被这个软件的适用度所震撼、因为在实际的生产中所用的塑料范围广、各种塑料的性能又都不一样、可是要控制其生产的制品质量都是相当困难的、在实习的阶段我了解到只有从事本行业的注塑工程师才能比较好的控制好产品注塑的工艺参数、而moldflow软件不管是那种材料、都能推荐一个适合产品的工艺参数、能够在短时间内优化产品的质量、这样就减少了在实际生产中的试产量跟时间、如本来可能需要使用一周试产100个样品之后才能解决的问题、在用此软件之后可能只需要2天试产10个产品就能把问题解决了。
一. 压力條件对产品的影响1.高保压压力能夠降低產品收縮的機會补充入模穴的塑料越多,越可避免產品的收縮高保压压力通常會造成产品不均勻收縮,而导致產品的翹曲变形对薄殼產品而言,由於壓力降更明顯,上述之情況更加嚴重2.Over packing 過保壓保壓壓力高,澆口附近體積收縮量少遠離澆口處保壓壓力低且體積收縮量較大導致產品翹曲變形,產品中央向四周推擠形成半球形(Dome Shape)3. Under packing 保壓不足澆口附近壓力低遠離澆口處壓力更低導致產品翹曲變形,產品中央向四周拉扯形成馬鞍形Twisted shape保壓時間如果夠長,足夠使澆口凝固,則可降低體積收縮的機會澆口凝固後,保壓效果就無效果一、澆口位置的要求:1.外观要求(浇口痕跡, 熔接线)2.產品功能要求3.模具加工要求4.產品的翹曲变形5.澆口容不容易去除二、对生产和功能的影响:1.流長(Flow Length)決定射出壓力,鎖模力,以及產品填不填的滿流長縮短可降低射出壓力及鎖模力2.澆口位置會影響保壓壓力保壓壓力大小保壓壓力是否平衡將澆口遠離產品未來受力位置(如軸承處)以避免殘留應力澆口位置必須考慮排氣,以避免積風發生不要將澆口放在產品較弱处或嵌入处,以避免偏位(Core Shaft)三、选择浇口位置的技巧1.將澆口放置於產品最厚處,從最厚處進澆可提供較佳的充填及保壓效果。
如果保壓不足,較薄的區域會比較厚的區域更快凝固避免將澆口放在厚度突然變化處,以避免遲滯現象或是短射的發生2.可能的話,從產品中央進澆將澆口放置於產品中央可提供等長的流長流長的大小會影響所需的射出壓力中央進澆使得各個方向的保壓壓力均勻,可避免不均勻的體積收縮射出量/切换点的影响射出量可由螺杆行程距离的設定決定射出量包括了填滿模穴需要的塑胶量以及保压時須填入模穴的塑膠量切換點是射出機由速度控制切換成壓力控制的點螺桿前进行程過短(切換點過早)會導致保壓壓力不足假如保压压力比所需射出壓力還低,產品可能发生短射PVT特性p –压力; v –比容; T –溫度描述塑胶如何随着压力及溫度的变化而发生体积上的变化。
在充填及保壓的階段,塑膠随着压力的增加而膨脹在冷卻的阶段,塑膠隨著溫度的降低而收縮V/P转换的概念和作用是指填充由速度控制转为由压力控制,也就是保压的转换点.以速度控制的时候特别是复杂的产品当填充到产品的末端的时候由于流动性的减弱会为维持填充速度会导致压力急剧上升,从而引起压力和锁模力突变,对产品而言就会导致浇口区域的应力增大和密度不均匀分布。
MPA和MPI的区别MPA可以理解为"简易的快速的" MPI。
它包括了part advisers 和mold advisers两部分提供注塑成型过程中的分析。
可提供如下分析:产品结构是否合理、怎样选择合适的注塑材料、怎样确定合理的浇口位置、浇口位置自动优化、预测熔接痕位置、模具型腔是否充满、最终制品的质量如何、怎样选择合适的注塑机、缩痕分析、成本顾问。
MPI支持多种现有的多种塑料的成型分析。
如压注、注塑、气辅成型、芯片包裹、热固性材料成型等。
在分析结果上,不仅提供了各相与冷却相对应的分析还提供如翘曲变形量,分子取向、玻纤取向等众多对产品设计、模具设计、工艺等具有重要参考价值的数值。
注塑成型流动模拟技术的发展注塑成型流动模拟技术旨在预测塑料熔体流经流道、浇口并填充模具型腔的过程,计算浇注系统及模具型腔的压力场、温度场、速度场、剪切应变速率场和剪切应力场的分布,并将分析结果以图表、等值线图和真实感图的方式直观地反映在计算机的屏幕上。
由于采用流动模拟可优化浇口数目、浇口位置和注射成型工艺参数,预测所需的注射压力和锁模力,并发现可能出现的注射不足、烧焦、不合理的熔接痕位置和气穴等缺陷,流动模拟软件一经问世便得到了塑料行业和模具界的好评,应用范围与日俱增。
二十余年的推广应用、成千上万的成功范例、日新月异的塑料工业又推动着注塑成型流动模拟技术不断的改进和发展,经历了从中面流技术到双面流技术再到实体流技术这三个具有重大意义的里程碑。
1 中面流技术中面流技术的应用始于20世纪80年代。
其数值方法主要采用基于中面的有限元/有限差分/控制体积法。
所谓中面是需要用户提取的位于模具型腔面和型芯中间的层面,其模拟过程如图1所示。
基于中面流技术的注塑流动模拟软件应用的时间最长、范围也最广,其典型代表如国外Moldflow公司的MF软件、原AC-Tech公司(被Moldflow公司并购)的C-Mold软件,国内华中科技大学国家模具技术国家重点试验室的HSCAE-F3.0软件。
实践表明,基于中面流技术的注塑成型流动软件在应用中具有很大的局限性,具体表现为:(1)用户必须构造出中面模型,采用手工操作直接由实体/表面模型构造中面模型十分困难;(2)独立开发的注塑成型流动模拟软件(如上述的MF、C-Mold和HSCAE-F3.0软件)造型功能较差,根据产品模型构造中面往往需要花费大量的时间;(3)由于注塑产品的千变万化,由产品模型直接生成中面模型的CAD软件的成功率不高、覆盖面不广;(4)由于CAD阶段使用的产品模型和CAE阶段使用的分析模型不统一,使二次建模不可避免,CAD与CAE系统的集成也无法实现。
由此可见,中面模型已经成为了注塑模CAD/CAE/CAM技术发展的瓶颈,采用实体/表面模型来取代中面模型势在必然,在20世纪90年代后期基于双面流技术的流动模拟软件便应运而生。
2、双面流技术摒弃中面模型的最直接办法是采用三维有限元方法或三维有限差分方法来代替中面流技术中的二维有限元(流动方向)与一维有限差分(厚度方向)的耦合算法。
三维流动模拟一直是当今塑料注射成型领域中的研究热点,其技术难点多、经历实践考验的时间短、计算量巨大、计算时间过长与中面流技术的简明、久经考验。
计算量小、即算即得形成了鲜明的反差。
在三维流动模拟技术举步维艰的时刻,一种既保留中面流全部技术特点又基于实体/表面技术模型的注塑流动模拟新方法――双面流技术悄然问世。
其商品化软件的典型代表是我国华中科技大学模具技术国家重点实验室的HSCAE 3DRF5.0 ,称为三维真实感注塑成型流动分析系统以及澳大利亚MoldFlow公司的Part advisor,称为注塑制品顾问。
所谓双面流是指将模具型腔或制品在厚度方向上分成两部分,有限元网格在型腔或制品的表面产生,而不是在中面。
相应的,与基于中面的有限差分法是在中面两侧进行不同,厚度方向上的有限差分仅在表面内侧进行。
在流动过程中上下两表面的塑料熔体同时并且协调的流动,其模拟过程如图2所示。
显然,双面流技术所应用的原理与方法与中面流没有本质上的差别,所不同的是双面流采用了一系列相关的算法,将沿中面流动的单股熔体演变为沿上下表面协调流动的双股流。
由于上下表面处的网格无法一一对应,而且网格形状、方位与大小也不可能完全对称,如何将上下对应表面的熔体流动前沿所存在的差别控制在工程上所允许的范围内是实施双面流技术的难点所在。
目前基于双面流技术的注塑流动模拟软件主要是接受三维实体/表面模型的STL文件格式。
该格式记录的是三维实体表面在经过离散后所生成的三角面片。
现在主流的CAD/CAM系统,如UG、Pro/E、SolidWorks、AutoCAD等,均可输出STL格式文件。
这就是说,用户可借助于任何商品化的CAD/CAM系统生成所需制品的三维几何模型的STL格式文件,流动模拟软件可以自动将该STL文件转化为有限元网格模型供注塑流动分析,这样就大大减轻了用户建模的负担、降低了对用户的技术要求,对用户的培训时间也由过去的数周缩短为几小时。
因此,基于双面流技术的注塑流动模拟软件问世时间虽然只有短短数年,便在全世界拥有了庞大的用户群,得到了广大用户的支持和好评。
双面流技术具有明显优点的同时也存在着明显的缺点:分析数据的不完整。
双面流技术在模拟过程中虽然计算了每一流动前沿沿厚度方向的物理量,但并不能详细地记录下来。
由于数据的不完整,造成了流动模拟与冷却分析、应力分析、翘曲分析集成的困难。
此外,熔体仅沿着上下表面流动,在厚度方向上未作任何处理,缺乏真实感。
当在透明的模具型腔内作注塑流动时该缺点便暴露无遗。
4、实体流技术从某种意义上讲,双面流技术只是一种从二维半数值分析(中面流)向三维数值分析(实体流)过渡的手段。
要实现塑料注射制品的虚拟制造,必须依靠实体流技术。
实体流技术在实现原理上仍与中面流技术相同,所不同的是数值分析方法有较大差别。
在中面流技术中,由于制品的厚度远小于其他两个方向(常称流动方向)的尺寸,塑料熔体的粘度大,可将熔体的充模流动视为扩展层流,于是熔体的厚度方向速度分量被忽略,并假定熔体中的压力不沿厚度方向变化,这样才能将三维流动问题分解为流动方向的二维问题和厚度方向的一维分析。
流动方向的各待求量,如压力与温度等,用二维有限元法求解,而厚度方向的各待求量和时间变量等,用一维有限差分法求解。
在求解过程中,有限元法与有限差分法交替进行,相互依赖。
在实体流技术中熔体的厚度方向的速度分量不再被忽略,熔体的压力随厚度方向变化,这时只能采用立体网格,依靠三维有限差分法或三维有限元法对熔体的充模流动进行数值分析。
因此,与中面流或双面流相比,基于实体流的注塑流动模拟软件目前所存在的最大问题是计算量巨大、计算时间过长,诸如电视机外壳或洗衣机缸这样的塑料制品,用现行软件,在目前配置最好的微机上仍需要数百小时才能计算出一个方案。
如此冗长的运行时间与虚拟制造的宗旨大相径庭,塑料制品的虚拟制造是将制品设计与模具设计紧密结合在一起的协同设计,追求的是高质量、低成本和短周期。
如何缩短实体流技术的运行时间是当前注塑成型计算机模拟领域的研究热点和当务之急。
由于高科技的迅猛发展和塑料工业的迫切需求,可以预见,满足虚拟制造要求的三维注塑流动模拟软件会在近两年内涌现MPI/MIDPLANE:对于线框和表面造型,MPI可以直接读取任何CAD表面模型并进行分析。
在用户采用线框和表面造型文件时,MPI可以自动生成中型面网格并准确计算单元厚度,进行精确的分析。
MPI的中型面模块用于处理薄壁制件,节省了用户大量的CAE建模时间。
使他们致力于CAE 分析和优化。
MPI/FUSION:对于薄壁实体,MPI的FUSION模块基于Moldflow的独家专利的Dual Domain分析技术,使用户可以直接进行薄壁实体模型分析。
这将原来需要几小时甚至几天的建模工作缩短为几分钟,无需进行中型面网格的生成和修改。
FUSION可以直接从塑件顾问中读取模型而进行进一步的分析。
MPI/3D:对于厚壁实体Moldflow的MPI/Flow3D、和MPI/Cool3D模块采用全三维的自适应网格进行全三维分析。