第二章 影响腐蚀的结构因素
- 格式:ppt
- 大小:1.18 MB
- 文档页数:79
主要试题题型:一、简答题(约30分)二、填空题(约20分)三、选择题(约10分)四、腐蚀事例分析(3- 4小题,共40分)第一章 腐蚀电化学基础1、金属与溶液的界面特性——双电层金属浸入电解质溶液内,其表面的原子与溶液中的极性水分子、电解质离子、氧等相互作用,使界面的金属和溶液侧分别形成带有异性电荷的双电层。
2.电极电位电极电位:电极反应使电极和溶液界面上建立的双电层电位跃。
3.金属电化学腐蚀的热力学条件(1). 金属溶解的氧化反应若进行,则金属的实际电位必更正于金属的平衡电极电位。
E>Ee,M(2)去极化反应若进行,则有金属电极电位必更负于去极剂的氧化还原反应电位。
E<Ek0上述条件需同时满足。
4、极化极化现象:电池工作过程中,由于电流流动而引起电极电位偏离初始值的现象。
极化现象的根本原因:电极反应与电子迁移的速度差。
极化曲线定义:用来表示极化电位与极化电流或极化电流密度之间关系的曲线。
作用:判断电极材料的极化特性。
腐蚀极化图定义:将构成腐蚀电池的阴极和阳极极化曲线绘在同一E -I 坐标上得到的图线,简称极化图。
对给定的腐蚀电池,工作稳定时的腐蚀电流为Icorr ,则初始电动势问题:如增加最有效的阴极的面积,或添加去极剂,搅拌等,将使Ex -S 水平线向正方向移动(为什么?)5、超电压(过电位)腐蚀电池工作时,由于极化作用使阴极电位变负,阳极电位变正。
这个值与各极的初始电位差值的绝对值称为超电压或过电位。
以η表示。
超电压量化的反映了极化的程度,对研究腐蚀速度非常重要。
6.金属的耐蚀性能评定(针对全面腐蚀 为什么?)金属耐蚀性也叫化学稳定性,即金属抵抗介质作用的能力。
对全面腐蚀,通常以腐蚀速度评定。
对受均匀腐蚀的金属,常以年腐蚀深度来评定耐腐蚀的等级7、腐蚀速度的工程表示方法重量法:以金属腐蚀前后金属质量的变化来表示,分失重法和增重法。
常为实验室采用。
失重法适用于腐蚀产物能很好地除去而不损伤主体。
第二章电化学腐蚀理论基础金属腐蚀从腐蚀历程上分为电化学腐蚀和高温腐蚀两大类,电化学腐蚀是金属腐蚀的主要形式,因此本章内容是本门课程的重要理论基础。
本节课要求掌握:电化学腐蚀的定义;腐蚀原电池的特点和分类。
电化学腐蚀的定义:金属材料与电解质溶液相接触时,在界面上将发生有自由电子参加的氧化和还原反应,从而破坏了金属材料的特性。
这个过程称为电化学腐蚀。
电化学腐蚀现象极为常见在潮湿的大气中,桥梁钢结构的腐蚀;海水中船体的腐蚀;土壤中输油输气管道的腐蚀;在含酸、碱、盐等工业介质中的腐蚀,一般均属于此类。
•第一节腐蚀原电池过程用腐蚀原电池模型来解释电化学腐蚀原因及过程。
一、腐蚀原电池1.原电池例如:Zn片和Cu片放入稀盐酸溶液中,用导线通过电流表把它们连接起来(电流表指针转动)就构成了原电池装置。
阳极Zn:Zn →Zn2++2e (氧化反应)阴极Cu:2H++2e →H2 ↑(还原反应)2. 腐蚀原电池的定义及特点阳极Zn:Zn →Zn2++2e (氧化反应)阴极Cu:2H++2e →H2 ↑(还原反应)(1)腐蚀原电池的定义:只能导致金属材料破坏而不能对外界作功的短路原电池。
(2)腐蚀原电池的特点:1. 电池的阳极反应是金属的氧化反应,结果造成金属材料的破坏。
2. 电池的阴、阳极短路,产生的电流全部消耗在内部,转变为热,不对外做功。
电化学腐蚀的实质是以金属为阳极的腐蚀原电池过程,在绝大多数情况下,这种电池是短路了的原电池。
3.腐蚀原电池的工作过程:阳极过程Me →Men++ne阴极过程 D + ne →Dne-电化学腐蚀过程可分成阴极和阳极两个在相当程度上独立进行的过程,这是区分电化学腐蚀和化学腐蚀的重要标志。
二. 腐蚀电池的分类从热力学角度来讲,在金属材料/腐蚀介质构成的体系中,如果存在着电位差,且金属的电位较低,则将发生金属腐蚀。
根据腐蚀电池电极尺寸的大小,腐蚀电池分为:宏观电池和微观电池.1、宏观电池通常指肉眼可分辨电极极性的电池。
中国不锈钢腐蚀手册中国不锈钢腐蚀手册第一章:引言不锈钢是一种重要的金属材料,广泛应用于各个领域。
它具有耐腐蚀、耐高温、抗氧化等优良性能,因此在化工、石油、能源、建筑等行业中得到了广泛应用。
然而,不锈钢在特定条件下也会发生腐蚀,因此对不锈钢的腐蚀进行研究和控制具有重要意义。
第二章:不锈钢的腐蚀机理不锈钢的腐蚀主要是由于外界环境中存在的氧、水和其他化学物质对其表面的侵蚀作用。
当不锈钢表面的保护层被破坏或者不完整时,这些侵蚀物质会与金属表面发生反应,导致不锈钢发生腐蚀。
不锈钢的腐蚀主要有普通腐蚀、点蚀、应力腐蚀等形式。
第三章:不锈钢的分类和性能根据不锈钢中含有的合金元素和组织结构的不同,可以将其分为多种类型,如奥氏体不锈钢、铁素体不锈钢、双相不锈钢等。
每种类型的不锈钢具有不同的耐腐蚀性能和适用范围。
在选择不锈钢材料时,需要根据具体的使用环境和要求来确定。
第四章:不锈钢的防腐措施为了延长不锈钢的使用寿命和减少腐蚀的发生,需要采取一系列的防腐措施。
首先,要保证不锈钢表面的清洁和光洁度,避免表面附着物和污染物对其产生影响。
其次,可以通过电化学方法对不锈钢进行保护,如阳极保护、阴极保护等。
此外,还可以采用涂层、包覆等方式来增加不锈钢的耐腐蚀性能。
第五章:常见问题与解决方法在使用过程中,可能会遇到一些常见的问题,如不锈钢表面出现斑点、起皮、变色等现象。
这些问题可能是由于不锈钢材料本身存在缺陷或者使用条件不当所导致的。
对于这些问题,可以通过调整使用条件、更换材料或者采取其他措施来解决。
第六章:案例分析本章将通过一些实际案例来分析不锈钢腐蚀问题的原因和解决方法。
通过对这些案例的分析,可以更好地理解不锈钢腐蚀的机理和防护措施。
第七章:结论通过对中国不锈钢腐蚀手册的编写,我们对不锈钢的腐蚀机理和防护措施有了更深入的了解。
希望这本手册能够为广大工程技术人员提供参考,帮助他们更好地应对不锈钢腐蚀问题,提高工作效率和产品质量。
第二章电子产品的防腐蚀设计2.1 概述2.1.1 腐蚀效应1.腐蚀的概念材料受环境介质的化学作用而发生性能下降、状态改变、甚至损坏变质的现象。
2.腐蚀的分类根据被腐蚀材料的种类,可分为金属腐蚀和非金属腐蚀两大类。
金属腐蚀:金属与周围环境介质之间发生化学或电化学作用而引起的破坏或变质现象。
按照腐蚀的机理分类,可分为化学腐蚀、电化学腐蚀和物理腐蚀。
化学腐蚀主要为金属在无水的液体和气体以及在干燥的气体中的腐蚀。
物理腐蚀是指金属由于单纯的物理溶解作用而引起的破坏,金属与熔融液态金属接触引起的金属溶解或开裂就属于物理腐蚀。
电化学腐蚀是金属与电解液发生作用所产生的腐蚀。
其特征是腐蚀过程中有电流产生,在金属表面上有隔离的阳极区和阴极区,被腐蚀的是阳极区。
电化学腐蚀的现象与原电池作用相似。
电化学腐蚀是最普遍、最常见的金属腐蚀,在造成电子设备故障的常见的原因中,金属的电化学腐蚀是最常受到指责的因素。
大多数电子设备的制造、运输、储存和使用都是在地面或接近地面的地方进行,因此金属材料在潮湿大气中的腐蚀破坏是电子设备防腐蚀设计重点考虑的问题。
非金属材料在化学介质或化学介质与其他因素(如应力、光、热等)共同作用下,因变质而丧失使用性能称为非金属材料腐蚀。
电子设备使用的非金属材料,以有机高分子材料为最广泛,如塑料、涂料、薄膜、绝缘材料等。
高分子材料腐蚀的主要形式有老化、化学裂解、溶胀和溶解、应力开裂等。
由于生物活动而引起材料变质破坏的现象通常称为生物腐蚀,其中由于霉菌和其他微生物引起的腐蚀也称为霉腐或霉变。
2.1.2 腐蚀性环境因素凡是能够作为腐蚀介质引起材料腐蚀的环境因素,都可称之为腐蚀性环境因素,主要有以下几种:1.水分。
2.氧和臭氧。
3.温度。
4.腐蚀性气体。
5.盐雾。
6.沙和灰尘。
7.太阳辐射。
8.微生物额动物。
2.1.3 防腐蚀设计的基本要求实践证明,采取恰当的防护措施,腐蚀是可以受到一定程度的控制,有些腐蚀事故是可以避免的。
绪论习题解1.为什么说“材料的腐蚀是自发产生的”?自然界中物质最稳定的存在状态是以金属化合物的形态存在。
如:Fe2O3、FeS、Al2O3等等。
由于它们的强度、硬度、刚度等性能不能满足工业结构材料的要求,用冶金方法外加能量将它们还原成金属元素及其合金,它们比其化合物具有更高的自由能,根据热力学第二定律,金属元素必然自发地转回到热力学上更稳定的化合物状态。
这就是金属的腐蚀过程。
有机非金属材料是由有机小分子材料经聚合成为大分子材料而具有一定的强度、刚度和硬度,具备满足工业结构材料性能的。
在聚合过程中加入的能量,使其比小分子具有更高的自由能。
在介质中材料发生一些化学或物理作用,使其从高能的聚合态向低能而稳定的小分子状态转变,使材料的原子或分子间的结合键破坏。
也是服从热力学第二定律的。
无机非金属材料有天然的和人工的。
两者均是由在自然界较稳定的化合物状态的分子或元素,在天然或人工外部作用下,结合成具有一定形状、强度、刚度和硬度的材料。
这些材料在形成过程中受到的外部作用,使其内能增加,具有比它们的化合物状态的分子或元素高的能态,同样由热力学第二定律,它们在腐蚀性介质环境下,发生化学或物理作用,使材料的原子或分子间的结合键断裂破坏。
也服从热力学第二定律。
2.材料的腐蚀有哪些危害性?a.涉及范围广泛:因腐蚀是自发产生的,腐蚀现象就涉及到所有使用材料的一切领域;b.造成的经济损失巨大;间接损失:由于腐蚀引起停产、更新设备、产品和原料流失、能源浪费。
一般间接损失比直接损失大很多。
污染环境、造成中毒、火灾、爆炸等重大事故。
c.阻碍新技术、新工艺的发展。
3.什么是直接损失?直接损失:由于腐蚀造成的材料自身的损失,使材料变成废物。
4.什么是间接损失?间接损失:由于腐蚀引起停产、更新设备、产品和原料流失、能源浪费。
一般间接损失比直接损失大很多。
污染环境、造成中毒、火灾、爆炸等重大事故。
5.控制腐蚀有哪些重要意义?研究材料的腐蚀规律,弄清腐蚀发生的原因及采取有效的防腐蚀措施,可以延长设备寿命、降低成本、提高劳动生产率。
腐蚀的原理腐蚀是指金属或合金在特定环境中受到化学或电化学作用而逐渐失去其原有性能的过程。
腐蚀是一种不可逆的过程,会导致材料的损坏和性能下降,因此对腐蚀的原理进行深入了解对于材料保护和延长使用寿命具有重要意义。
腐蚀的原理主要包括化学腐蚀和电化学腐蚀两种类型。
化学腐蚀是指金属在化学环境中与其他物质发生化学反应而导致腐蚀,例如金属与氧气发生氧化反应形成金属氧化物。
而电化学腐蚀是指金属在电解质溶液中发生的电化学反应,产生阳极和阴极两种区域,从而引发腐蚀。
化学腐蚀的原理是金属与其他物质发生化学反应,形成金属的氧化物、硫化物、氯化物等化合物,这些化合物会导致金属表面的腐蚀和破坏。
例如,铁与氧气发生氧化反应生成铁氧化物,即铁锈,导致铁制品的腐蚀。
另外,金属与酸、碱等化学物质也会发生化学反应导致腐蚀。
电化学腐蚀的原理是在电解质溶液中,金属表面会形成阳极和阴极两种区域,阳极区域发生氧化反应,而阴极区域则发生还原反应,从而引发金属表面的腐蚀。
电化学腐蚀的速度与电解质的浓度、温度、金属的组成和结构等因素密切相关。
腐蚀的原理不仅涉及化学和物理方面的知识,还与材料的结构、组织、表面状态等密切相关。
例如,金属的晶粒大小、晶界、缺陷等都会影响金属的腐蚀行为。
此外,环境因素如温度、湿度、氧气浓度等也会对腐蚀的发生和发展产生重要影响。
为了防止腐蚀的发生,可以采取一系列的防腐措施,包括表面涂层、阴极保护、合金设计、材料选择等。
通过了解腐蚀的原理,可以有针对性地选择合适的防腐措施,从而保护金属材料,延长其使用寿命。
总之,腐蚀的原理是一个复杂的过程,涉及多方面的知识。
深入了解腐蚀的原理对于材料保护和应用具有重要意义,也为我们提供了有效的防腐方法和措施。
希望通过对腐蚀原理的深入研究,能够为材料科学和工程技术的发展提供有益的参考。