BP神经网络在多传感器数据融合中的应用
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
神经网络技术在传感器信号处理中的应用近年来,神经网络技术的发展取得了巨大的进步,已经逐渐在各个领域得到了广泛的应用。
其中,神经网络技术在传感器信号处理中的应用尤为突出。
本文将探讨神经网络技术在传感器信号处理中的应用,为读者提供更多的理解和应用参考。
一、传感器信号处理的基本原理在开始讨论神经网络技术在传感器信号处理中的应用之前,我们有必要先了解一下传感器信号处理的基本原理。
传感器信号处理是将传感器获取的信号进行专业分析和处理的一种技术,主要用于检测和控制。
传感器是将非电信号转化成电信号的一种装置,其检测原理与被检测对象的物理量相关。
在传感器信号处理过程中,首先需要对采集到的信号进行预处理,包括滤波、放大、去噪等步骤,以保证信号稳定和准确。
然后,应用信号处理算法进行分析和处理。
传感器信号处理的最终目标是提高数据的准确性和完整性,以利于对被检测对象进行更加精确的控制和管理。
二、神经网络技术在传感器信号处理中的应用神经网络技术是模拟人脑神经系统机制而产生的一种智能计算技术。
它可以学习复杂的非线性关系,自适应地对不稳定和不确定的系统进行控制和优化。
因此,神经网络技术在传感器信号处理中得到了广泛应用。
1. 信号滤波传感器采集的原始信号通常存在着各种噪声干扰和杂波,这些噪声和杂波会严重影响信号的精度和可靠性。
因此,在传感器信号处理中,信号滤波是非常重要的一步。
传统的滤波算法往往需要提供一定的先验知识和经验,比如选择合适的滤波窗口、滤波器类型等。
而神经网络技术可以自适应地从大量的样本数据中学习和理解信号的特征,有效地解决了传统滤波算法无法解决的问题。
2. 特征提取和分类传感器信号中包含着大量的信息和特征,而其中一些特征可能对我们所关注的目标具有更加重要的意义。
因此,在传感器信号处理中,特征提取和分类是一个非常关键的挑战。
神经网络技术可以有效地提取和分析信号的特征,确定哪些信号特征对我们所关注的目标具有更加重要的意义。
bp神经网络的应用综述近年来,人工神经网络(ANN)作为一种神经网络形式在不断发展,因其计算能力强,对现实世界较好地识别和适应能力,已得到越来越广泛的应用,其中,BP神经网络是最典型的人工神经网络之一。
BP神经网络是指以马尔可夫随机过程为基础的反向传播算法,具有自组织学习、泛化、模糊推理的特点,具有非常广泛的应用场景。
它可以用来解决实际问题。
首先,BP神经网络可以用来解决分类问题。
它可以根据给定的输入向量和输出向量,训练模型以分类相关的输入特征。
这种模型可以用来解决工业控制问题、专家系统任务等。
例如,BP神经网络可以用来识别照片中的面孔,帮助改进自动门的判断等。
此外,BP神经网络还可以用于计算机视觉,即以计算机图像识别的形式进行图像处理。
通常,计算机视觉技术需要两个步骤,即识别和分析。
在识别步骤中,BP神经网络可以被用来识别图片中的特征,例如物体的形状、大小、颜色等;在分析步骤中,BP神经网络可以用来分析和判断图片中的特征是否满足要求。
此外,BP神经网络还可以用于机器人技术。
它可以用来识别机器人环境中的物体,从而帮助机器人做出正确的动作。
例如,利用BP神经网络,机器人可以识别障碍物并做出正确的行动。
最后,BP神经网络还可以用于未来的驾驶辅助系统中。
这种系统可以利用各种传感器和摄像机,搜集周围环境的信息,经过BP神经网络分析,判断当前环境的安全程度,及时采取措施,以达到更好的安全驾驶作用。
综上所述,BP神经网络具有自组织学习、泛化、模糊推理的特点,拥有非常广泛的应用场景,可以用于分类问题、计算机视觉、机器人技术和驾驶辅助系统等。
然而,BP神经网络也存在一些问题,例如训练时间长,需要大量的训练数据,容易受到噪声攻击等。
因此,研究人员正在积极改进BP神经网络,使其能够更好地解决各种问题。
BP神经网络在多传感器数据融合中的应用摘要:提出一种基于多传感器神经网络融合的机动目标估计算法,利用BP 神经网络的函数逼近能力,将BP神经网络与卡尔曼滤波器相结合构成一个估计器,该算法可以对来自经不同噪声污染的传感器信息加以充分利用,在改善估计性能的同时又保持估计滤波的计算结构尽可能简单。
仿真结果表明所提出的估计滤波算法在估计应用上优于一般的加权估计算法,提高了估计算法的精度。
关键词:BP神经网络卡尔曼滤波数据融合一、引言数据融合是指对来自多个传感器的信息进行融合,也可以将来自多个传感器的信息和人机界面的观测事实进行信息融(这种融合通常是决策级融合)。
提取征兆信息,在推理机作用下.将征兆与知识库中的知识匹配,做出故障诊断决策,提供给用户。
在基于信息融合的故障诊断系统中可以加入自学习模块.故障决策经自学习模块反馈给知识库.并对相应的置信度因子进行修改,更新知识库。
同时.自学习模块能根据知识库中的知识和用户对系统提问的动态应答进行推理。
以获得新知识。
总结新经验,不断扩充知识库,实现专家系统的自学习功能。
多传感器数据融合是20世纪70年代以来发展起来的一门新兴边缘学科,目前已经成为备受人们关注的热门领域。
多传感器数据融合是一门新兴技术,在军事和非军事领域中都碍到了广泛应用、多传感器数据融合技术汲取了人工智能、模式识别、统计估计等多门学科的相关技术,计算机技术的快速发展以及数据融合技术的成熟为数据融合的广泛应用提供了基础。
多传感器信息融合状态估计是多传感器信息融合学科的一个重要分支。
多传感器数据融合的基本原理就像是人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。
目前有两种常用的信息融合方法:一种方法是状态融合方法,另一种方法是观测融合方法。
状态融合方法又可分为集中式kalman滤波[1]和分散式kalman滤波。
多传感器数据融合技术研究及应用随着科技发展,大量的传感器技术得到了广泛的应用,而多传感器数据融合技术也因此而生,成为了当今科技领域的一个热门话题。
本文将从多个角度深入探讨多传感器数据融合技术的研究现状以及应用前景。
一、多传感器数据融合技术简介多传感器数据融合技术是指将来自多个传感器的数据进行处理和整合,从而得到更加准确、全面的信息,提高数据处理和分析的精度和效率。
多传感器数据融合技术既可以用于研究基础理论,也可以应用于实际工程领域,如环境监测、智能交通、军事侦察等领域。
传感器是将感受到的物理量转化为电信号的装置,用于将环境信息转化为数据,工业、生活和科学研究领域中的各种设备都可以使用传感器技术。
而多传感器数据融合技术则是将不同类型和数量的传感器数据整合在一起,以期获得更加精确、全面的信息。
多传感器数据融合技术的主要优势在于能够在不同维度上提供更高的空间和时间分辨率,并且可以解决单个传感器所不能捕捉到的数据缺失问题,以此提高数据分析、处理和应用的精度和效率。
二、多传感器数据融合技术的研究现状当前,多传感器数据融合技术的研究和应用已经成为了很多领域的关注重点,相关学科如计算机科学、电子工程、物理学等也已经逐渐形成了完整的研究方向。
多传感器数据融合技术的研究包括数据处理、信息融合、模型构建、智能识别等方面,具体来说,主要包括以下几个方面:1. 数据融合算法数据融合是多传感器数据融合技术的核心内容,当前大量的研究工作主要关注如何对不同类型、来源和质量的传感器数据进行有效的融合,从而得到更加精准的数据信息。
当前,常用的数据融合算法主要包括加权平均法、卡尔曼滤波法、粒子滤波法、小波变换和小波包分解等,其中,小波变换技术较为全部。
2. 模型构建在多传感器数据融合技术中,模型构建是非常重要的一部分,它可以对不同传感器数据融合的模型进行建立和优化,以此提高数据融合的准确性和效率。
常见的模型构建技术包括神经网络、贝叶斯网络、决策树、支持向量机、两类模型、仿生学等等。
基于神经网络的多传感器信息融合研究一、绪论随着物联网技术的发展,传感器技术得到了广泛应用。
在物联网中,往往需要多个传感器协同工作,完成更为复杂的任务。
传感器之间的信息融合是实现多传感器协同的关键。
而神经网络技术因其自适应性和非线性映射能力,被广泛应用于多传感器信息融合研究。
本文将对基于神经网络的多传感器信息融合进行探讨。
二、多传感器信息融合的概念所谓多传感器信息融合,就是将多个传感器的数据进行整合、分析和综合,达到整个系统效能的最优化,以满足特定需求的过程。
多传感器信息融合可以提高测量精度和鲁棒性,同时还可以提高反应速度和可靠度。
三、神经网络神经网络是一种模仿生物神经网络的非线性数学模型,由于其强大的自适应和泛化能力,在多传感器信息的处理和分析中被广泛应用。
神经网络的基本结构包括输入层、输出层和隐藏层。
输入层接受传感器的原始数据,输出层输出分析结果,隐藏层则负责对输入数据进行处理和映射。
神经网络的训练过程,实际上就是调整神经元之间的权重和阈值,并使得网络的输出结果与实际结果最为接近的过程。
四、基于神经网络的多传感器信息融合方法1、基于神经网络的特征提取传感器往往会输出大量的数据,只有对这些数据进行处理和分析,才能得到有意义的信息。
基于神经网络的特征提取方法对传感器数据进行预处理和降维,使得提取出的特征更具有代表性。
特征提取的目标是,让神经网络能够利用有用的特征来完成多传感器信息的融合。
2、神经网络的融合模型在多传感器信息融合过程中,可以使用神经网络作为融合模型。
神经网络可以自适应的将各个传感器的信息进行分析和综合,同时保持整个系统的鲁棒性和稳定性。
神经网络的作用是将各个传感器的数据进行综合和提取,得到信息量更大、更准确的结果。
3、基于神经网络的检测与诊断基于神经网络的检测与诊断是多传感器信息融合的重要应用之一。
利用神经网络诊断系统可以更加准确地判断物品是否受损或发生故障。
在这种应用中,神经网络可以从多个传感器中获得信息,通过分析各种信号,来确保系统正常工作。
基于机器学习的多传感器数据融合技术研究与应用在当今数字化时代,传感器技术的快速发展为我们提供了大量的数据,然而如何从这些数据中提取有用的信息一直是一个挑战。
机器学习的出现为我们解决这一问题提供了有效的方法,而将多个传感器的数据融合起来,进一步提高了数据分析的准确性和可靠性。
本文将探讨基于机器学习的多传感器数据融合技术的研究与应用。
传感器是一种能够感知环境变化并将其转换为可量化信号的设备。
不同类型的传感器可以测量各种物理量,例如温度、湿度、光照、气压等。
然而,单一传感器的数据可能受到噪声、不确定性和局限性的影响,限制了其在实际应用中的准确性和可靠性。
因此,将多个传感器的数据融合起来变得至关重要。
多传感器数据融合技术旨在将来自不同传感器的数据相互结合,通过建立数学模型和算法,提取更为全面和准确的信息。
机器学习作为一种从数据中自动学习模式和规律的方法,为多传感器数据融合提供了有效的手段。
通过使用机器学习算法,我们可以将不同传感器的数据进行整合和优化,从而提高数据分析的质量和能力。
在多传感器数据融合技术的研究中,常用的机器学习算法包括神经网络、贝叶斯网络、支持向量机和随机森林等。
神经网络是一种模仿人脑神经元之间连接方式的算法,通过训练神经网络模型来实现数据的分类和预测。
贝叶斯网络利用贝叶斯定理和概率图模型,可以对不同传感器的数据进行概率推理。
支持向量机是一种二分类模型,通过在高维特征空间中寻找最优超平面来实现数据分类。
随机森林是一种集成学习方法,通过构建多个决策树并对结果进行统计投票来实现数据分类和回归。
通过运用这些机器学习算法,我们可以在多传感器数据融合中解决一系列实际问题。
例如,在环境监测领域,我们可以将来自多个传感器的温度、湿度和空气质量数据进行融合,以实现对空气污染程度的准确评估。
在智能交通系统中,我们可以将来自不同传感器的交通流量、车速和路况数据相结合,以提供更准确的交通监测和预测。
在无人驾驶汽车领域,多传感器数据融合可以将来自相机、激光雷达和雷达等传感器的数据结合起来,实现对周围环境的感知和决策。
BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。
它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。
BP网络的训练过程可以分为两个阶段:前向传播和反向传播。
前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。
反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。
BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。
通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。
2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。
例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。
3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。
通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。
4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。
例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。
5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。
通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。
总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。
它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。
然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。
多传感器数据融合作为一种特殊的数据处理手段在目标识别领域得到了较大的重视和发展。
在介绍多传感器数据融合目标识别基本原理及其算法理论依据基础上,从概念分类方面,对目前多传感器数据融合目标识别算法进行了全面综述,包括参数分类算法、基于认识模型的算法、物理模型算法及多类算法综合识别法等,说明了各算法特点及对其的进一步改进,列举了目前国内外一些已经发表的重要算法,为下一步多传感器融合目标识别研究提供了一定的理论依据。
引言众所周知,在高科技信息对抗环境下,各种监测设备功能不断增加,检测到的信息复杂多变且日益增多。
另一方面由于各种隐身、干扰和欺骗等反对抗技术的应用,人为干扰的加重,对独立单波段目标识别已提出了严峻的挑战,仅依靠单一传感器难以保证目标识别系统高性能稳定工作,这就使得多传感器数据融合作为一种特殊的数据处理手段在目标识别领域引起了世界各国的重视。
在对目标进行识别时,单个传感器提取的特征往往因其自身的探测特点不能获得对目标的完全描述,不能充分利用与目标有关的信息,影响了特征集的有效性和可靠性,使得目标识别系统的性能不理想,而利用多个传感器提取独立、互补的特征向量,采取综合处理的技术途径,可获得对目标较为完全的描述,从而有利于提高识别的正确概率,降低错误概率。
利用多种类传感器进行目标综合识别具有以下主要优点:(1)拓展了识别系统的时间、空间覆盖范围,提高了识别系统的生存能力;(2)可发挥各传感器的优点,取长补短以提高目标识别率;(3)多传感器抗干扰的性能大大优于单个传感器,能够降低或消除非目标物体的欺骗和干扰;(4)可改善识别系统稳定性,大大提高识别结果的有效性、可靠性。
识别原理多传感器数据融合目标识别原理框图如图1所示。
单个传感器先度量和处理待识别目标的属性,对接收到的目标信息进行采集和预处理,得到表示观测数据的特征向量,然后进行特征提取和选择并将其结果作为识别基础,继而对单个传感器的目标进行分类识别和后续处理,再将多个传感器提供的关于目标身份的信息进行综合处理(即进行数据对准与关联),产生比系统中任一单传感器更有效、更精确的身份估计和分类判决,最终稳定有效地给出目标的识别结果。
多传感器数据融合技术及其应用摘要:多传感器数据融合技术是一门新兴前沿技术。
近年来,多传感器数据融合技术已受到广泛关注,它的理论和方法已被应用到许多研究领域。
主要论述了多传感器数据融合的基本概念、工作原理、数据融合特点与结构、数据融合方法及其应用领域,并总结了当前数据融合研究中存在的主要问题及其发展趋势。
关键词:多传感器;数据融合;融合方法;复杂工业控制0 引言多传感器数据融合是一个新兴的研究领域,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究。
多传感器数据融合技术是近几年来发展起来的一门实践性较强的应用技术,是多学科交叉的新技术,涉及到信号处理、概率统计、信息论、模式识别、人工智能、模糊数学等理论。
近年来,多传感器数据融合技术无论在军事还是民事领域的应用都极为广泛。
多传感器融合技术已成为军事、工业和高技术开发等多方面关心的问题。
这一技术广泛应用于C3I(command,control,communication and intelligence)系统、复杂工业过程控制、机器人、自动目标识别、交通管制、惯性导航、海洋监视和管理、农业、遥感、医疗诊断、图像处理、模式识别等领域。
实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。
1 基本概念及融合原理1.1 多传感器数据融合概念数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。
随着数据融合和计算机应用技术的发展,根据国内外研究成果,多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。
基于神经网络的多传感器数据融合方法研究多传感器数据融合是一种将来自不同传感器的信息进行整合的技术,目的是提高数据的准确性和可靠性。
随着神经网络在各个领域的应用不断扩大,基于神经网络的多传感器数据融合方法在近年来得到了广泛的研究和应用。
本文将对基于神经网络的多传感器数据融合方法进行研究和探讨。
首先,我们需要明确什么是传感器数据融合。
传感器数据融合是指通过使用多个传感器同时采集的数据来生成更准确和可靠的信息。
多传感器数据融合方法旨在通过最大限度地利用不同传感器的互补性,消除传感器个体之间的噪声和缺陷,并最终实现融合结果的优化。
神经网络作为一种强大的非线性模型,其在多传感器数据融合中的应用已经得到了广泛的关注。
基于神经网络的多传感器数据融合方法主要包括三个关键步骤:传感器数据的预处理、特征提取和融合输出。
首先,传感器数据的预处理是实现多传感器数据融合的第一步。
在此步骤中,需要对不同传感器采集的数据进行归一化、滤波和去噪等处理,以确保传感器数据的一致性和可靠性。
例如,可以使用滑动窗口和均值滤波器对数据进行平滑处理,从而减少数据中的随机噪声。
接下来,特征提取是基于神经网络的多传感器数据融合方法的核心步骤。
在此步骤中,需要利用神经网络模型从传感器数据中提取有用的特征。
特征提取的目的是将原始的传感器数据转化为具有更高层次的描述性特征,以便神经网络可以更好地学习和理解数据之间的关系。
常用的特征提取方法包括卷积神经网络(CNN)、循环神经网络(RNN)和长短期记忆网络(LSTM)等。
最后,融合输出是基于神经网络的多传感器数据融合方法的最后一步。
在此步骤中,需要将经过特征提取的数据输入到神经网络模型中,通过神经网络的学习和优化过程,得到最终的融合结果。
融合输出可以是一组预测值、一个决策或一种分类结果,具体根据实际问题而定。
在实际应用中,基于神经网络的多传感器数据融合方法已经在许多领域取得了良好的效果。
例如,在智能交通系统中,通过使用车载摄像头、雷达和GPS等不同传感器采集的数据,可以实现对道路交通情况的准确监测和预测。
多传感器数据融合方法在军事信息领域的应用随着技术的发展和科技的进步,多传感器数据融合已被广泛应用于不同领域。
军事信息领域是重要的且应用广泛的领域之一,它是使用多传感器数据融合进行情报收集、侦察和监视的领域。
本文将介绍多传感器数据融合方法在军事信息领域的应用。
军事信息领域需要收集各种信息来实现情报分析和作战指挥。
传统上,这些信息是从不同的传感器来收集的,这样就会出现信息的重复和冗余。
考虑到多传感器数据的融合,可以把来自各个传感器的信息整合并优化,从而提高信息的质量和效率,并使新的情报得出更加准确和可靠。
在军事领域中,多传感器数据融合方法包括卡尔曼滤波、粒子滤波和贝叶斯网络等。
这些技术的使用可以有效地整合各种类型的传感器信号,包括雷达、光学、声学等。
在使用多传感器数据融合技术之前,它们都必须经过预处理,以确保它们的准确性和一致性。
为了有效利用多传感器数据,必须了解多传感器数据融合的目的、方法和技术特点,在遵循精度、可靠性和实用性的前提下优化多传感器数据的融合模型。
在军事信息领域,多传感器数据融合方法主要包括目标追踪、情报联合、图像处理和无人机监视等。
目标追踪是通过使用多传感器数据来确保在不同时刻和不同位置追踪目标的准确性和连续性。
情报联合是将来自不同来源的情报信息整合在一起,以制定程序性策略和决策。
图像处理是通过对来自多个光学传感器的视觉信息进行处理,以获得更有价值的图像信息,有利于有效推进情报决策的制定。
无人机监视是利用多传感器数据来监视无人机飞行器,如高空侦察、空中攻击等。
总之,多传感器数据融合方法在军事信息领域中的应用是非常重要和必要的。
它不仅可以提高军事情报的质量和效率,还可以增强作战指挥的能力和战斗力。
由于传感器和数据分析技术的不断发展和创新,多传感器数据融合方法在军事信息领域的应用前景将不断拓展和强大。
在军事信息领域,多传感器数据融合的应用需要利用各种类型的传感器信号,如雷达、光学、声学等。
BP神经网络在多传感器数据融合中的应用
摘要:提出一种基于多传感器神经网络融合的机动目标估计算法,利用BP 神经网络的函数逼近能力,将BP神经网络与卡尔曼滤波器相结合构成一个估计器,该算法可以对来自经不同噪声污染的传感器信息加以充分利用,在改善估计性能的同时又保持估计滤波的计算结构尽可能简单。
仿真结果表明所提出的估计滤波算法在估计应用上优于一般的加权估计算法,提高了估计算法的精度。
关键词:BP神经网络卡尔曼滤波数据融合
一、引言
数据融合是指对来自多个传感器的信息进行融合,也可以将来自多个传感器的信息和人机界面的观测事实进行信息融(这种融合通常是决策级融合)。
提取征兆信息,在推理机作用下.将征兆与知识库中的知识匹配,做出故障诊断决策,提供给用户。
在基于信息融合的故障诊断系统中可以加入自学习模块.故障决策经自学习模块反馈给知识库.并对相应的置信度因子进行修改,更新知识库。
同时.自学习模块能根据知识库中的知识和用户对系统提问的动态应答进行推理。
以获得新知识。
总结新经验,不断扩充知识库,实现专家系统的自学习功能。
多传感器数据融合是20世纪70年代以来发展起来的一门新兴边缘学科,目前已经成为备受人们关注的热门领域。
多传感器数据融合是一门新兴技术,在军事和非军事领域中都碍到了广泛应用、多传感器数据融合技术汲取了人工智能、模式识别、统计估计等多门学科的相关技术,计算机技术的快速发展以及数据融合技术的成熟为数据融合的广泛应用提供了基础。
多传感器信息融合状态估计是多传感器信息融合学科的一个重要分支。
多传感器数据融合的基本原理就像是人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。
目前有两种常用的信息融合方法:一种方法是状态融合方法,另一种方法是观测融合方法。
状态融合方法又可分为集中式kalman滤波[1]和分散式kalman滤波。
集中式kalman滤波虽然在理论上可获得全局最优融合状态估计,但这种方法计算量大,且容错性能差,而分散式kalman滤波信息融合能克服这些缺点,但这种方法是局部最优的,因此基于此思想我们可以利用BP神经网络来提高融合精度。
BP(Back Propagation)神经网络[2],即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。
输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
当实际输出与期
望输出不符时,进入误差的反向传播阶段。
误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。
周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
BP神经网络是模拟人脑的信息处理机制而构造出来的一种并行信息处理模型,它有分布式存储和联想记忆功能,具有较强的自适应性和自组织性,具有任意的非线性映射能力,能被用来对两个估计模型的输出结果进行有效的分析和综合,提高估计的精度和可靠性。
二、模型描述
带有观测噪声的三传感器雷达跟踪系统:
状态,,和分别为在时刻处运动目标的位置、速度和加速度,为第个传感器对位置的观测,为与相关的白噪声。
kalman滤波按矩阵加权融合准则算法是基于L个传感器观测已知它的L 个无偏估计,即,
设已知估计误差的方差阵和协方差阵,,,,其中E为均值号,T为转置号,问题是寻求X的按矩阵加权无偏融合估计,,
其中加权阵为矩阵,在线性最小方差意义下,应选择加权阵极小化融合估计误差的分量均方和J,,
它等价于
按矩阵加权融合准则算法既是对L个传感器经kalman滤波器得到的状态求得加权矩阵使得性能指标J最小。
基于加权思想,对以上的三传感器雷达跟踪模型建立BP神经网络,三传感器的输出作为网络的输入,网络的输出与模型的状态数据比较后反向传播对各层神经元权值进行修改,直到输出层与模型状态的误差达到期望误差。
由于本次实验模型简单,对其采用两层BP网络,隐层神经元采用Sigmoid型激活函数,输出层采用线性激活函数。
在使用网络前需要对网络进行训练,本次实验设置训练时间为50个单位时间,训练目标设置为误差小于0.2。
三、仿真分析
以下给出个状态在各种方法下的仿真结果:
图1、图2为三个传感器的测量值经kalman平滑器估计后的的状态1经BP神经网络融合后的值和理想状态的对比图。
从图中可以看出经神经网络融合后对状态1的估计精度有了进一步的提高。
而且训练速度也非常迅速,大约10步左右就能达到要求的误差。
图3、图4为三个传感器的测量值经kalman平滑器估计后的的状态2经BP神经网络融合后的值和理想状态的对比图。
从图中可以看出经神经网络融合后对状态2的估计精度有了进一步的提高。
而且训练速度也非常迅速,大约20步左右就能达到要求的误差。
图5为比较加权融合后的稳态误差方差阵的迹和三个传感器的稳态平滑误差方差阵的迹,可以明显看出经融合后的精度明显高于局部平滑的精度。
由于设置的神经网络的误差目标为0.2,通过训练后目标误差能达到要求,因此经神经网络融合后的状态估计精度要大大高于经加权矩阵融合估计的精度。
四、结论
本文利用BP神经网络对来自经不同噪声污染的传感器的测量信息进行处理,完成机动检测,并与卡尔曼滤波器相结合构成一个性估计器,对目标进行估计。
这种估计方案可以利用神经网络的函数逼近能力对来自各传感器的充信息加以充分利用,在改善估计性能的同时又保持估计滤波的计算结构尽可能简单。
参考文献:
[1]邓自立. 最优估计理论及其应用——建模、滤波、信息融合估计.
[2]杨行峻、郑君里. 人工神经网络与盲信号处理.
[3]matlab7.0辅助神经网络分析与设计.
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。