高效液相检测技术培训讲义高效液相色谱HPLCHighPerformance
- 格式:doc
- 大小:136.50 KB
- 文档页数:17
高效液相色谱和超高效液相色谱高效液相色谱(HighPerformanceLiquidChromatography,HPLC)和超高效液相色谱(Ultra High Performance Liquid Chromatography,UHPLC),是现代分析化学中常用的分离技术。
它们可以对复杂的混合物进行分离和定量分析,广泛应用于药物分析、食品分析、环境分析、生物分析等领域。
本文将从原理、仪器、方法和应用等方面,介绍高效液相色谱和超高效液相色谱的基本知识。
一、原理高效液相色谱和超高效液相色谱的原理基本相同,都是利用样品在流动相中的分配系数差异,通过固定相和流动相的作用,将混合物中的化合物分离出来。
不同的是,超高效液相色谱采用了更小的颗粒固定相,使得流动相可以更快地通过固定相,从而提高了分离效率和分离速度。
在高效液相色谱和超高效液相色谱中,样品首先被注入流动相中,然后通过固定相的柱子。
固定相通常是一种多孔的固体材料,如硅胶、C18等。
样品中的化合物在流动相中的分配系数不同,因此在通过固定相时,会被分离出来。
分离出来的化合物,会在检测器中被检测到,从而实现分离和定量分析。
二、仪器高效液相色谱和超高效液相色谱的仪器基本相同,主要由注射器、流动相泵、柱子、检测器和计算机控制系统等组成。
(一)注射器注射器是将样品引入流动相中的关键部分。
常用的注射器有手动注射器和自动进样器。
手动注射器通常用于小样品量的分析,而自动进样器可以实现高精度、高效率的样品进样。
(二)流动相泵流动相泵是将流动相送入柱子中的装置。
其主要功能是控制流动相的流速和流量,并确保流动相的稳定性。
常用的流动相泵有恒压流量泵和梯度流量泵。
恒压流量泵可以保持恒定的流量,适用于等浓度的流动相。
梯度流量泵可以实现不同浓度的流动相混合,从而实现更好的分离效果。
(三)柱子柱子是高效液相色谱和超高效液相色谱的核心部分,用于固定相的分离。
常用的柱子材料有硅胶、C18、C8等。
高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种分离和分析化学物质的常用技术手段,广泛应用于生命科学、化学和材料科学等领域。
HPLC操作时涉及到液相色谱柱的使用,为了保证HPLC实验的稳定性和准确性,对柱的保养和维护尤为重要。
液相色谱柱的分类HPLC液相色谱柱按照填充物不同可以分为正相柱和反相柱两大类,正相柱填充物具有亲水性,适用于亲水性化合物的分离;反相柱填充物具有疏水性,适用于疏水性化合物的分离。
同时,根据填充物的颗粒尺寸和孔径,又可以将液相色谱柱分为超高效柱、高效柱、中效柱、低效柱等。
液相色谱柱的保养维护在HPLC实验中,液相色谱柱的保养和维护非常重要,它直接影响到实验的稳定性和准确性。
下面将介绍关于液相色谱柱的保养和维护的方面。
1.柱的保护液相色谱柱的使用寿命与其物理性质密切相关,对于柱管的操作环境应该进行的保护和控制,主要有以下几个方面:1)气温:液相色谱柱的操作环境温度一般在室温下进行,不要受到高温和直射日光的照射。
2)pH:对于常见的石英或者硅胶制的柱,在操作过程中要尽可能避免柱处于极酸、极碱状态下,否则可能导致柱填充物的变性、泻出等情况发生。
3)密封性:操作过程中要保持柱管的完好无损,避免外部空气或水分入柱,影响柱的性能。
2.压力控制液相色谱柱的使用寿命还与压力密切相关。
太高的压力容易导致柱的填充物严重变形,甚至折断,太低的压力容易导致柱的破损。
因此,在实验操作过程中,必须液相施加正确的压力,避免压力过高或压力过低的情况发生。
3.稳定性对于液相色谱柱来说,稳定性是其能否进行准确有效实验的保证。
常见的稳定性来源于柱的存放、洗涤等方面:1)存放:液相色谱柱在存放的时候应该尽可能避免与直射日光、潮湿、高温、冻贮等环境接触。
2)洗涤:实验完成后需要将柱进行及时洗涤,以避免某些特殊杂质在表面长期停留氧化、凝结等,导致峰宽膨胀等情况发生。
HPLC培训教程HPLC(High Performance Liquid Chromatography)是一种高效液相色谱技术,被广泛应用于化学、生物化学、药学等领域中的分析和纯化过程。
HPLC培训教程旨在向初学者介绍HPLC的原理、仪器组成、样品制备、方法开发以及常见问题解决等方面的知识。
一、HPLC原理HPLC是一种基于色谱原理的分析方法,通过在固定填充物(固定相)上进行流动相(液相)与样品之间的相互作用,实现对样品的分离和定量分析。
其主要原理包括分配作用、吸附作用和离子交换作用。
二、HPLC仪器组成HPLC仪器主要由流动相系统、分离柱、检测器和数据处理系统组成。
流动相系统包括溶剂供应部分和混合部分,用于供给流动相。
分离柱是药物分离的关键,通常由填料柱和色谱柱两部分组成。
检测器用于检测分离柱出口的组分,并生成相应的信号。
数据处理系统将检测器信号转化为可读取的结果。
三、样品制备样品制备是HPLC分析的关键步骤,正确的样品制备可以确保分离柱正常工作并获得准确的结果。
常见的样品制备包括溶解、过滤、稀释和净化等。
溶解样品时要选择适当的溶剂,并根据样品性质进行必要的处理。
过滤可以去除杂质颗粒和减少背景噪声。
稀释可以使样品浓度适合分析要求。
净化可以去除干扰物,保证仪器的稳定性和分析结果的准确性。
四、方法开发HPLC方法开发是为了针对特定的分析目标选择适当的仪器参数和操作条件。
方法开发的关键是选择分离柱和优化流动相组成与流速,以获得较好的分离效果和分析结果。
在方法开发过程中,应该考虑分析目标、样品矩阵、仪器性能以及分析时间等因素,进行试错实验,根据实验结果进行参数调整,直到得到满意的分析方法。
五、常见问题解决在HPLC分析过程中,常常会遇到一些问题,需要及时解决。
常见问题包括峰形异常、峰分离不佳、信号漂移、背景噪声等。
为了解决这些问题,需要对仪器进行校准和维护,检查和修复分离柱,优化操作条件等。
此外,还可以通过尝试不同的分析方法或更换试剂等方法进行排除。
高效液相色谱(HPLC:High Performance Liquid Chromatography )是化学、生物化学与分子生物学、医药学、农业、环保、商检、药检、法检等学科领域与专业最为重要的分离分析技术,是分析化学家、生物化学家等用以解决他们面临的各种实际分离分析课题必不可缺少的工具。
国际市场调查表明,高效液相色谱仪在分析仪器销售市场中占有最大的份额,增长速度最快。
高效液相色谱的优点是:检测的分辨率和灵敏度高,分析速度快,重复性好,定量精度高,应用范围广。
适用于分析高沸点、大分子、强极性、热稳定性差的化合物。
其缺点是:价格昂贵,要用各种填料柱,容量小,分析生物大分子和无机离子困难,流动相消耗大且有毒性的居多。
目前的发展趋势是向生物化学和药物分析及制备型倾斜。
一、基本原理固定相流动相AB CCBA固定相——柱内填料,流动相——洗脱剂。
HPLC是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数次的交换和分配而达到分离的过程。
通常,按溶质(样品)在两相分离过程的物理化学性质可以作如下的分类:分配色谱:——分配系数亲和色谱:——亲和力吸附色谱:——吸附力离子交换色谱:——离子交换能力凝胶色谱(体积排阻色谱):——分子大小而引起的体积排阻分配色谱又可分为:正相色谱:固定相为极性,流动相为非极性。
反相色谱:固定相为非极性,流动相为极性。
用的最多,约占60~70%。
固定相(柱填料):固定相又分为两类,一类是使用最多的微粒硅胶,另一类是使用较少的高分子微球。
后者的优点是强度大、化学惰性,使用pH范围大,pH=1~14,缺点是柱效较小,常用于离子交换色谱和凝胶色谱。
最常使用的全孔微粒硅胶(3~10μm)是化学键合相硅胶,这种固定相要占所有柱填料的80%。
它是通过化学反应把某种适当的化学官能团(例如各种有机硅烷),键合到硅胶表面上,取代了羟基(-OH)而成。
它是近代高效液相色谱技术中最重要的柱填料类型。
使用微粒硅胶要特别注意它的使用pH范围是2~7.5,若过碱(>pH7.5),硅胶会粉碎或溶解;若过酸(<pH2),键合相的化学键会断裂。
键合相使用硅胶作基质的优点是:①硅胶的强度大;②微粒硅胶的了孔结构和表面积易人为控制。
③化学稳定性好。
最常用的“万能柱”填料为“C18”,简称“ODS”柱,即十八烷基硅烷键合硅胶填料(Octadecylsilyl,简称ODS)。
这种填料在反相色谱中发挥着极为重要的作用,它可完成高效液相色谱70~80%的分析任务。
由于C18(ODS)是长链烷基键合相,有较高的碳含量和更好的疏水性,对各种类型的生物大分子有更强的适应能力,因此在生物化学分析工作中应用的最为广泛,近年来,为适应氨基酸、小肽等生物分子的分析任务,又发展了CH、C3、C4等短链烷基键合相和大孔硅胶(20~40μm)。
按键合到基质上的官能团可分为:⑴反相柱:填料是非极性的,官能团为烷烃,例如:C18(ODS)、C8、C4等。
⑵正相柱:填料是极性的,官能团为-CN氰基、-NH2氨基等。
⑶离子交换键合相:阳离子官能团:-SO3H磺酸基、-COOH羧基等。
阴离子官能团:―R4N+季铵基、-氨基等。
(由于硅胶基质的键合相只能在pH=2~7.5的范围内使用,而离子交换色谱要求有更宽的pH范围,因此其基质现在仍主要使用聚苯乙烯和二乙烯苯。
) 流动相:反相色谱最常用的流动相及其冲洗强度如下:H2O<甲醇<乙腈<乙醇<丙醇<异丙醇<四氢呋喃最常用的流动相组成是:“甲醇—H2O”和“乙腈—H2O”,由于乙腈的剧毒性,通常优先考虑“甲醇—H2O”流动相。
反相色谱中,溶质按其疏水性大小进行分离,极性越大疏水性越小的溶质,越不易与非极性的固定相结合,所以先被洗脱下来。
流动相的pH对样品溶质的电离状态影响很大,进而影响其疏水性,所以在分离肽类和蛋白质等生物大分子的过程中,经常要加入修饰性的离子对物质,最常用的离子对试剂是三氟乙酸(TFA),使用浓度为0.1%,使流动相的pH值为2~3,这样可以有效地抑制氨基酸上α羧基的离解,使其疏水性增加,延长洗脱时间,提高分辨率和分离效果。
完全离子化的溶质,例如强酸或强碱,其在反相键合相上的保留值很低,近于死时间流出,不能进行分析。
根据离子对色谱的原理将一种与样品离子电荷(A +)相反的离子(B-),称为对离子,加入到流动相中,使其与样品离子结合生成弱极性的离子对,即中性缔合物,从而增强了样品的疏水性,加大了保留值,改善了分离效果。
正相色谱常用的流动相及其冲洗强度的顺序是:正己烷<乙醚<乙酸乙酯<异丙醇其中最常用的是正已烷,虽然其价格较贵,但80%的顺、反和邻位、对位异构体仍然要用正相色谱来进行分离。
流动相的选择原则是:①样品易溶,且溶解度尽可能大。
②化学性质稳定,不损坏柱子。
③不妨碍检测器检测,紫外波长处无吸收。
④粘度低,流动性好。
⑤易于从其中回收样品。
⑥无毒或低毒,易于操作。
⑦易于制成高纯度,即色谱纯。
⑧废液易处理,不污染环境。
二、基本参数1.t R⑴保留时间“t R ”:进样至出峰的时间。
⑵死时间“t 0”:不被柱子吸附的惰性物质的出峰时间。
死时间“t 0”的测定通常是使用不被柱子保留而又有紫外吸收的惰性物质,例如:正相色谱常用四氯化碳,反相色谱常用甲醇、尿嘧啶、NaNO 2、NaNO 3等。
⑶容量因子“k ’”:00't t t k R -= 或:溶质在流动相中的量溶质在固定相中的量='k “k’”是比“t R ”还常用的保留值,它与柱子的大小及流速无关,只与溶质在固定相和流动相的分配性质、柱温以及相空间比(即固定相和流动相之体企积比)有关。
“k’”又定义为在分配平衡时某溶质在两相中绝对量之比,消除了保留值的波动因素,而平衡常数“K”是平衡时物质在两相中的浓度比。
k’值的范围: 0.4<k’<20~30 k’=2~5为佳,过大则耗时太长。
⑷保留体积:V R =t R •F C ( F C --- 流动相的流速 mL/min )V R 是在t R 时间内流动相流过柱子的体积。
调整保留时间:t R ’= t R -t 0调整保留体积:V R ’= V R -V R 0=t R ’ •F C⑸选择性指标“α’”和相对保留值“α”α’可以更直观和方便地反映色谱峰分离的好坏:)1()2('R R t t =α相对保留值(分离因子):)1()2()1()2(''''k k t t R R =α= ( α>1.1为好 )2. 柱效率:定义: 理论塔板数 2⎪⎭⎫ ⎝⎛σR t N = ( 每米柱σ 标准偏差,曲线拐点处峰宽的一半 即峰高0.607处峰宽的一半为便于测量,改用半峰宽:W 1/2( 或2×△t 1/2 )最常用的计算式:22/154.5⎪⎪⎭⎫ ⎝⎛W t N R =另一计算式:216⎪⎪⎭⎫ ⎝⎛b R W t N = W b 不如W 1/2容易测量,因而此式用的较少。
理论塔板高度: NL H =L 柱长 经验式: H =2d P ( d P =10μ H =20μ N =5万 )( d P =5μ H =10μ N =10万 )d P 柱填料的颗粒直径柱效的测定和计算:以反相柱为例,流动相用87%(V/V)的甲醇:水,样品用苯、联苯、萘等,加快记录仪的走纸速度,测出半峰宽W 1/2,并由走纸速度换算为与t R 相同的单位“分”或“秒”,代入公式,计算出柱效N 。
提高柱效的方法:①固定相填料要均一,颗粒细,装填均匀。
②流动相粘度低。
③低流速。
④升高柱温。
3. 不对称因子“T f ”:用于形容色谱峰拖尾和前伸的程度,多数为拖尾峰。
拖尾 前伸AB T f = A 、B 如上图所示 通常 T f =1.2~1.3 ,若 T f >2 则峰不合格。
峰拖尾的原因是硅胶基质上的Si -OH 羟基未被全部键合而与溶质发生反应。
改进拖尾要用封尾技术:即用小分子的含甲基的物质再次对硅胶进行键合,封闭硅羟基;还可在流动相中加入带 –NH 2氨基(对羟基敏感)的物质,将残余的羟基掩闭。
分辨率: t R(1) t R(2)2112)(2W W R R S t t t t R +-= 进样4. 分离度 K 1和 K 3HPLC 的目的和要求是:峰要尽可能窄(W 1/2小),峰的间距尽可能大(t R 相差大)。
⑴基线分离度 K 1 :)1(2/1)2(2/1)1()2(1W W t t K R R --=基线分离时用K 1。
⑵峰高分离度: Hh H K -=3 K 3=1 基线分离,K 3 更反映了实际分离心度。
5. 线速度:溶剂在柱中移动的速度。
t L u = mm/sec L ─柱长 t 0 ─死时间 H(μm)即图中的A 点:u =1 mm/sec此处不用流量而用线速度,是因为流量与柱径有关,而线速度与柱径无关。
请记住不同柱内径的最佳流量: A u(1mm/sec) 柱内径 流量 线速度5 mm 1.0 mL/min 1 mm/sec2 mm 0.2 mL/min 1 mm/sec1 mm 50 μL/min 1 mm/sec由1 mm/sec 最佳线速度可计算出适合各种柱径的最佳流量。
由上表可以看出,用5mm 柱,一天要用一并昂贵的乙腈,若用1mm 柱,则一个月才用一并。
6. 保留值方程:正相色谱: lnk ’=a +blnC b +cC b C b ─强冲洗剂浓度反相色谱: lnk ’=a +cC b 对于不同溶质 a 、b 、c 系数不同离子交换色谱: lnk ’=a +blnC b 反相色谱是线性方程正相色谱: 反相色谱:lnk ’ lnk ’C b C blnk ’ lnk ’b b 水)D 点:同样的容量因子,四氢呋喃 D 点:萘非极性强,k ’大,斜率陡、用量少lnk’lnkC b bA点甲、乙二溶质分不开,B点比A点分不开,要寻找不是交叉点的C点冲洗剂浓度高,但k’小,省时D点的C b浓度为分离条件间,所以选B点好。
所以,改变C b浓度,保留值k’和选择性α都改变了,寻找最佳的C b浓度就是HPLC高效液相色谱技术的精髓所在。
例如,通常用10%~90%的甲醇/水,梯度洗脱30min,即可找出适宜的C b 浓度。
用高浓度C b洗脱,可保证先将所有的峰都洗脱出来,不丢失组份,然后再调节C b浓度,找到更好的分离效果,加大各组份色谱峰的分离度。
甲醇降低10%,k’可降低2~3倍。
7.反相色谱的一般规律:三、HPLC系统构成脱气泵进样伐柱检测器收集器流动相贮液并自动进样器控制系统数据处理系统贮液器和流动相脱气1.贮液器:常用干净的无水甲醇试剂并作贮液器,并要加盖以防灰尘落入,但并盖与导管之间应有缝隙,若过紧会形成真空。