物理磁场知识点
- 格式:docx
- 大小:38.50 KB
- 文档页数:3
物理磁场知识点摘要:本文旨在概述物理磁场的基本概念、性质、以及与磁场相关的物理定律。
磁场是物理学中的一个核心概念,它在日常生活和工业应用中都扮演着重要角色。
通过深入理解磁场的基本原理,我们可以更好地应用这一知识来解决实际问题。
1. 磁场的定义磁场是由磁力产生的区域,通常与磁性物质或电流有关。
磁场的强度和方向可以通过磁力线来描述,这些线条从磁体的北极指向南极,并形成一个闭合的循环。
2. 磁场的来源磁场主要有两个来源:永久磁铁和电流。
永久磁铁产生的磁场是由于其内部磁矩的排列所致。
而电流产生的磁场则是由移动的电荷产生的,根据安培定律,电流周围的磁场与其大小和方向有关。
3. 磁场的测量磁场的强度通常用磁感应强度(B)来表示,单位是特斯拉(T)。
磁场的方向由北磁极指向南磁极。
磁场的测量工具包括磁力计和霍尔效应传感器。
4. 磁场的性质磁场具有以下性质:- 磁场是矢量场,即在每个点都有大小和方向。
- 磁场线是闭合的,不开始也不结束于任何点。
- 磁场对运动电荷和磁性物质施加力。
5. 磁场与电流的关系奥斯特发现了电流和磁场之间的关系,即电流产生磁场。
法拉第的电磁感应定律进一步阐述了变化的磁场可以产生电流。
6. 磁场的数学描述磁场可以用数学语言描述,其中最常见的是麦克斯韦方程组。
这组方程描述了电场和磁场是如何由电荷和电流产生的,以及它们是如何随时间变化的。
7. 磁场的应用磁场在许多领域都有应用,包括电机、发电机、变压器、磁共振成像(MRI)和数据存储设备等。
8. 磁场对生物体的影响磁场对生物体的影响是一个活跃的研究领域。
一些研究表明,微弱的磁场可能影响某些生物过程,但这些效应通常是微妙的,并且需要进一步的研究来确认。
结论:磁场是物理学中的一个基本概念,它在自然界和技术应用中都非常重要。
通过深入理解磁场的性质和原理,我们可以更好地利用这一知识来解决实际问题,并推动科学技术的发展。
本文提供了物理磁场的基础知识,包括定义、来源、性质、与电流的关系、数学描述、应用以及对生物体的影响。
高中物理磁场知识点总结一、磁场磁体是通过磁场对铁钴镍类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在的。
小磁针的指南指北表明地球是一个大磁体。
磁体周围空间存在磁场;电流周围空间也存在磁场。
电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。
静止电荷周围空间没有磁场。
磁场存在于磁体、电流、运动电荷周围的空间。
磁场是物质存在的一种形式。
磁场对磁体、电流都有力的作用。
与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。
如图所示为证明通电导线周围有磁场存在——奥斯特实验,以及磁场对电流有力的作用实验。
1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。
2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。
3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。
4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。
说明:①地球上不同点的磁偏角的数值是不同的。
②磁偏角随地球磁极缓慢移动而缓慢变化。
③地磁轴和地球自转轴的夹角约为11°。
二、磁场的方向在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。
规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。
确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向。
磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。
电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。
三、磁感线在磁场中画出有方向的曲线表示磁感线。
磁感线特点:(1)磁感线上每一点切线方向跟该点磁场方向相同。
(2)磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。
大物知识点总结磁场一、磁场的产生1. 电流产生的磁场安培环路定理用来计算电流在产生磁场方面的物理定律。
在一根直导线周围产生的磁场可以使用右手定则确定磁场的方向。
2. 磁性材料产生的磁场磁性物质内部原子和分子的磁矩导致了磁性物质产生的磁场。
这种磁场可以用磁化强度和磁化率描述。
3. 等效电流产生的磁场电流在弯曲闭合导线中产生的总的磁场可以用安培环路定理求和。
这种方法用于计算磁场的大小和方向。
二、磁场的性质1. 磁现象和磁性材料的分类永磁体和电磁体是两种主要的磁性材料类型。
永磁体可以自发地产生磁场,而电磁体需要外部电流或磁场来产生磁效应。
2. 磁场的作用力磁场对带电粒子或者电流产生的作用力可以用洛伦兹力定律计算。
3. 磁场的磁感应强度磁感应强度描述了磁场的强度以及方向,可以用来计算磁场对带电粒子或者磁性物质产生的作用力。
三、磁场的应用1. 磁场在电机中的应用电动机的工作原理基于磁场和电流相互作用产生运动力。
不同类型的电机使用不同的磁场产生方式。
2. 磁场在变压器中的应用变压器工作原理基于电流通过涡流产生的磁场。
变压器可以用来改变电压大小和方向。
3. 磁场在磁共振成像中的应用磁共振成像利用磁场对核磁共振现象进行成像。
磁场对磁共振信号的强度和方向产生影响,从而得到人体组织的影像。
四、磁场的测量和计算1. 磁场的测量方法磁通计量法、霍尔效应、磁力计量法等是常用的磁场测量方法。
2. 磁场的数学描述麦克斯韦方程组用来描述电磁场,磁场可以用磁感应强度、磁场强度和磁化强度等物理量来描述和计算。
总之,磁场是物质周围的一个物理场,它对带电粒子和磁性物质产生作用。
磁场的产生与磁现象、磁性材料的分类有关,其性质包括磁场的作用力和磁感应强度等,而磁场的应用包括在电机、变压器和磁共振成像等方面。
同时,磁场的测量和计算是磁场研究的重要内容,麦克斯韦方程组是描述和计算磁场的重要工具。
最全面高中物理磁场超详细知识点归纳磁场是具有定向性,包括空间和时间变化,能引起磁铁活动的物理场。
它是磁体能量的形式和载体,将磁体电能量转化为机械能量,并使运动电子排斥或吸引,具有实用的技术价值。
研究磁场的目的是为了获取磁体的数量、性质和应用,以及地震研究、宇宙物理以及其他领域的大自然科学研究。
一、磁场的定义磁场是正弦波的集合,它以矢量形式或张量形式表示为一个函数,在空间和时间上发生变化,能在不同地点和时刻诱发磁体。
它代表磁体能量的数量、性质和形式。
二、磁场的特征(1)磁场有方向性。
磁矢之差表示强度方向,负责变化的函数表示磁场方向,比如在一定点上磁矢向x轴正方向指向,说明磁场方向为x轴正方向。
(2)磁场有梯度。
它指磁场力的梯度,使得磁矢在空间上的变化率越快,磁场的梯度越大。
(3)磁场有时间变化特性。
它指磁场在给定时间内的变化,磁场的时间变化通常由自身本身的产生原理决定。
三、磁场的质点理论磁场的质点理论认为磁场是由新创造的质点或“磁子”所组成的,它们是由偶极子(正极子和负极子)构成的,正极子与正电荷相关联,而负极子与负电荷相关联,质点之间通过磁场力相互作用,产生电流。
四、磁场的力学表达式磁力的大小决定于两个电流之间的距离,它是由电磁学发明者麦克斯韦提出的现象表达出来的,用力学方程式表示为:B=μI/2πr,其中,B是磁场强度,μ是真空磁导率,I是电流,r是电流线段之间的距离。
五、磁场的流动磁场的流动可概括为常规流动和衍射流动,常规流动指电流通过磁体,磁场形成一系列正弦流动,衍射流动是指磁场强度发生变化,在新的空间处产生新的正弦流动,其流动方向与磁场强度梯度的相反方向。
六、磁场的应用(1)地震研究:在地震学中,磁场可以用于测量地球内部的结构和活动,了解地壳构造以及地球核心的状态。
(2)磁导航:在航空航天科学领域,磁场是航空器定位、导航和控制的基础,只要探测到本地磁场,就可以确立航空器当时的位置。
(3)一般工程应用:磁场也是电力传输、无线电广播以及其他工程领域中物理现象、感应元件和线圈的载体。
一、磁现象和磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.二、磁感应强度1、 表示磁场强弱的物理量.是矢量.2、 大小:B=F/Il (电流方向与磁感线垂直时的公式).3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T .5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.6、 匀强磁场的磁感应强度处处相等.7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.三、几种常见的磁场(一)、 磁感线⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。
⒉磁感线是闭合曲线⎩⎨⎧→→极极磁体的内部极极磁体的外部N S S N⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。
⒋任何两条磁感线都不会相交,也不能相切。
5.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.6.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·7、 *熟记常用的几种磁场的磁感线:(二)、匀强磁场1、 磁感线的方向反映了磁感强度的方向,磁感线的疏密反映了磁感强度的大小。
2、 磁感应强度的大小和方向处处相同的区域,叫匀强磁场。
其磁感线平行且等距。
例:长的通电螺线管内部的磁场、两个靠得很近的异名磁极间的磁场都是匀强磁场。
3、 如用B=F/(I ·L)测定非匀强磁场的磁感应强度时,所取导线应足够短,以能反映该位置的磁场为匀强。
磁场知识点总结1. 磁场的基本概念磁场是指物体周围存在的一种物理现象,即物体具有磁性时,周围会形成磁场。
磁场可以用于描述磁力的作用和磁力的性质。
磁场是三维空间中的一个向量场,可以用矢量表示,具有方向和大小。
2. 磁场的特性磁场具有以下几个重要特性: - 磁场是无源无旋场:磁场的散度为零,即磁通量在闭合曲面上的积分为零;磁场的旋度也为零,即磁场的环路积分为零。
- 磁场的力线是闭合曲线:磁场的力线是一种特殊的曲线,它们是闭合的,不存在起点和终点。
- 磁场的作用力是相对运动的电荷和磁场之间的相互作用力:根据洛伦兹力定律,带电粒子在磁场中受到的力与其电荷、速度和磁场强度有关。
3. 磁场的量度和单位磁场的量度使用磁感应强度(磁场强度)来表示,符号为B,单位为特斯拉(T)。
磁感应强度的大小表示磁场的强弱,方向表示磁场的方向。
4. 磁场的产生磁场可以通过以下几种方式产生: - 电流:当电流通过导线时,会在导线周围产生磁场。
根据安培环路定理,电流所产生的磁场的强度与电流强度成正比。
- 磁体:磁体是指具有磁性的物体,如铁、钢等。
磁体可以通过磁化来产生磁场,磁场的强度与磁体的磁化强度成正比。
5. 磁场的性质磁场具有以下几个重要性质: - 磁场的极性:磁场有南极和北极之分,相同极性的磁体会相互排斥,不同极性的磁体会相互吸引。
- 磁场线:磁场线是用来描述磁场分布的曲线,它们是从磁体的北极到南极的闭合曲线。
- 磁场的磁力:磁场可以对带电粒子产生力的作用,这种力被称为磁力。
磁力的大小与电荷、速度和磁场强度有关。
6. 磁场的重要观点磁场的研究和应用涉及到很多重要观点,以下是其中几个重要观点: - 安培环路定理:安培环路定理是描述电流所产生的磁场的定理,它说明了电流所产生的磁场的强度与电流强度成正比。
- 洛伦兹力定律:洛伦兹力定律是描述带电粒子在磁场中受力的定律,它说明了带电粒子在磁场中受到的力与其电荷、速度和磁场强度有关。
史上最全磁场知识点总结一、磁场的产生1. 磁场的产生基础磁场产生的基础是电流。
当电流通过一根直导线时,就会在它周围产生一个磁场。
这个磁场的特点是,它具有方向性,即有一个方向是“南”极,一个方向是“北”极。
并且,根据安培右手定则,可以确定电流方向与磁场方向之间的关系。
2. 磁场的产生方式除了电流产生磁场外,磁铁也能产生磁场。
在一个磁铁中,由于内部的微观磁矩的排列,就会在其周围产生一个磁场。
这种磁场是不依赖于外界条件而产生的,故而它也可以被用来作为一种磁石来应用。
二、磁场的性质1. 磁场的基本性质磁场有许多基本性质,例如,磁场是一种物质周围的力场,它具有方向性和大小的概念;磁场中有磁感应强度、磁场强度等物理量,它们可以用来描述磁场的性质;而且,磁场是一种场,它有空间分布的特性。
2. 磁场的作用磁场对于磁性物质有着磁化的作用,使得它们变得具有一定的磁性。
而且,在静电学中,我们也学到了,磁场对于运动带电粒子同样有作用,这就是洛伦兹力的作用。
这些作用是磁场在自然界中的重要表现。
三、磁场与电场的关系1. 麦克斯韦方程组麦克斯韦通过他对电磁学理论的研究,得到了著名的麦克斯韦方程组。
这个方程组很好地描述了磁场和电场之间的关系,它们通过麦克斯韦方程组联系在了一起,从而形成了电磁学理论体系。
2. 磁场与电场的作用磁场与电场之间有着多种作用,例如,它们之间的相互感应作用是电磁感应现象的基础,这种感应作用通过法拉第电磁感应定律得到了描述;而且,磁场还对于电场中的电荷有相互作用,这就是洛伦兹力的作用。
三、磁场的应用1. 磁场在物质中的应用磁场在物质中有着多种应用,例如,磁铁在物质分离、传感器、电机等方面都有着广泛的应用,它们通过磁场对于磁性物质的吸引或者排斥来达到物质分离或运动的目的。
2. 磁场在科学研究中的应用磁场不仅在物质中有着广泛的应用,而且在科学研究中也发挥了重要的作用。
例如,核磁共振成像技术就是利用了核磁共振现象对物质进行成像的技术,它在医学成像、生物物理学等方面都具有重要的应用。
高中物理磁场知识点总结
磁场的基本性质:磁场对放入其中的磁体产生磁力作用,这种力称为磁场力或磁力。
磁感线:
磁感线是为了描述磁场而假想的曲线,其切线方向表示该点的磁场方向。
磁感线从N极出发,回到S极,在磁体外部。
磁感线密集的区域表示磁场强,稀疏的区域表示磁场弱。
磁场强度(B):描述磁场强弱和方向的物理量。
单位:特斯拉(T)方向:与磁感线切线方向相同。
安培定则(右手螺旋定则):用于判断通电直导线或通电螺线管的磁场方向。
磁场对通电导线的作用:
当导线与磁场平行时,不受磁场力。
当导线与磁场垂直时,受到的磁场力最大。
磁场力的方向由左手定则确定。
洛伦兹力:描述磁场对运动电荷的作用力。
其方向与磁场和电荷运动方向都垂直。
带电粒子在匀强磁场中的运动:
当速度与磁场平行时,粒子不受洛伦兹力,粒子做匀速直线运动。
当速度与磁场垂直时,粒子受到与速度垂直的洛伦兹力,粒子做匀速圆周运动。
磁场的分类:
匀强磁场:各处磁感应强度大小相等、方向相同的磁场。
非匀强磁场:磁场中各处的磁感应强度大小或方向不完全相同。
磁通量(Φ):
穿过某一面积的磁感线的条数。
单位:韦伯(Wb)公式:Φ = BS (B与S垂直)若B与S不垂直,磁通量需要乘以B与S之间的夹角的
正弦值。
电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流。
这一现象称为电磁感应。
这只是高中物理磁场部分的核心知识点总结,具体还包括许多细节和计算方法。
建议参考教材和相关教学资料以获取更详细和全面的知识。
物理磁场知识点总结一、磁场的基本概念和性质磁场是一个矢量场,具有方向性,方向由被测点附近正常情况下运动带电荷子的方向决定。
磁场具有强度,其强度由磁场中的磁通量密度决定,磁通量密度单位为特斯拉(Tesla)。
磁场是连续的,磁通量在磁场中连续流动,遵循磁场规律。
二、磁场的产生和影响因素磁场是由运动的带电粒子(主要是电子)产生的。
当电流通过导线时,会在导线周围产生磁场。
电流的方向、大小和导线的形状会影响磁场的分布。
自旋磁矩和轨道磁矩也会产生磁场。
带电粒子(如电子)具有固有的自旋磁矩,当粒子的自旋磁矩与周围的磁场相互作用时,会产生局部磁场。
此外,带电粒子在原子核周围运动会产生轨道磁矩,轨道磁矩与自旋磁矩相互作用,可以导致磁场的产生。
影响磁场强弱的因素包括电流的大小、线圈匝数以及线圈中是否有铁芯等。
电流越大、线圈匝数越多、有铁芯,则产生的磁场就越强,反之则越弱。
三、磁极和磁相互作用磁体各部分磁性强弱不同,磁性最强的区域叫磁极。
任何磁体都有两个磁极:南极(S极)和北极(N极)。
同名磁极相互排斥,异名磁极相互吸引。
磁极间的相互作用是以磁场作为媒介的,因此两磁体不用在物理层面接触就能发生作用。
四、磁化和去磁使原来没有磁性的物体获得磁性的过程叫做磁化。
磁化后的物体失去磁性的过程叫做退磁或去磁。
五、磁场的应用磁场的应用范围广泛,涉及到电磁感应、磁性材料应用、医学影像诊断、磁悬浮和地磁导航等领域。
例如,磁悬浮列车利用磁力驱动实现高速悬浮行驶;磁共振成像(MRI)利用磁场进行人体内部结构成像诊断;磁体治疗仪利用磁场的生物效应进行治疗;磁控靶向给药系统通过磁场引导药物到达特定部位等。
总之,物理磁场是一个复杂而重要的物理概念,掌握其基本概念、性质、产生和应用等方面的知识点对于深入理解电磁现象和应用电磁技术具有重要意义。
高中物理磁场知识点归纳大全!磁极和磁极之间的相互作用是通过磁场发生的。
电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。
磁极和电流之间的相互作用也是通过磁场发生的。
电流和电流之间的相互作用也是通过磁场产生的。
磁场是存在于磁体、电流和运动电荷周围空间的一种专门形状的物质,磁极或电流在自己的周围空间产生磁场,而磁场的差不多性质确实是对放入其中的磁极或电流有力的作用。
二、磁现象的电本质1.罗兰实验正电荷随绝缘橡胶圆盘高速旋转,发觉小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。
2.安培分子电流假说法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。
安培是最早揭示磁现象的电本质的。
一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。
3.磁现象的电本质运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都能够归结为运动电荷(电流)通过磁场而发生相互作用。
三、磁场的方向规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向确实是那一点的磁场方向。
四、磁感线1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。
2.磁感线的特点:(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。
(2)磁感线是闭合曲线。
(3)磁感线不相交。
(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地点磁场越强。
3.几种典型磁场的磁感线:(1)条形磁铁。
(2)通电直导线。
①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向确实是磁感线围绕的方向;②其磁感线是内密外疏的同心圆。
物理磁场知识点
一
磁场
1磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。
永磁体和电流都能在
空间产生磁场。
变化的电场也能产生磁场。
2磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。
3磁现象的电本质:一切磁现象都可归结为运动电荷或电流之间通过磁场而发生的相
互作用。
4安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分
子电流,分子电流使每个物质微粒成为微小的磁体。
5磁场的方向:规定在磁场中任一点小磁针N极受力的方向或者小磁针静止时N极的
指向就是那一点的磁场方向。
磁感线
1在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的
疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。
2磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感
线是闭合曲线;磁感线不相交。
3几种典型磁场的磁感线的分布:
①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。
②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强
磁场。
③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。
④匀强磁场:磁感应强度的大小处处相等、方向处处相同。
匀强磁场中的磁感线是分
布均匀、方向相同的平行直线。
磁感应强度
1定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应
强度,定义式B=F/IL。
单位T,1T=1N/A·m。
2磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。
3磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。
4磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。
二
地磁场
地球的磁场与条形磁体的磁场相似,其主要特点有三个:
1地磁场的N极在地球南极附近,S极在地球北极附近。
2地磁场B的水平分量Bx总是从地球南极指向北极,而竖直分量By则南北相反,在南半球垂直地面向上,在北半球垂直地面向下。
3在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。
安培力
1安培力大小F=BIL。
式中F、B、I要两两垂直,L是有效长度。
若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度。
2安培力的方向由左手定则判定。
3安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零。
洛仑磁力
1洛伦兹力的大小f=qvB,条件:v⊥B。
当v∥B时,f=0。
2洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功。
3洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现。
所以洛伦兹力的方向与安培力的方向一样也由左手定则判定。
4在磁场中静止的电荷不受洛伦兹力作用。
带电粒子在磁场中的运动规律
在带电粒子只受洛伦兹力作用的条件下电子、质子、α粒子等微观粒子的重力通常忽略不计
1若带电粒子的速度方向与磁场方向平行相同或相反,带电粒子以入射速度v做匀速直线运动。
2若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动。
①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB
带电粒子在复合场中的运动
1带电粒子在复合场中做直线运动
①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解。
②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解。
2带电粒子在复合场中做曲线运动
①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。
处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解。
②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解。
③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。
感谢您的阅读,祝您生活愉快。