高分子物理第五章聚合物的结晶态
- 格式:pdf
- 大小:1.94 MB
- 文档页数:16
化学教学谈谈聚合物的结晶形态问题何平笙 朱平平 杨海洋(中国科学技术大学高分子科学与工程系 合肥 230026)何平笙 男,62岁,教授,长期从事高分子物理的教学和教学研究。
中国科学技术大学教学改革基金资助项目(Y L5195)2002205207收稿,2002206230修回摘 要 向读者引介了聚合物球晶的三维立体电镜照片,并介绍了高分子科学近年来的新研究成果———尺寸已达厘米量级的聚合物宏观单晶体和只由一根大分子链结晶而成的高分子单链单晶的特殊形态。
关键词 球晶 聚合物宏观单晶体 单链单晶 形貌Some Special Crystal Morphologies in PolymerHe Pingsheng ,Zhu Pingping ,Y ang Haiyang(Department of P olymer Science and Engineering ,University of Scienceand T echnology of China ,Hefei 230026,China )Abstract Three special crystal m orphologies in polymer are introduced ,i.e.spherulite of polyethylene withtridimensional sphere picture taken by scanning electronic microscope ,macroscopic single crystal of polybis (p 2tolu 2ene sulfonate )of 2,42hexadiyne 21,62diol with the size of m ore than 20mm and single chain crystals.K ey w ords S pherulite ,Macroscopic single crystal ,S ingle chain crystal ,M orphology结晶形态单层聚合物单晶———极稀溶液结晶多层聚合物结晶———稀溶液结晶聚合物球晶浓溶液结晶熔体结晶聚合物串晶———应力作用下结晶伸直链晶体———高压下结晶单链单晶———特殊条件下结晶聚合物宏观单晶体———单体单晶固态聚合图1 聚合物的7种结晶形态Fig.1 Seven crystalline morphologies of polymers 在一次博士研究生入学考试的试卷中曾出了这样一个试题:“聚合物结晶形态有哪几种?是在什么条件下得到的?如何鉴别每一种结晶形态?……如果有人说已经制备得了>10mm 的聚合物宏观单晶体,你认为是事实吗?为什么?”回答上述问题的前半部分是很容易的,许多高分子物理的教科书中都有明确的答案[1~3],譬如,《高聚物的结构与性能》一书就有图文并茂的叙述[1],简要归并为图1。
聚合物的结晶聚合物按其能否结晶可以分为两大类:结晶性聚合物和非结晶性聚合物。
后者是在任何条件下都不能结晶的聚合物,而前者是在一定条件下能结晶的聚合物,即结晶性聚合物可处于晶态,也可以处于非晶态。
聚合物结晶能力和结晶速度的差别的根本原因是不同的高分子具有不同的结构特征,而这些结构特征中能不能和容易不容易规整排列形成高度有序的晶格是关键。
聚合物结晶的必要条件是分子结构的对称性和规整性,这也是影响其结晶能力、结晶速度的主要结构因素。
此外,结晶还需要提供充分条件,即温度和时间。
首先讨论分子结构的影响。
高聚物结晶行为的一个明显特点就是各种高分子链的结晶能力和结晶速度差别很大。
大量实验事实说明,链的结构愈简单,对称性愈高,取代基的空间位阻愈小,链的立构规整性愈好,则结晶速度愈大。
例如,聚乙烯链相对简单、对称而又规整,因此结晶速度很快,即使在液氮中淬火,也得不到完全非晶态的样品。
类似的,聚四氟乙烯的结晶速度也很快。
脂肪族聚酯和聚酰胺结晶速度明显变慢,与它们的主链上引入的酯基和酰胺基有关。
分子链带有侧基时,必须是有规立构的分子链才能结晶。
分子链上有侧基或者主链上含有苯环,都会使分子链的截面变大,分子链变刚,不同程度地阻碍链段的运动,影响链段在结晶时扩散、迁移、规整排列的速度。
如全同立构聚苯乙烯和聚对苯二甲酸乙二酯的结晶速度就慢多了,通过淬火比较容易得到完全的非晶态样品。
另外,对于同一种聚合物,分子量对结晶速度是有显著影响的。
一般在相同的结晶条件下,分子量大,熔体粘度增大,链段的运动能力降低,限制了链段向晶核的扩散和排列,聚合物的结晶速度慢。
最后,共聚物的结晶能力与共聚单体的结构、共聚物组成、共聚物分子链的对称性、规整性有关。
无规共聚通常会破坏链的对称性和规整性,从而使共聚物的结晶能力降低。
如果两种共聚单元的均聚物结晶结构不同,当一种组分占优势时,该共聚物是可以结晶的。
这时,含量少的组分作为结晶缺陷存在。
但当两组分配比相近时,结晶能力大大减弱,如乙丙共聚物当丙烯含量达25%左右时,产物便不能结晶而成为乙丙橡胶。
高分子物理实验指导书合肥工业大学高分子科学与工程系2011年6月目录实验一偏光显微镜观察聚合物结晶形态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 实验二膨胀计法测定聚合物玻璃化温度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 实验三粘度法测定高聚物分子量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 实验四聚合物熔融指数的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 实验五聚合物应力应变曲线的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17实验一偏光显微镜观察聚合物结晶形态一、实验目的了解偏光显微镜的结构及使用方法;观察聚合物的结晶形态,以加深对聚合物结晶形态的理解。
二、实验原理聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。
聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维状晶等等,面其中球晶是聚合物结晶时最常见的一种形式。
球晶可以长得比较大,直径甚至可以达到厘米数量级。
球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。
因此,普通的偏光显微镜就可以对球晶进行观察,因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。
偏光显微镜的最佳分辨率为200nm,有效放大倍数超过500-1000倍,与电子显微镜、X射线衍射法结合可提供较全面的晶体结构信息。
球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即一个球状聚集体。
光是电磁波,也就是横波,它的传播方向与振动方向垂直。
但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。
但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光(如图1-1,箭头代表振动方向,传播方向垂直于纸面)。
a) b)图1-1 自然光和线偏振光的振动现象a) 自然光b) 线偏振光一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。
1、构型是指分子中由化学键所固定的原子在空间的排列。
要改变构型,必须经过化学键的断裂与重组。
2、构象是指由于单键的内旋转而产生的分子中原子的空间位置上的变化。
3、链段:聚合物分子链的一部分(或一段),是高分子链运动的基本结构单元。
4、高分子链能够通过内旋转作用改变其构象的性能称为高分子链的柔顺性。
5、等规度:全同或间同立构单元所占的百分数。
6、均方末端距:末端距: 线型高分子链的一端至另一端的直线距离。
用一向量(h)表示.。
均方末端距用来表示高分子的尺寸。
7,等效自由连接链:将含有n 个键长为l 、键角θ固定、旋转不自由的键组成的链视为一个含有Z 个长度为b 的链段组成的可以自由旋转的链,称为等效自由连接链。
特性粘度:高分子在c →0时,单位浓度的增加对溶液的增比浓度或相对粘度对数的贡献。
其数值不随溶液浓度的大小而变化,但随浓度的表示方法而异。
第二章晶系:根据晶体的特征对称元素所进行的分类。
取向:聚合物的取向是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向的择优排列。
高分子合金的相容性:两种或两种以上高分子,通过共混形成微观结构均一程度不等的共混物所具有的亲和性。
1、凝聚态:物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。
高分子的凝聚态是指高分子链之间的几何排列和堆砌状态,包括固体和液体。
2、内聚能密度:单位体积的内聚能,CED = ∆E/Vm 。
内聚能是克服分子间作用力,把1mol 液体或固体分子移至分子引力范围之外所需的能量。
3、球晶:高聚物从熔体或浓溶液中结晶时生成的一种常见的结晶形态。
4、结晶度:试样中结晶部分所占的质量分数(质量结晶度xcm)或者体积分数(体积结晶度xcv)。
5、一些物质的结晶结构受热熔融或被溶剂溶解后,表观虽然变成了具有流动性的液体物质,但结构上仍然保持着晶体结构特有的一维或二维有序排列,形成一种兼有部分晶体和液体性质的过渡状态,这种中间状态称为液晶态。
聚合物的结晶度名词解释聚合物是一种由大量重复单元组成的化合物,具有高分子量和多样化的性质。
作为一种常见的材料,诸如塑料、纤维和涂料等都是聚合物的重要应用。
而聚合物的结晶度是其性能和特性的关键参数之一。
本文将解释聚合物结晶度的概念,并深入探讨其对聚合物性能和应用的影响。
一、聚合物结晶度的定义和测量方法聚合物结晶度是指聚合物中结晶区域的百分比,也可以理解为聚合物中有序排列的聚合物链占据的比例。
结晶区域的形成源于聚合物链的有序排列和相互作用。
测量聚合物结晶度的方法有多种,其中最常用的是X射线衍射分析。
通过X 射线的散射模式,可以获得聚合物结晶度的定量数据。
此外,热差示扫描量热仪(DSC)和热相分析(TGA)等热分析技术也可以用于评估聚合物的结晶度,通过测量样品在升温过程中的热行为,可以间接得到聚合物结晶度的信息。
二、聚合物结晶度对物理性能的影响1. 机械性能:聚合物的结晶度与其强度和刚度密切相关。
由于结晶区域中聚合物链的有序排列,导致物质在外部受力时能更好地传递和分散应力,从而提高了聚合物的强度和刚度。
2. 热性能:结晶度对聚合物的热稳定性和热导率也有显著影响。
结晶区域的存在可以提高聚合物的热抗氧化性能,并降低热传导的速率。
因此,高结晶度的聚合物通常具有较好的热性能。
3. 透明度:聚合物的结晶度与其透明度密切相关。
当聚合物链的排列规则性较高时,光线在聚合物内部的散射较少,聚合物更容易透明。
相反,结晶度较低的聚合物内部会存在较多的结晶缺陷,导致光线的散射增加,从而使聚合物呈现不透明或半透明的性质。
三、聚合物结晶度的调控和应用1. 晶化方式:聚合物的结晶度可通过不同的晶化方式进行调控。
例如,通过控制聚合物的冷却速率、加入结晶助剂或改变添加剂的组成等手段,可以影响聚合物的结晶度。
这种调控方式可以根据不同应用需求,使聚合物具备不同的物理性能。
2. 物理加工:聚合物的结晶度还可以通过物理加工方法进行调节。
例如,拉伸、压缩或拉伸后退火等方法会改变聚合物链的空间排列,从而影响聚合物的结晶度。
聚合物的结晶形态包括以下几种:
1. 单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右。
2. 树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状。
3. 球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环。
4. 纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度。
5. 串晶:在电子显微镜下,串晶形如串珠。
6. 柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状。
7. 伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。
这些结晶形态在聚合物的结构中起着重要的作用,并影响了聚合物的物理和化学性质。
⾼分⼦物理考研习题整理05聚合物的分⼦运动汇总1 形变-温度曲线(1)聚合物的分⼦运动有什么特点?①运动单元的多重性。
除整个分⼦的运动(布朗运动)外,还有链段、链节、侧基、⽀链等的运动(称为微布朗运动)。
②运动的时间依赖性。
从⼀种状态到另⼀种状态的运动需要克服分⼦间很强的次价键作⽤⼒(内摩擦),因⽽需要时间,称为松弛时间,记作τ。
τ/0t e x x -?=?。
当t=τ时,e x x /0t ?=?,因⽽松弛时间定义为:t x ?变为0x ?的1/e 时所需要的时间。
它反映某运动单元松弛过程的快慢。
由于⾼分⼦的运动单元有⼤有⼩,τ不是单⼀值⽽是⼀个分布,称为松弛时间谱。
③运动的温度依赖性。
升⾼温度加快分⼦运动,缩短了松弛时间。
RT E e /0?=ττ,式中ΔE 为活化能,τ0为常数。
在⼀定的⼒学负荷下,⾼分⼦材料的形变量与温度的关系称为聚合物的形变-温度曲线(旧称热-机械曲线)。
(2)试述线型⾮晶态聚合物的形变-温度曲线和模量-温度曲线上的各区域和转折点的物理意义。
形变-温度曲线与相应的模量-温度曲线形状正好相反,都⽤于反映分⼦运动。
【图12-2】两条曲线上都有三个不同的⼒学状态和两个转变(简称三态两转变)。
玻璃态:链段运动被冻结,此时只有较⼩的运动单元(如链节、侧基等)能运动,以及键长、键⾓的变化,因⽽此时的⼒学性质与⼩分⼦玻璃差不多,受⼒后形变很⼩(0.01%~0.1%),且遵循Hooke 定律,外⼒除去⽴即恢复。
这种形变称为普弹形变。
玻璃态转变:在3~5℃⼏乎所有物理性质都发⽣突变,链段此时开始能运动,这个转变温度称为玻璃化(转变)温度,记作Tg 。
⾼弹态:链段运动但整个分⼦链不产⽣移动。
此时受较⼩的⼒就可发⽣很⼤的形变(100%~1000%),外⼒除去后形变可完全恢复,称为⾼弹形变。
⾼弹态是⾼分⼦特有的⼒学状态。
黏流温度:链段沿作⽤⼒⽅向的协同运动导致⼤分⼦的重⼼发⽣相对位移,聚合物呈现流动性,此时转变温度称为流动温度,记作Tf 。