2019-2020年高一数学集合的表示方法
- 格式:doc
- 大小:31.50 KB
- 文档页数:4
1.1.2 集合的表示方法1.理解列举法、描述法的定义.2.会用两种方法表示一些简单的集合.1.列举法(1)定义:将集合中的元素一一列举出来,写在花括号内表示集合的方法.(2)用列举法表示集合适用的范围仅为集合中元素较少(填“多"或“少")或有(填“有”或“无”)明显规律.2.描述法(1)定义:把集合中的元素共同特征描述出来,写在花括号内表示集合的方法叫做特征性质描述法,简称描述法.它的一般形式是{x∈I|p(x)},其中“x"是集合元素的代表形式,“I"是“x”的范围,“|p(x)”是集合中元素“x”的共同特征,竖线不可省略.(2)描述法的语言形式有以下三种:文字语言,符号语言,图形语言.1.用列举法表示不超过5的自然数集为________.答案:{0,1,2,3,4,5}2.用描述法表示不超过5的自然数集为________.答案:{x∈N|0≤x≤5}或{x∈Z|0≤x≤5}(答案不唯一)3.用列举法表示集合需要注意什么?解:(1)元素间用分隔号“,";(2)元素不重复;(3)元素无顺序;(4)元素不能遗漏.4.用描述法表示集合需要注意什么?解:用描述法表示集合时应注意以下六点:(1)写清楚该集合中元素的代号(字母或用字母表达的元素符号);(2)说明该集合中元素的性质;(3)不能出现未被说明的字母;(4)多层描述时应当准确使用“且"“或”;(5)所有描述的内容都写在集合符号内;(6)用于描述条件的语句力求简明、准确.用列举法表示集合用列举法表示下列集合:(1)满足-2≤x≤2且x∈Z的元素组成的集合A;(2)方程(x-2)2(x-3)=0的解组成的集合M;(3)方程组错误!的解组成的集合B;(4)15的正约数组成的集合N.【解】(1)因为-2≤x≤2,x∈Z,所以x=-2,-1,0,1,2,所以A={-2,-1,0,1,2}.(2)因为2和3是方程的根,所以M={2,3}.(3)解方程组错误!得错误!所以B={(3,2)}.(4)因为15的正约数有1,3,5,15四个数字,所以N={1,3,5,15}.(1)用列举法表示集合,要注意是数集还是点集.(2)列举法适合表示有限集,当集合中元素个数较少时,用列举法表示集合比较方便,且使人一目了然.用列举法表示下列集合:(1)A=错误!;(2)已知M={0,2,3,7},P={x|x=ab,a,b∈M,a≠b},写出集合P.解:(1)A={0,3,4,5}.(2)P={0,6,14,21}.用描述法表示集合用描述法表示下列集合:(1)函数y=-2x2+x图象上的所有点组成的集合;(2)不等式2x-3〈5的解组成的集合;(3)如图中阴影部分的点(含边界)的集合;(4)3和4的所有正的公倍数构成的集合.【解】(1)函数y=-2x2+x的图象上的所有点组成的集合可表示为{(x,y)|y=-2x2+x}.(2)不等式2x-3〈5的解组成的集合可表示为{x|2x-3〈5},即{x|x<4}.(3)图中阴影部分的点(含边界)的集合可表示为{(x,y)|-1≤x≤错误!,-错误!≤y≤1,xy≥0}.(4)3和4的最小公倍数是12,因此3和4的正的公倍数构成的集合是{x|x=12n,n∈N+}.错误!用描述法表示集合应注意的问题(1)写清楚该集合的代表元素,如数或点等;(2)说明该集合中元素的共同属性;(3)不能出现未被说明的字母;(4)所有描述的内容都要写在花括号内,用于描述的内容力求简洁、准确.用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数集合;(3)使式子1x(x-1)(x+1)有意义的实数x的取值范围.解:(1){x|x=2n,n∈N+}.(2){x|x=3n+2,n∈N}.(3){x|x≠0,且x≠-1,且x≠1}.集合的表示方法的综合应用集合M={x|ax2-2x+2=0,a∈R}中只有一个元素,求实数a的值.【解】(1)当a=0时,方程转化为-2x+2=0,解得x=1,此时M={1},满足条件;(2)当a≠0时,方程为一元二次方程,由题意得Δ=4-8a=0,即a=错误!,此时方程有两个相等的实数根.综合(1)(2)可知,当a=错误!或0时,集合M中只有一个元素.若将本例中“只有一个”改为“有两个",求实数a的取值范围.解:因为集合M={x|ax2-2x+2=0,a∈R}中有两个元素,则Δ=(-2)2-8a〉0,即a<错误!.错误!此题容易漏解a=0,漏解的原因是默认所给的方程一定是一元二次方程.其实,当a=0时,所给的方程是一个一元一次方程;当a≠0时,所给的方程才是一个一元二次方程,求解时要注意对a进行分类讨论.1.设-5∈{x|x2-ax-5=0},则集合{x|x2-5x-a =0}中所有元素之和为________.解析:因为-5∈{x|x2-ax-5=0},所以(-5)2+5a-5=0,即a=-4.所以{x|x2-5x-a=0}={x|x2-5x+4=0}={x|(x-1)(x-4)=0}={1,4}.故集合{x|x2-5x-a=0}中的所有元素之和为5.答案:52.设集合B=错误!.(1)试判断元素1,2与集合B的关系;(2)用列举法表示集合B.解:(1)当x=1时,错误!=2∈N.当x=2时,错误!=错误!∉N.所以1∈B,2∉B.(2)因为错误!∈N,x∈N,所以2+x只能取2,3,6.所以x只能取0,1,4.所以B={0,1,4}.1.寻找适当的方法来表示集合时,应该“先定元,再定性".一般情况下,元素个数无限的集合不宜采用列举法,因为不能将元素一一列举出来,而描述法既适合元素个数无限的集合,也适合元素个数有限的集合.2.用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.一定要注意该集合的代表元素是什么,看清楚是数集、点集还是其他形式,还要注意充分利用特征性质求解,两者相互兼顾,缺一不可.1.下列集合的表示方法正确的是()A.{1,2,2}B.{比较大的实数}C.{有理数}D.不等式x2-5>0的解集为{x2-5>0}答案:C2.把集合{x|-3≤x≤3,x∈N}用列举法表示,正确的是()A.{1,2,3}B.{0,1,2,3}C.{-2,-1,0,1,2}D.{-3,-2,-1,0,1,2,3}解析:选B.满足-3≤x≤3的自然数有0,1,2,3.3.用列举法表示集合A={y|y=x2-1,-2≤x≤2,且x∈Z}是________.解析:因为x=-2,-1,0,1,2,所以对应的函数值y=3,0,-1,0,3,所以集合A用列举法表示为{-1,0,3}.答案:{-1,0,3}4.集合A={(1,2),(0,3)}中共有________个元素.答案:2[A 基础达标]1.已知集合A={x∈N|x〈6},则下列关系式错误的是()A.0∈A B.1.5∉AC.-1∉A D.6∈A解析:选D.A={x∈N|x<6}={0,1,2,3,4,5}.2.下列集合中,不同于另外三个集合的是()A.{x|x=1}B.{x|x2=1}C.{1} D.{y|(y-1)2=0}解析:选B.{x|x2=1}={-1,1},另外三个集合都是{1},选B.3.集合错误!用描述法可表示为()A.错误!B.错误!C.错误!D.错误!解析:选D.由3,错误!,错误!,错误!,即错误!,错误!,错误!,错误!,从中发现规律,x=错误!,n∈N+,故可用描述法表示为错误!.4.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4C.5 D.6解析:选B.因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以M中的元素有:5,6,7,8,共4个.故选B.5.已知M={(x,y)|2x+3y=10,x,y∈N},N={(x,y)|4x-3y=1,x,y∈R},则( )A.M是有限集,N是有限集B.M是有限集,N是无限集C.M是无限集,N是无限集D.M是无限集,N是有限集解析:选B.因为M={(x,y)|2x+3y=10,x,y∈N}={(2,2),(5,0)},所以M为有限集.N ={(x ,y )|4x -3y =1,x ,y ∈R }中有无限多个点满足4x -3y =1,故N 为无限集.6.已知集合A ={-1,0,1},集合B ={y |y =|x |,x ∈A },则B =________.解析:因为|-1|=1,故B ={0,1}.答案:{0,1}7.已知集合A ={m +2,2m 2+m },若3∈A ,则实数m 的值为________.解析:因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-错误!或m =1(舍去),当m =-错误!时,m +2=错误!≠3,符合题意.所以m =-错误!.答案:-328.已知集合A ={x |x 2-ax +b =0},若A ={2,3},则a -b =________.解析:由A ={2,3}知,方程x 2-ax +b =0的两根为2,3,由根与系数的关系得,错误!因此a =5,b =6.故a -b =-1.答案:-19.选择适当的方法表示下列集合:(1)大于2且小于6的有理数;(2)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.解:(1)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2<x<6}.(2)用描述法表示该集合为{(x,y)|y=-x+4,x∈N,y∈N};或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.10.含有三个实数的集合A=错误!,若0∈A且1∈A,求a2 017+b2 017的值.解:由0∈A,“0不能做分母”可知a≠0,故a2≠0,所以错误!=0,即b=0.又1∈A,可知a2=1或a=1.当a=1时,得a2=1,由集合元素的互异性,知a=1不合题意.当a2=1时,得a=-1或a=1(由集合元素的互异性,舍去).故a=-1,b=0,所以a2 017+b2 017的值为-1.[B 能力提升]11.已知集合A={1,2,4},则集合B={(x,y)|x∈A,y∈A}中元素的个数为( )A.3 B.6C.8 D.9解析:选D.集合B中的元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.故选D.12.已知x,y为非零实数,则集合M=错误!为( )A.{0,3}B.{1,3}C.{-1,3}D.{1,-3}解析:选C.当x>0,y〉0时,m=3;当x<0,y<0时,m=-1;当x〉0,y<0时,m=-1;当x〈0,y>0时,m=-1.故M={-1,3}.13.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n,当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,在此定义下,求集合M={(a,b)|a※b=12,a∈N+,b∈N+}中的元素的个数.解:从定义出发,抓住a,b的奇偶性对12实行分拆是解决本题的关键.当a,b同奇偶时,根据m※n=m+n将12分拆为两个同奇偶数的和,当a,b一奇一偶时,根据m※n=mn将12分拆为一个奇数与一个偶数的积,再算其组数即可.若a,b同奇偶,有12=1+11=2+10=3+9=4+8=5+7=6+6,前面的每种可以交换位置,最后一种只有1个点(6,6),这时有2×5+1=11(个);若a,b一奇一偶,有12=1×12=3×4,每种可以交换位置,这时有2×2=4(个).所以共有11+4=15(个).错误!(选做题)设y=x2-ax+b,A={x|y-x=0},B={x|y -ax=0},若A={-3,1},试用列举法表示集合B.解:将y=x2-ax+b代入集合A中的方程并整理得x2-(a+1)x+b=0.因为A={-3,1},所以方程x2-(a+1)x+b=0的两根为-3,1.由根与系数的关系得错误!解得错误!所以y=x2+3x-3.将y=x2+3x-3,a=-3代入集合B中的方程并整理得x2+6x -3=0,解得x=-3±2错误!,所以B={-3-23,-3+2错误!}.。
高一集合的概念知识点归纳在高中数学的学习中,集合是一个重要而基础的概念。
集合不仅贯穿于高中数学的各个分支中,而且在现实生活中也有着广泛的应用。
因此,掌握集合的基本概念和性质对于高中数学的学习至关重要。
接下来,我们将对高一阶段学习的集合的概念知识点进行归纳总结。
一、集合的基本概念1. 集合的定义集合是由一些特定的事物组成的整体。
这些事物被称为集合的元素,用大写字母A、B、C等表示集合,用小写字母a、b、c 等表示元素。
如果a是集合A的元素,我们则记作a∈A。
2. 集合的表示方法集合的表示方法有三种:列举法、描述法和图示法。
列举法是将集合中的元素逐个列举出来;描述法是通过给出元素满足的条件来描述集合;图示法是用图形表示集合中的元素,常用的图形有圆形和长方形。
3. 集合的相等和子集集合A和B相等,表示A和B的元素完全相同,记作A=B;如果集合A的所有元素都是集合B的元素,我们称A是B的子集,记作A⊆B。
特别地,集合A包含于集合B,即A⊆B,且A≠B,则称A是B的真子集,记作A⊂B。
二、集合的运算1. 交集和并集集合A和B的交集,表示同时属于A和B的元素组成的集合,记作A∩B;集合A和B的并集,表示属于A或B(或同时属于A 和B)的元素组成的集合,记作A∪B。
2. 补集和差集集合A相对于全集U的补集,表示全集中不属于A的元素组成的集合,记作A'或A^C;集合A和B的差集,表示属于A而不属于B的元素组成的集合,记作A-B。
3. 积集笛卡尔积是集合A和B的一个新集合,表示A中的每个元素与B中的每个元素按一定顺序组成的有序对,记作A×B。
三、集合的性质和应用1. 同一律、交换律、结合律和分配律集合的运算满足同一律、交换律、结合律和分配律,这些性质在集合的计算中起着重要的作用。
2. 集合的应用集合在现实生活中有着广泛的应用,例如:用集合来表示各种人群、事物的分类;集合也是概率论和数理统计的基础,用于研究随机事件和统计现象。
集合的表示与判定集合是数学中的基本概念之一。
在数学中,集合是由一些元素组成的整体,这些元素是没有重复并且没有特定顺序的。
本文将讨论集合的表示与判定方法。
一、集合的基本概念在数学中,集合通常用大写字母表示,例如A、B、C等。
集合中的元素用小写字母表示,例如a、b、c等。
如果一个元素x是集合A 的成员,我们用x∈A表示;如果一个元素y不是集合A的成员,我们用y∉A表示。
二、集合的表示方法1. 列举法集合的列举法是最简单的表示方法之一。
通过逐个列举出集合中的元素,可以清晰地表达集合的内容。
例如,集合A={1, 2, 3, 4}表示集合A包含了元素1、2、3和4。
2. 描述法集合的描述法是通过给出满足某种条件的元素来表示集合。
例如,集合A={x | x是正整数,且x<5}表示集合A包含了所有小于5的正整数。
3. 二进制表示法在计算机科学中,集合可以使用二进制进行表示。
每个元素对应二进制中的一位,如果该位为1,则表示该元素属于集合,如果该位为0,则表示该元素不属于集合。
例如,对于集合A={1, 2, 3, 4},可以用二进制表示为00001111,其中第1位表示元素1,第2位表示元素2,以此类推。
三、集合的判定方法1. 相等判定两个集合相等的条件是它们的元素完全相同。
即集合A等于集合B,当且仅当A包含的所有元素也都属于B,且B包含的所有元素也都属于A。
2. 包含关系判定如果集合A中的所有元素都属于集合B,但B中可能还有其他元素,那么可以说集合A是集合B的子集。
记作A⊆B。
相反地,如果集合A中的所有元素都属于集合B,且B中没有除A以外的其他元素,那么可以说A是B的真子集。
记作A⊂B。
3. 交集、并集与差集判定交集表示两个集合共有的元素,可以表示为A∩B。
并集表示两个集合中所有的元素,可以表示为A∪B。
差集表示集合A中除去与集合B相同的元素后的剩余元素,可以表示为A-B。
四、集合的应用集合在数学中有广泛的应用,例如在概率论、数理逻辑、集合论、图论等领域都有重要的作用。
集合的表示方式
集合的表示方式有以下几种:
1.列举法:直接列出集合中的元素,用花括号“{}”括起来表示。
例如:A={1,2,3,4}。
2.描述法:用一种或多种属性描述集合中的元素,具有该属性的元素构成该集合。
例如:奇数集合O={x|x∈Z,x是奇数}。
3. 图示法:用图形或图像表示集合中的元素,如Venn图等。
例如:用Venn图表示A={1,2,3}和B={2,3,4}两个集合的交集为{2,3}。
4.公式法:用数学符号和逻辑符号表示集合中的元素。
例如:
A={x|x³<8,x∈Z}表示A是由整数中所有小于8的立方数构成的集合。
5.对称差法:用两个集合的并集减去交集表示。
例如:A△B=(A∪B)-(A∩B)表示A和B的对称差集。
第2课时集合的表示1.掌握集合的两种常用表示方法(列举法和描述法).(重点、难点)2.通过实例选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3.了解集合相等的概念,并能用于解决问题.(重点)4.了解集合的不同的分类方法.[基础·初探]教材整理1列举法阅读教材P6第1~2自然段,完成下列问题.将集合的元素一一列举出来,并置于花括号“{ }”内.用这种方法表示集合,元素之间要用逗号分隔,但列举时与元素的次序无关.用列举法表示由1,2,3,4组成的集合为________.【解析】易知集合中含有的元素为1,2,3,4,故用列举法可以表示为{1,2,3,4}.【答案】{1,2,3,4}教材整理2集合相等阅读教材P6第3自然段,完成下列问题.如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两个集合相等.(1)集合{1,2,3}与{3,2,1}________相等集合.(填“是”或“不是”)(2)若集合{1,a}与集合{2,b}相等,则a+b=________.【解析】(1)集合{1,2,3}与{3,2,1}元素完全相同,故两集合是相等集合.(2)由于{1,a}={2,b},故a=2,b=1,∴a+b=3.【答案】(1)是(2)3教材整理3描述法阅读教材P6第4自然段,完成下列问题.将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.(1)不等式x-7<3的解集用描述法可表示为________.(2)集合{(x,y)|y=x+1}表示的意义是________.【解析】(1)∵x-7<3,∴x<10,故解集可表示为{x|x<10}.(2)集合的代表元素是点(x,y),共同特征是y=x+1,故它表示直线y=x+1上的所有点组成的集合.【答案】(1){x|x<10} (2)直线y=x+1上的所有点组成的集合教材整理4集合的三种表示方法阅读教材P6第5自然段至例1,完成下列问题.1.Venn图法表示集合用一条封闭曲线的内部来表示集合的方法叫做Venn图法.2.三种表示方法的关系一个集合可以采用不同的表示方法表示,即集合的表示方法不唯一.用三种形式表示由2,4,6,8四个元素组成的集合.【解】列法举:{2,4,6,8}.描述法:{x|2≤x≤8,且x=2k,k∈Z}.Venn图法:教材整理5集合的分类阅读教材P6最后两自然段,完成下列问题.若方程x2-4=0的解组成的集合记作A;不等式x>3的解组成的集合记作B;方程x2=-1的实数解组成的集合记作C.则集合A,B,C中,________是有限集,________是空集,________是无限集.【解析】∵x2-4=0,∴x=±2,即A中只有2个元素,A为有限集;大于3的实数有无数个,则B 为无限集;x 2=-1无实根,则C 为空集. 【答案】 A C B[小组合作型]用适当的方法表示下列集合:(1)B ={(x ,y )|x +y =4,x ∈N *,y ∈N *}; (2)不等式3x -8≥7-2x 的解集;(3)坐标平面内抛物线y =x 2-2上的点的集合;(4)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪99-x ∈N ,x ∈N . 【精彩点拨】 (1)(4)中的元素个数很少,用列举法表示;(2)(3)中的元素无法一一列举,用描述法表示.【自主解答】 (1)∵x +y =4,x ∈N *,y ∈N *, ∴⎩⎨⎧ x =1,y =3,或⎩⎨⎧ x =2,y =2,或⎩⎨⎧x =3,y =1. ∴B ={(1,3),(2,2),(3,1)}. (2)由3x -8≥7-2x ,可得x ≥3,所以不等式3x -8≥7-2x 的解集为{x |x ≥3}. (3){(x ,y )|y =x 2-2}. (4)∵99-x∈N ,x ∈N , ∴当x =0,6,8这三个自然数时,99-x=1,3,9也是自然数,∴A ={0,6,8}.1.集合表示法的选择对于有限集或元素间存在明显规律的无限集,可采用列举法;对于无明显规律的无限集,可采用描述法.2.用列举法时要注意元素的不重不漏,不计次序,且元素与元素之间用“,”隔开. 3.用描述法表示集合时,常用的模式是{x |p (x )},其中x 代表集合中的元素,p (x )为集合中元素所具备的共同特征.要注意竖线不能省略,同时表达要力求简练、明确.[再练一题]1.试分别用列举法和描述法表示下列集合: (1)方程x 2-x -2=0的解集;(2)大于-1且小于7的所有整数组成的集合.【解】 (1)方程x 2-x -2=0的根可以用x 表示,它满足的条件是x 2-x -2=0,因此,用描述法表示为{x ∈R |x 2-x -2=0};方程x 2-x -2=0的根是-1,2,因此,用列举法表示为{-1,2}.(2)大于-1且小于7的整数可以用x 表示,它满足的条件是x ∈Z 且-1<x <7,因此,用描述法表示为{x ∈Z |-1<x <7};大于-1且小于7的整数有0,1,2,3,4,5,6,因此,用列举法表示为{0,1,2,3,4,5,6}.(1)集合A ={x |x 3-x =0,x∈N }与B ={0,1}________相等集合.(填“是”或“不是”)(2)若集合A ={1,a +b ,a },集合B =⎩⎨⎧⎭⎬⎫0,ba ,b 且A =B ,则a =________,b =________.【精彩点拨】 (1)解出集合A ,并判断与B 是否相等;(2)找到相等的对应情况,解方程组即可.【自主解答】 (1)x 3-x =x (x 2-1)=0,∴x =±1或x =0. 又x ∈N ,∴A ={0,1}=B .(2)由分析,a ≠0,故a +b =0,∴b =-a . ∴ba =-1,∴a =-1,b =1. 【答案】 (1)是 (2)-1 1已知集合相等求参数,关键是根据集合相等的定义,建立关于参数的方程(组),求解时还要注意集合中元素的互异性.[再练一题]2.已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}.若A =B ,求实数x 的值. 【解】 若⎩⎨⎧a +b =ax ,a +2b =ax2,则a +ax 2-2ax =0,∴a (x -1)2=0,即a =0或x =1.当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均为a ,故舍去. 若⎩⎨⎧a +b =ax2,a +2b =ax ,则2ax 2-ax -a =0. 又∵a ≠0, ∴2x 2-x -1=0, 即(x -1)(2x +1)=0. 又∵x ≠1, ∴x =-12.经检验,当x =-12时,A =B 成立. 综上所述,x =-12.[探究共研型]探究1 集合{x |x 2【提示】 表示方程x 2-1=0的根组成的集合,即{±1}. 探究2集合A ={x |ax 2+bx +c =0(a ≠0)}可能含有几个元素,每一种情况对a ,b ,c 的要求是什么?【提示】 因a ≠0,故ax 2+bx +c =0一定是二次方程,其根的情况与Δ的正负有关.若A 中无元素,则Δ=b 2-4ac <0,若A 中只有一个元素,则Δ=b 2-4ac =0,若A 中有两个元素,则Δ=b 2-4ac >0.集合A={x|kx2-8x+16=0},若集合A中只有一个元素,试求实数k的值,并用列举法表示集合A.【精彩点拨】A中只有一个元素说明方程kx2-8x+16=0可能是一次方程,也可能是二次方程,但Δ=0.【自主解答】(1)当k=0时,原方程为16-8x=0.∴x=2,此时A={2}.(2)当k≠0时,由集合A中只有一个元素,∴方程kx2-8x+16=0有两个相等实根,则Δ=64-64k=0,即k=1,从而x1=x2=4,∴集合A={4}.综上所述,实数k的值为0或1.当k=0时,A={2};当k=1时,A={4}.1.用列举法表示集合的步骤(1)求出集合中的元素;(2)把这些元素写在花括号内.2.用列举法表示集合的优点是元素一目了然;缺点是不易看出元素所具有的属性.[再练一题]3.已知函数f (x)=x2-ax+b(a,b∈R).集合A={x|f (x)-x=0},B={x|f (x)+ax=0},若A={1,-3},试用列举法表示集合B.【解】A={1,-3},∴错误!⇒错误!⇒错误!∴f (x)+ax=x2+3x-3+(-3x)=0=x2-3,∴x=±3,∴B={±3}.1.集合{x∈N*|x-3<2}用列举法可表示为________.【解析】∵x-3<2,∴x<5.又x∈N*,∴x=1,2,3,4.【答案】 {1,2,3,4}2.若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为________.【解析】 当x ,y 从A ,B 中取值时,z 可以为-1,1,3,共3个. 【答案】 33.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可表示为________.①错误!;②错误!;③{1,2};④{(1,2)}.【解析】 方程组的解应是有序数对,③是数集,不能作为方程组的解. 【答案】 ③4.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则a +b =________. 【解析】 ∵M =N ,则有⎩⎨⎧ a =2a ,b =b2或⎩⎨⎧ a =b2,b =2a ,解得⎩⎨⎧a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12,∴a +b =1或34.【答案】 1或345.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.【解】 三个集合不相等,这三个集合都是描述法给出的,但各自的意义不一样. 集合A 表示y =x 2+3中x 的范围,x ∈R ,∴A =R ,集合B 表示y =x 2+3中y 的范围,B ={y |y ≥3},集合C 表示y =x 2+3上的点组成的集合.。
高一集合函数知识点讲解集合是数学中的一个重要概念,它是由一些确定的元素组成的整体。
在高中数学中,集合函数是一个重要的内容。
通过学习集合函数,我们可以更好地理解和分析数学问题。
本文将就高一集合函数的知识点进行讲解,包括集合的表示方法、集合的运算以及集合函数的应用。
一、集合的表示方法集合可以用不同的方式来表示。
最常见的是列举法和描述法。
1. 列举法:列举法是将集合中的元素一一列举出来。
例如,集合A={1,2,3,4}就是用列举法表示的。
当集合中的元素很多时,可以使用省略号表示,如集合B={1,2,3,...,100}。
2. 描述法:描述法是通过描述集合中元素的特点或属性来表示集合。
例如,集合C={x | x是正整数,且x<5}表示的是小于5的正整数构成的集合。
二、集合的运算集合的运算包括并集、交集、差集和补集。
1. 并集:并集是指两个或多个集合中所有元素的总和。
用符号“∪”表示。
例如,集合A={1,2,3},集合B={3,4,5},则A∪B={1,2,3,4,5}。
2. 交集:交集是指两个或多个集合中共同存在的元素。
用符号“∩”表示。
例如,集合A={1,2,3},集合B={3,4,5},则A∩B={3}。
3. 差集:差集是指从一个集合中减去与另一个集合中相同的元素后,剩下的元素构成的集合。
用符号“-”表示。
例如,集合A={1,2,3,4},集合B={3,4,5},则A-B={1,2}。
4. 补集:补集是指在一个全集中减去一个集合的运算。
用符号“'”表示。
例如,集合A={1,2,3},全集U={1,2,3,4,5},则A'={4,5}。
三、集合函数的应用集合函数广泛应用于概率、数理统计等领域。
通过集合函数,我们可以更好地描述和解决实际问题。
1. 概率:概率是研究随机事件发生可能性大小的数学分支。
在概率中,我们常用到的集合函数包括事件的补集、事件的并集和事件的交集等。
通过这些函数,我们可以更好地描述和分析随机事件的概率。
集合的表示方法4种
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。
集合的4种表示方法分别为列举法、描述法、图像法和符号法。
集合的4种表示方法
(一)列举法
列举法就是将集合的元素逐一列举出来的方式。
例:由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示。
(二)描述法
描述法的形式为{代表元素|满足的性质}。
例:设集合S是由具有某种性质P的元素全体所构成的,则S={x|P(x)}。
(三)图像法
图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。
一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。
(四)符号法
一些集合可以用一些特殊符号表示。
例:Q:有理数集合;C:复数集合。
2019-2020年高三数学总复习集合的概念和表示方法教案理教材分析集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合.教学目标1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法.2. 初步了解“属于”关系的意义,理解集合中元素的性质.3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力.任务分析这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握.教学设计一、问题情境1. 在初中,我们学过哪些集合?2. 在初中,我们用集合描述过什么?学生讨论得出:在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.3. “集合”一词与我们日常生活中的哪些词语的意义相近?学生讨论得出:“全体”、“一类”、“一群”、“所有”、“整体”,……4. 请写出“小于10”的所有自然数.0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合.5. 什么是集合?二、建立模型1. 集合的概念(先具体举例,然后进行描述性定义)(1)某种指定的对象集在一起就成为一个集合,简称集.(2)集合中的每个对象叫作这个集合的元素.(3)集合中的元素与集合的关系:a是集合A中的元素,称a属于集合A,记作a∈A;a不是集合A中的元素,称a不属于集合A,记作aA.例:设B={1,2,3},则1∈B,4B.2. 集合中的元素具备的性质(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.例:若集合A={a,b},则a与b是不同的两个元素.(3)无序性:集合中的元素无顺序.例:集合{1,2}与集合{2,1}表示同一集合.3. 常用的数集及其记法全体非负整数的集合简称非负整数集(或自然数集),记作N.非负整数集内排除0的集合简称正整数集,记作N*或N+;全体整数的集合简称整数集,记作Z;全体有理数的集合简称有理数集,记作Q;全体实数的集合简称实数集,记作R.4. 集合的表示方法[问题]如何表示方程x2-3x+2=0的所有解?(1)列举法列举法是把集合中的元素一一列举出来的方法.例:x2-3x+2=0的解集可表示为{1,2}.(2)描述法描述法是用确定的条件表示某些对象是否属于这个集合的方法.例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.②不等式x-3>2的解集可表示为{x|x-3>2}.③Venn图法例:x2-3x+2=0的解集可以表示为(1,2).5. 集合的分类(1)有限集:含有有限个元素的集合.例如,A={1,2}.(2)无限集:含有无限个元素的集合.例如,N.(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=.注:对于无限集,不宜采用列举法.三、解释应用[例题]1. 用适当的方法表示下列集合.(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.(3)在平面a内,线段AB的垂直平分线.(4)不等式2x-8<2的解集.2. 用不同的方法表示下列集合.(1){2,4,6,8}.(2){x|x2+x-1=0}.(3){x∈N|3<x<7}.3. 已知A={x∈N|66-x∈N}.试用列举法表示集合A.(A={0,3,5})4. 用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.[练习]1. 用适当的方法表示下列集合.(1)构成英语单词mathematics(数字)的全体字母.(2)在自然集内,小于1000的奇数构成的集合.(3)矩形构成的集合.2. 用描述法表示下列集合.(1){3,9,27,81,…}.(2)四、拓展延伸把下列集合“翻译”成数学文字语言来叙述.(1){(x,y)|y=x2+1,x∈R}.(2){y|y=x2+1,x∈R}.(3){(x,y)|y=x2+1,x∈R}.(4){x|y=x2+1,y∈N*}.点评这篇案例注重新、旧知识的联系与过渡,以旧引新,从学生的原有知识、经验出发,创设问题情境;从实例引出集合的概念,再结合实例让学生进一步理解集合的概念,掌握集合的表示方法.非常注重实例的使用是这篇案例的突出特点.这样做,通俗易懂,使学生便于学习和掌握.例题、练习由浅入深,对培养学生的理解能力、表达能力、思维能力大有裨益.拓展延伸注重数学语言的转化和训练,注重区分形似而质异的数学问题,加强了学生对数学概念的理解和认识.2019-2020年高三数学总复习频率与概率教案理教材分析频率与概率是两个不同的概念,但是二者又有密切的联系.如何从二者的异同点中抽象出概率的定义是本案例的主要内容.本节课蕴涵了具体与抽象之间的辩证关系.讲授过程中对教材处理稍有不当,可能直接影响学生对本节重点(即概念的理解)的掌握程度.因此,如何设计合适的实例,怎样引导学生理解和总结是处理好本节的关键,也是处理好本节教材的难点.教学目标通过本节课教学,使学生能理清频率和概率的关系,并能正确理解概率的意义,增强学生的对立与统一的辩证思想意识.任务分析由于频率在大量重复试验的前提下可以近似地叫作这个事件的概率,因此本节课应从具有大量重复试验的实例入手.为加深学生的理解程度,可采用学生亲自参与到试验中去,从操作中去体会,去总结.概率可看作频率理论上的期望值,从数量上反映了随机事件发生的可能性大小.因此,为巩固学生总结出的知识,最后还要回归到实例中去,让学生去运用,以符合认知过程.教学设计一、问题情境在日常生活中,我们经常遇到某某事件发生的概率是多少,如xx年2月5日《文汇报》登载的两则消息.本报讯记者梁红英报道:2月3日晚6点19分,一彩民购买的“江浙沪大乐透”彩票,同时投中10注一等奖,独揽48571620元巨额奖金,创下中国彩票史上个人一次性奖额之最.……据有关人士介绍,该彩民当时花了200元买下100注“江浙沪大乐透”彩票,分成10组,每组10注,每组的自选号码相同.结果,其中1组所选号码与前晚“江浙沪大乐透”xx015期开奖号码完全一致.本报讯记者江世亮报道:……对这种似乎不可能发生事件的发生,从数学概率论上将作何解释?为此,记者于昨日午夜电话连线采访了本市一位数学建模专家,他说,以他现在不完全掌握的情况来分析,像这名幸运者同时获得10个大奖的概率,可称得上一次万亿分之一的事件,通俗地讲就是接近于零.对文中的“万亿分之一”我们怎样理解呢?再如:天气预报说“明天降雨的概率是80%,我们明天出门要不要带伞?收音机里广播报道xx年冬某地“流行性感冒的发病率为10%”,我们这里要不要采取预防措施?……对这些在传播媒体上出现的数字80%,10%等,我们该作何理解呢?二、建立模型为了解决诸如以上的实际问题,我们不妨先从熟悉的频率的概念入手.首先,将全班同学平均分成三组,第一组做掷硬币试验,次数越多越好,观察掷出正面向上的次数,然后把试验结果和计算结果分别填入下表.表28-1第二组做抓阄试验.写五个阄,即分别标号为1,2,3,4,5,有放回地抓,每次记录下号数,次数越多越好.不妨统计一下各号数所占频率.第三组做摸围棋子试验.预先准备黑、白围棋子若干,然后给该组学生黑子30粒,白子10粒,让该组学生有放回地摸,次数为100次,每次摸出1粒,并记录下每次摸到的棋子的颜色,求出白子出现的频率.试验结束,让各组学生回答试验结果.第一组正面向上的频率必然接近,第二组结果肯定是每个号出现的频率接近,而第三组结果肯定位于附近.各组学生所得结果可能大于预定数,也可能小于预定数,但都比较接近.让学生讨论:出现与上述结果比较接近的数字受何因素影响?(学生思考,讨论,教师投影以下表格)历史上有些学者还做了成千上万次掷硬币的试验,结果如下表所示:表28-2观察上表后,引导学生总结:在多次重复试验中,同一事件发生的频率在某一个数值附近摆动,而且随着试验次数的增加,一般摆动幅度的越小,而且观察到的大偏差也越少,频率呈现一定的稳定性.通过三组试验,我们可以发现:虽然,,三个数值不等,但是三个试验存在共性,即随机事件的频率随试验次数的增加稳定在某一数值附近.同时还可看出,不同的随机事件对应的数值可能不同.我们就用这一数值表示事件发生的可能性大小,即概率.(引出概率定义)定义可采用学生口述、教师补充的方式,然后可以投影此定义:一般地,在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆度幅度越来越小,这时就把这个常数叫作事件A的概率,记为P(A).学生可考虑如下问题:(1)概率P(A)的取值范围是什么?(2)必然事件、不可能性事件的概率各是多少?(3)频率和概率有何关系?其中重点是问题(3),应启发、引导学生总结出:在大量重复试验的前提下,频率可以近似地称为这个事件的概率,而概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性大小.为加深对二者关系的理解,可以进行如下类比:给定一根木棒,谁都不怀疑它有“客观”的长度,长度是多少?我们可以用尺或仪器去测量,不论尺或仪器多么精确,测得的数值总是稳定在木棒真实的“长度”值的附近.事实上,人们也是把测量所得的值当作真实的“长度”值.这里测量值就像本节中的频率,“客观”长度就像概率.概率的这种定义叫作概率的统计定义.在实践中,经常采用这种方法求事件的概率.三、解释应用[例题]1. 把第三组试验中的黑棋子减少10粒,即20粒黑子,10粒白子,那么摸到黑子的概率约为多少?学生通过多次试验,可以发现此概率约为.2. 为确定某类种子的发芽率,从一批种子中抽出若干批做发芽试验,其结果如下:表28-3从以上的数据可以看出,这类种子的发芽率约为0.9.[练习]某射击手在同一条件下进行射击,结果如下:表28-4(1)计算表中击中靶心的各个频率.(表中各频率分别为0.8,0.95,0.88,0.92,0.89,0.91)(2)这个射手射击一次,击中靶心的概率约是多少?(由此(1)可知,这个射手射击一次,击中靶心的概率约是0.9)四、拓展延伸“某彩票的中奖概率为”是否意味着买1000张彩票就一定能中奖?从概率的统计定义出发,我们先来考虑此题的简化情形:在投掷一枚均匀硬币的随机试验中,正面出现的概率是,这是否意味着投掷2次硬币就会出现1次正面呢?根据经验,我们投掷2次硬币有可能1次正面也不出现,即出现2次反面的情形,但是在大量重复掷硬币的试验中,如掷10000次硬币,则出现正面的次数约为5000次.买1000张彩票相当于做1000次试验,结果可能是一次奖也没中,或者中一次奖,或者多次中奖.所以“彩票中奖概率为”并不意味着买1000张彩票就一定能中奖.只有当所买彩票的数量n非常大时,才可以将大量重复买彩票这个试验看成中奖的次数约为(比如说买1000000张彩票,则中奖的次数约为1000),并且n越大,中奖次数越接近于.由此我们可以说,对于小概率事件,从理论上来讲,发生的可能性很小,甚至在一定条件下可能不会发生.但是,实际上小概率事件仍有发生的可能,如本节开头提到的万亿分之一的概率事件就发生了.点评针对这节课以概念为主,而又抽象的特点,案例设计了以学生动手试验为主,引导学生体会概念的教学方法,同时对这节中较抽象的内容:频率和概率的关系做了形象的类比,以便学生理解.这篇案例增加了试验内容,其目的是更有力地帮助学生理解定义.另外,例题与练习的配备有利于学生加深对这节内容的理解.因此,这节课的整体设计符合学生对新知识认识的规律,符合新课程标准的精神.。
高一数学集合的表示方法区间法高中数学是学习数学的基础,其中有一门重要的科目就是集合论。
集合论是把抽象的数学概念表现出来方便进行运算的一种组合学。
其中,表示集合的方法包括:非负封闭的集合的表示、集合的表示的方法和考虑数据的表示法,其中最好的表示方法就是区间法。
区间法是一种从一组数据中分析出一些符合要求的数据,并找出它们之间的关系和规律的一种表示法。
作为一种表示法,它广泛地应用在集合论和概率论中。
在集合论中,它可以用来表示真实的数据或抽象的数学概念。
要表示数据,我们要先把它们排列起来,然后根据表示数据的范围,给出它们的一个范围。
可以把集合中的某些元素表示成区间形式。
例如,集合A = {1,2,3,4,5},这时,可以用[1,5]来表示它。
另外,[1,4]表示集合A中不包括5,即A = {1,2,3,4};[2,5]表示A中不包括1,即A = {2,3,4,5}。
此外,区间法还可以用来表示一些抽象的数学概念,例如曲线。
曲线一般表示为x的函数,但它也可以表示为一个区间,由x的上限和下限组成。
假设有一条一次函数y=x+2,这时,就可以用[2,+∞]来表示它。
这样,我们就可以把范围较宽的曲线转变成区间,从而使计算变得更加容易。
另外,区间法还可以用来分析数据。
它最大的特点就是,可以根据数据的范围,给出它们之间的关系和规律。
比如,如果需要分析一组从1到5的数据,我们可以把它们表示成[1,5],从而可以得到实际关系,比如等差数列或其他相关的规律。
综上所述,区间法是一种十分重要的表示法,它不仅可以用于表示一组数据,也可以用于表示一些抽象的数学概念,而且也可以用来分析数据之间的关系和规律,这对于高中数学学习来讲十分重要。
因此,高中生在学习数学时应当充分利用区间法,以便于更好地理解数学中的一些抽象的数学概念。
2019-2020年高一数学集合的表示方法
学习目标
1.函数单调性的概念
2.由函数图象写出函数单调区间
3.函数单调性的证明
重点:1.能运用函数的图象理解函数单调性和最值
难点:1.理解函数的单调性2.会证明函数的单调性
知识梳理:
阅读课本44页到例1的上方,完成下列问题
1从直观上看,函数图象从左向右看,在某个区间上,图象是上升的,则此函数
是______,若图象是下降的,则此函数是_____________-
2不看课本,能否写出函数单调性的定义?
_____________________________________________________________________
_____________________________________________________________________
____________________
3对区间的开闭有何要求?
4如何理解定义中任意两个字?
5一个函数不存在单调性,如何说明?
6完成课后练习A 第1,2题
【例题解析】
阅读课本例1与例2,完成下列问题
1.不看课本你能否独立完成两个例题的证明
(1) 证明函数在R 上是增函数
(2) 证明函数,在区间上分别是减函数
完成课后练习A 第3,4题,习题2-1A 第5题 【巩固提高】
1根据图象判断单调区间 (1) 课后练习A 第5题
2定义证明函数的单调性
D
E
(1)课后练习B第1题
(2)证明函数在[1,+)上是增函数
(3)证明函数在上是减函数
(4)证明函数在(-,+)上是增函数
(5)利用函数单调性定义证明函数f(x)=-x3+1在(-∞,+∞)上是减函数.
3.一次函数的单调性
(1)单调递增,单调递减
(2)若函数在上是减函数,则的取值范围是______.
4二次函数的单调性
(1)时,在_______________单调递增,在_____________单调递减;
时,在_______________单调递增,在_____________单调递减;
(2)函数,上的单调性是_____________________.
(3)已知函数在上递增,那么的取值范围是________.
题型一:函数单调性的判断与证明
例1:求证函数f(x)=-x3+1(x∈R)为减函数。
练习:求证:在区间上为减函数.
题型二:函数单调性的逆用
例2:已知在区间(-2,+∞)上是减函数,求m的取值范围。
练习:函数在(1,+∞)上递减,求m的取值范围。
【课堂检测】
1若函数在上是增函数,那么( C )
A.b>0
B. b<0
C.m>0
D.m<0
2函数,当时是增函数,当时是减函数,则等于( B )
A.-3
B.13
C.7
D.由m而定的常数
3设函数在上为减函数,则 ( D )
4 下列函数在上是减函数的是( D )
A B C y=x-1 D
5 下列函数函数中只有一个单调区间的是( C )
A B C y=x D
6 在上单调递减的函数是( A )
A B C y=2x+3 D
7 函数的递减区间是( C )
A
1
,
2
⎛⎫
-+∞
⎪
⎝⎭ B C D R
8 下列函数中,在(0,2)上是增函数的是( B )
A B y=2x-1 C y=1-2x D
9如果函数在区间上是增函数,那么的取值范围是__≥7__. 10已知在定义域上是减函数,且则的取值范围是__0<a<_ 11 判断在定义域上的单调性,并证明。