充分必要条件1
- 格式:doc
- 大小:68.50 KB
- 文档页数:6
高一数学充分条件与必要条件一、充分条件1.概述充分条件一定能保证结果的出现。
2.定义如果有事物情况A,则必然有事物情况B;如果没有事物情况A而未必没有事物情况B,A就是B的充分而不必要的条件,简称充分条件。
简单地说,满足A,必然B;不满足A,不必然B,则A是B的充分条件。
例如:1.A烧柴;B会产生二氧化碳。
例子中A都是B的充分条件,确切地说,A是B的充分而不必要的条件:A必然导致B;A不是B发生必需的二、必要条件1.概述如果没有事物情况A,则必然没有事物情况B;如果有事物情况A而未必有事物情况B,A就是B的必要而不充分的条件,简称必要条件。
2.定义简单地说,不满足A,必然不B;满足A,不必然B,则A是B的必要条件。
例如:1.A不断呼吸;B人能活着。
例子中A是B的必要条件,确切地说,A是B的必要而不充分的条件:其一,A是B发生必需的;其二,A不必然导致B。
三、表达推理1.充分条件与必要条件:一般地,“若p,则q”为真命题,是指由p通过推理可以得出q,这时,我们就说,由p可推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件;2.充要条件:一般地,如果既有p=>q,又有q=>p,就记作p<=>p,此时我们说,p是q的充分必要条件,简称充要条件。
概括的说,如果,那么p与q互为充要条件。
四、常用判断方法1.定义法:判断B是A的什么条件,实际上就是判断B=>A或A=>B是否成立,只要把题目中所给条件按逻辑关系画出箭头示意图,再利用定义即可判断。
2.转化法:当所给命题的充要条件不易判定时,可对命题进行等价转化,例如改用其逆否命题进行判断。
3.集合法:在命题的条件和结论间的关系判断有困难时,有时可以从集合的角度来考虑,记条件p、q对应的集合分别为A、B,则:若A⊆B,则p是q的充分条件;若A⊂B,则p是q的充分非必要条件;若A⊇B,则p是q的必要条件;若A⊃B,则p是q的必要非充分条件;若A=B,则p是q的充要条件。
充分和必要条件的概念一、引言充分和必要条件是数学中的重要概念,它们在证明定理和推理过程中起着至关重要的作用。
在数学中,我们常常需要判断某个命题是否成立,而充分和必要条件就是帮助我们做出这种判断的工具。
本文将从定义、性质、应用等方面分析充分和必要条件的概念。
二、定义1. 充分条件:如果一个命题P能够推出另一个命题Q,则称P是Q的充分条件。
2. 必要条件:如果一个命题Q成立是P成立的前提,则称P是Q的必要条件。
三、性质1. 充分必要条件:如果P是Q的充分条件,同时P也是Q的必要条件,则称P与Q等价。
2. 充分非必要条件:如果P是Q的充分条件,但不是Q的必要条件,则称P比Q强。
3. 非充分必要条件:如果P不是Q的充分条件,但是Q的必要条件,则称P比Q弱。
4. 非充非必要条件:如果既不满足P是Q的充分条件,也不满足P是Q的必要条件,则称两者无关。
四、应用1. 定理证明:在证明定理时,我们需要找到该定理的充分条件和必要条件,从而得出结论。
2. 推理过程:在推理过程中,我们需要判断某个命题是否成立,这时就可以利用充分和必要条件来进行判断。
3. 实际问题:在实际问题中,我们常常需要找到某个条件对于结果的影响,这时就可以利用充分和必要条件进行分析。
五、举例说明1. 定理证明:对于一个正整数n,如果n是偶数,则n的平方也是偶数。
其中,“n是偶数”是n平方为偶数的充分条件,“n的平方是偶数”是n为偶数的必要条件。
2. 推理过程:如果一个人能够通过高考,则他一定具备高中文化水平。
其中,“通过高考”是“具备高中文化水平”的充分条件,“具备高中文化水平”是“通过高考”的必要条件。
3. 实际问题:如果一辆汽车速度超过80公里/小时,则其行驶距离会增加。
其中,“速度超过80公里/小时”是“行驶距离增加”的充分条件,“行驶距离增加”是“速度超过80公里/小时”的必要条件。
六、总结在数学中,充分和必要条件是重要的概念,它们在定理证明、推理过程和实际问题中都有广泛的应用。
充分必要条件一、选择题1.(2012年浙江调研)在△ABC中,“A=60°”是“cos A=12”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分而不必要条件解析:在△ABC中,若A=60°,则cos A=12;反过来,若cos A=12,因为0°<A<180°,所以A=60°.因此,在△ABC中,“A=60°”是“cos A=12”的充要条件,选C.答案:C2.(2012年浙江)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:l1与l2平行的充要条件为a(a+1)=2×1且a×4≠1×(-1),可解得a=1或a=-2,故a=1是l1∥l2的充分不必要条件.答案:A3.(2012年山东潍坊一模)命题“∀x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是() A.a≥4 B.a≤4C.a≥5 D.a≤5解析:原命题等价于“a≥x2对于任意x∈[1,2]恒成立”,其充要条件是a≥4,所以C正确.答案:C4.(2012年福建)下列命题中,真命题是() A.∃x0∈R,e x0≤0B.∀x∈R,2x>x2C .a +b =0的充要条件是ab =-1 D .a >1,b >1是ab >1的充分条件解析:∵∀x ∈R ,e x >0,∴A 错;∵函数y =2x 与y =x 2有交点.如点(2,2),此时2x =x 2,∴B 错;∵当a =b =0时,a +b =0,而0作分母无意义,∴C 错;a >1,b >1,由不等式可乘性知ab >1,∴D 正确.答案:D5.(2013届湖北省黄冈中学高三10月月考)以下说法错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 3-3x +2≠0”B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .若p ∧q 为假命题,则p 、q 均为假命题D .若命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,则x 2+x +1≥0 解析:若p ∧q 为假命题,则只需p 、q 至少有一个为假命题即可. 答案:C6.(2012~2013学年度河北省普通高中高三11月教学质量监测)“a 2+b 2ab ≤-2”是“a >0且b <0”的( )A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要解析:a 2+b 2ab +2=(a +b )2ab ≤0⇔ab <0⇔⎩⎪⎨⎪⎧ a <0b >0或⎩⎪⎨⎪⎧a >0b <0,则选A. 答案:A 二、填空题7.(2012年茂名模拟)若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.解析:ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立; 当a ≠0时,得⎩⎨⎧a <0Δ=4a 2+12a ≤0, 解得-3≤a <0,故-3≤a ≤0.8.已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④綈p 是綈s 的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件.则正确命题的序号是________. 解析:由题意知,∴s ⇔q ,①正确;p ⇒r ⇒s ⇒q ,∴p ⇒q ,但q p ,②正确;同理判断③⑤不正确,④正确.答案:①②④9.(2012年衡阳六校联考)给出下列命题: ①原命题为真,它的否命题为假; ②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真; ④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m >1,则mx 2-2(m +1)x +m +3>0的解集为R ”的逆命题. 其中真命题是________.(把你认为正确命题的序号都填在横线上) 解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx 2-2(m +1)x +m +3>0的解集为R ,(1)m =0时不合题意,(2)m ≠0时由⎩⎨⎧m >0Δ=4(m +1)2-4m (m +3)<0⇒⎩⎪⎨⎪⎧m >0m >1⇒m >1. 故⑤正确.三、解答题10.求证:关于x 的一元二次不等式ax 2-ax +1>0对于一切实数x 都成立的充要条件是0<a <4.证明:(1)必要性:若ax 2-ax +1>0对x ∈R 恒成立, 由二次函数性质有⎩⎨⎧a >0,Δ<0,即⎩⎨⎧a >0,a 2-4a <0,∴0<a <4. (2)充分性:若0<a <4,对函数y =ax 2-ax +1, 其中Δ=a 2-4a =a (a -4)<0且a >0, ∴ax 2-ax +1>0对x ∈R 恒成立. 由(1)(2)知,命题得证.11.(2013届四川省资阳市高三第一次诊断性考试)命题p :实数x 满足x 2-4ax +3a 2<0(其中a >0),命题q :实数x 满足⎩⎨⎧|x -1|≤2,x +3x -2≥0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解:(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由⎩⎨⎧|x -1|≤2,x +3x -2≥0,得⎩⎨⎧-1≤x ≤3,x ≤-3或x >2,解得2<x ≤3, 即q 为真时实数x 的取值范围是2<x ≤3,若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是(2,3). (2)由(1)知p :a <x <3a ,则綈p :x ≤a 或x ≥3a , q :2<x ≤3,则綈q :x ≤2或x >3,綈p 是綈q 的充分不必要条件,则綈p ⇒綈q ,且綈q ≠綈p , ∴⎩⎨⎧0<a ≤2,3a >3,解得1<a ≤2,故实数a 的取值范围是(1,2]. 12.(2013届山东潍坊市四县一校高三期中联考)已知条件p :|5x -1|>a (a ≥0)和条件q :12x 2-3x +1>0,请选取适当的非负数a 的值,分别利用所给的两个条件作为A ,B 构造命题:“若A ,则B ”,并使得构造的原命题为真命题,而其逆命题为假命题,则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.解:已知条件p :|5x -1|>a ,∴x <1-a 5或x >1+a5. 已知条件q ,即2x 2-3x +1>0,∴x <12或x >1, 令a =4,则p :x <-35或x >1, 此时必有p ⇒q 成立,反之不然. 故可以选取的一个非负实数是a =4. A 为p ,B 为q ,对应的命题是若p ,则q . 自以上过程可知这一命题的原命题为真命题, 但它的逆命题为假命题.(注:本题为开放性命题,答案不惟一,只需满足1-a 5≤12,且1+a5≥1(端点等号不同时取得)即可)[热点预测]13.(1)(2012年北京朝阳二模)下列命题: p :函数f (x )=sin 4x -cos 4x 的最小正周期是π;q :已知向量a =(λ,1),b =(-1,λ2),c =(-1,1),则(a +b )∥c 的充要条件是λ=-1;r :若⎠⎛1a 1x d x =1(a >1),则a =e.其中所有的真命题是( )A .rB .p ,qC .q ,rD .p ,r(2)(2012年浙江温州月考)已知向量a =(n,4),b =(n ,-1),则“n =2”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:(1)本题主要考查命题真假的判断,涉及的知识点比较多,需逐一判断.命题p :∵f (x )=sin 4x -cos 4x=(sin 2x -cos 2x )(sin 2x +cos 2x )=-cos 2x , ∴最小正周期T =2π2=π,故命题p 为真命题;命题q :∵a +b =(λ-1,1+λ2),c =(-1,1)且(a +b )∥c , ∴λ-1-1=1+λ21. 解得λ=0或-1,故命题q 为假命题; 命题r :⎠⎛1a 1x d x =ln x |a1=ln a -ln 1=ln a =1,∴a =e ,∴命题r 为真命题.故D 正确.(2)当n =2时,a =(2,4),b =(2,-1),a ·b =4-4=0,∴a ⊥b ;当a ⊥b 时,a ·b =n 2-4=0,得n =2或-2.∴“n =2”是“a ⊥b ”的充分不必要条件.故选A. 答案:(1)D (2)A。