专题1:直线与椭圆的位置关系
- 格式:ppt
- 大小:1.70 MB
- 文档页数:23
直线与椭圆的位置关系1. 求解直线与圆锥曲线的位置关系的基本方法是解方程组,转化为利用判别式判断一元二次方程是否有解,应特别注意数形结合思想的应用.2. 注意根与系数的关系的应用.(1)弦长公式:斜率为k 的直线被圆锥曲线截得弦若A 、两点的坐标分别是A (x ,y ),B (x ,y )1122则|AB =\:'(X i _x 2)2+(y 1_y 2)2=v1+k 23. 有关中点弦问题.(1)已知直线与圆锥曲线方程,求弦的中点及与中点有关的问题,常用根与系数的关系.(2)有关弦的中点轨迹,中点弦所在直线方程,中点坐标问题,有时采用“点差法”可简化运算.4. 圆锥曲线中的有关最值问题,常用代数法和几何法解决.(1)若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决.(2)若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数、三角函数、均值不等式等)求最值.二、题型梳理1. 直线与椭圆位置关系的判断将直线的方程和椭圆的方程联立,通过讨论此方程组的实数解的组数来确定,即用消元后的关于x (或尹)的一元二次方程的判断式/的符号来确定:当/>0时,直线和椭圆相交;当/=0时,直线和椭圆相切;当/<0时,直线和椭圆相离.2. 直线和椭圆相交的弦长公式|AB |=\:1+k 2[齐+七2—4X ]X 2]或|AB 戶\「(1+£|[儿+歹22—帅」3. 直线与椭圆相交时的常见处理方法 =鶯(1+k 2)[(x i +x )2一4xx ]212 =<1+k 2 l a l当直线与椭圆相交时:涉及弦长问题,常用“根与系数的关系”,设而不求计算弦长;涉及到求平行弦中点的轨迹、求过定点的弦中点的轨迹和求被定点平分的弦所在的直线方程问题,常用“点差法”设而不求,将动点的坐标、弦所在直线的斜率、弦的中点坐标联系起来,相互转化.本次授课内容授课标题直线与椭圆的位置关系学习目标1•直线与椭圆位置关系的判断2.直线和椭圆相交的弦长公式3.直线与椭圆相交时的常见处理方法重点难点直线与椭圆相交时的常见处理方法考点1点差法与中点弦例1⑴椭圆16+寻=1的弦被点P(2'1)所平分’求此弦所在直线的方程.(2)已知椭圆C:養+^2=l(a>b>0)过点P(T,T),c为椭圆的半焦距,且c=⑵•过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线11的斜率为一1,求口尸肋的面积;(3)若线段MN的中点在x轴上,求直线MN的方程.考点2直线与圆锥曲线的位置关系例2在平面直角坐标系xOy中,经过点(0,2)且斜率为k的直线l与椭圆斗+y2二1有两个不同的交点P和Q.求k的取值范围.规律方法(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法;(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线);(3)联立方程组、消元后得到一元二次方程,不但要对A进行讨论,还要对二次项系数是否为0进行讨论•考点3与弦长有关的问题x2□例3已知椭圆:古+y2二1,过左焦点尸作倾斜角为匚的直线/交椭圆于A、B两点,求96弦AB的长.考点4直线与椭圆综合x2y2例5如图,在平面直角坐标系xOy中,已知椭圆一+厂二1(a>b>0)(a>b>0)的离心a2b2率为#,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;考点5椭圆中的定点、定值问题例6椭圆C:a2+b2=l(a>b>0)的离心率为拿,过其右焦点F与长轴垂直的弦长为1.(1)求椭圆C的方程;⑵设椭圆C的左、右顶点分别为A,B,点P是直线x=l上的动点,直线PA与椭圆的另交点为直线PB与椭圆的另一交点为N.求证:直线MN经过一定点.x2y2例7如图,在平面直角坐标系xOy中,已知A,B,C是椭圆石+乞=1(°>&>°)上不同的三点,A(3\迂,爭),B(-3,—3),C在第三象限,线段BC的中点在直线OA上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点P在椭圆上(异于点A,B,C),且直线PB,PC分别交直线OA于M,N两点,证明:OM・ON为定值,并求出该定值.探究提高(1)求定值问题常见的方法有两种:□从特殊入手,求出定值,再证明这个值与变量无关•□直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. (2)如果要解决的问题是一个定点问题,而题设条件又没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,明确解决问题的目标,然后进行推理探究,这种先根据特殊情况确定定点,再进行一般性证明的方法就是由特殊到一般的方法.考点6圆锥曲线中的最值、范围问题例8已知圆C:(x+1)2+y2二&定点A(1,O),M为圆上一动点,点P在AM上,点N在CM上,且满足AM=2AP,NP-AM=0,点N的轨迹为曲线E.(I)求曲线E的方程;(II)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足FG=X FH,求九的取值范围.x2y21•已知直线尸-x+1与椭圆一+[二1(a>b>0)相交于A、B两点,且线段AB的中点在a2b2直线l:x-2y=0上,求此椭圆的离心率.x2y22•已知椭圆C的方程丁+y=1,试确定m的取值范围,使得对于直线y=4x+m,椭圆C上有不同两点关于该直线对称.3.已知椭圆C:匸+「二1(a>b>0)的右焦点为F,离心率e二二,椭圆C上的点到Fa2b22的距离的最大值为、迈+1,直线l过点F与椭圆C交于不同的两点A,B.(1)求椭圆C的方程;3,''2(2)若IAB1=十,求直线l的方程.4•已知椭圆—+二=1(a>b>0)的离心率为冷―,短轴的一个端点到右焦点的距离为詣a2b23直线l:y二kx+m交椭圆于不同的两点A,B.(I)求椭圆的方程;(II)若坐标原点O到直线/的距离为£,求A AOB面积的最大值.5•已知椭圆C:02+诗=l(a>b>0)过点P(—1,—1),C为椭圆的半焦距,且c=-j3b.过点P 作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线11的斜率为一1,求D PMN的面积;(3)若线段MN的中点在x轴上,求直线MN的方程.6•已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(口)求椭圆C的标准方程;(口)若直线l:y二kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.37•已知,椭圆C以过点A(1,2),两个焦点为(一1,0)(1,0)•(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.本次课课后练习1•椭圆36+才=1的一条弦被A(4,2)平分’那么这条弦所在的直线方程是一X2(11、2•已知椭圆〒+y2二1,求过点P-,-且被P平分的弦所在的直线方程.2\22丿x23•已知椭圆q:}+严=1,椭圆C2以q的长轴为短轴,且与q有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,OB=204,求直线AB的方程.x2y24•如图,在平面直角坐标系xOy中,椭圆石+右=1(。
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
直线与椭圆的位置关系
直线与椭圆的位置关系是数学几何学的一个重要问题。
在这篇
文档中,我们将讨论直线与椭圆的几种可能的位置关系。
直线位于椭圆内部
当一条直线完全位于椭圆内部时,我们可以得到以下几种情况:
1. 直线与椭圆没有交点:这意味着直线与椭圆没有任何交点,
且直线与椭圆的轴是平行的。
2. 直线与椭圆有两个交点:这说明直线与椭圆相交于两个点,
椭圆的两个焦点位于直线上。
直线与椭圆位于同一平面
当直线与椭圆位于同一平面时,我们可以得到以下几种情况:
1. 直线与椭圆相切:这种情况下,直线与椭圆只有一个交点,
并且交点是椭圆的一个焦点。
2. 直线与椭圆相交于两点:这意味着直线与椭圆相交于两个不同的点,并且这两个点分别位于椭圆的两个焦点的同侧。
3. 直线与椭圆相离:这种情况下,直线与椭圆没有任何交点,并且直线与椭圆的轴平行。
直线与椭圆相交于无穷多点
当直线与椭圆相交于无穷多点时,这种情况被称为直线与椭圆重叠。
直线与椭圆重叠意味着直线和椭圆重合,任意一点都同时位于直线和椭圆上。
结论
通过研究直线与椭圆的位置关系,我们可以得出结论:直线与椭圆的位置关系取决于直线与椭圆之间的交点数量和位置。
这个问题在计算机图形学、建筑设计等领域都有广泛的应用。
了解这些位置关系有助于我们更好地理解直线和椭圆之间的几何性质。
总之,直线与椭圆的位置关系是一个有趣且复杂的问题,通过分析直线与椭圆的交点情况,我们可以获得更多关于它们的几何特性的信息。
直线与椭圆的位置关系【重要考点】1. 直线与椭圆的位置关系及判断方法(1)直线和椭圆有三种位置关系:相交、 相切 、 相离 ;(2)直线和椭圆的位置关系的判断:设直线方程:y =kx +m ,椭圆方程:22221x y a b+=(0a b >>),两方程联立消去y 可得:Ax 2+Bx +C =0,其判别式为Δ=B 2-4AC 。
当Δ>0时,直线与椭圆 相交 ; 当Δ=0时,直线与椭圆 相切 ; 当Δ<0时,直线与椭圆 相离 。
2. 向量的运算及其中一些特殊几何关系在直线和椭圆解题中的运用,例如直线AB ⊥AC 可转化为0AB AC ⋅=。
【易错点辨析】解答直线和椭圆相关问题要注意避免出现如下两种错误:(1)对直线l 斜率的存在性不作讨论而直接设为点斜式,出现漏解或思维不全造成步骤缺失;(2)对二次项系数不为零或Δ≥0这个前提忽略而直接使用根与系数的关系。
例题1 在直角坐标系xOy 中,椭圆C :x 24+y 23=1的左、右焦点分别为F 1、F 2,点M(23,263)为C 上的一点,点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与曲线C 交于A 、B 两点,若以AB 为直径的圆经过坐标原点O ,求直线l 的方程。
解析:由MN →=MF 1→+MF 2→知四边形MF 1NF 2是平行四边形,其中心为坐标原点O ,因为l ∥MN ,所以l 与OM 的斜率相同。
故l 的斜率k =26323=6。
设l 的方程为y =6(x -m )。
由⎩⎨⎧3x 2+4y 2=12,y =6(x -m ),消去y 并化简得 9x 2-16mx +8m 2-4=0。
设A (x 1,y 1),B (x 2,y 2),x 1+x 2=16m9,x 1x 2=8m 2-49。
因为OA ⊥OB ,所以x 1x 2+y 1y 2=0。
x 1x 2+y 1y 2=x 1x 2+6(x 1-m )(x 2-m ) =7x 1x 2-6m (x 1+x 2)+6m 2 =7·8m 2-49-6m ·16m9+6m 2=19(14m 2-28)=0。
直线和椭圆位置关系总结大全1.直线不交于椭圆:当直线与椭圆不相交时,可以分为以下两种情况:(1)直线在椭圆外部:此时直线与椭圆没有交点;(2)直线在椭圆内部:此时直线与椭圆没有交点。
2.直线与椭圆外切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆外切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆外切于一条线段:此时直线与椭圆有且仅有两个切点。
3.直线与椭圆内切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆内切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆内切于一条线段:此时直线与椭圆有且仅有两个切点。
4.直线穿过椭圆:当一条直线穿过椭圆时,可以分为以下三种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆没有交点:此时直线与椭圆相离。
5.直线包围椭圆:当一条直线将椭圆切割成两个部分时,可以分为以下两种情况:(1)直线穿过椭圆:此时直线将椭圆分成内外两个部分;(2)直线在椭圆外部:此时直线将椭圆分成两个不相交的部分。
6.直线与椭圆重合:当直线与椭圆方程相同或者参数相同时,直线与椭圆重合。
7.直线与椭圆相交:当直线与椭圆有交点时,可以分为以下几种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆相交于两条线段:此时直线穿过椭圆。
总之,直线和椭圆之间的位置关系相当复杂,可以分为不交、外切、内切、相离、穿过、重合和相交等情况。
具体的位置关系可以通过解方程或者观察图形进行判断,同时利用相关的几何性质也可以得到更加精确的结论。
直线与椭圆的位置关系及判断方法直线与椭圆的位置关系是指确定一条直线和一个椭圆之间的相对位置关系,主要有以下几种情况:直线与椭圆相离、直线与椭圆相切、直线穿过椭圆两个交点、直线包含椭圆等情况。
判断直线与椭圆的位置关系可以通过研究直线方程和椭圆方程的解来实现。
一、直线与椭圆相离的情况:当直线方程与椭圆方程不存在实数解时,说明直线与椭圆相离。
直线方程通常采用一般式表示,即Ax+By+C=0,椭圆方程通常采用标准方程表示,即((x-h)^2)/(a^2)+((y-k)^2)/(b^2)=1、将直线方程的x、y分别带入椭圆方程,得到一个关于x的二次方程。
通过判别式B^2-4AC的值来确定二次方程是否有实数解,当判别式小于零时,直线与椭圆相离。
二、直线与椭圆相切的情况:当直线方程刚好与椭圆方程有一个实数解时,说明直线与椭圆相切。
判断方法是将直线方程的x、y分别带入椭圆方程,得到一个关于x的二次方程。
当判别式B^2-4AC等于零时,直线与椭圆相切。
三、直线穿过椭圆两个交点的情况:当直线方程与椭圆方程有两个实数解时,说明直线穿过椭圆的两个交点。
判断方法是将直线方程的x、y分别带入椭圆方程,得到一个关于x 的二次方程。
当判别式B^2-4AC大于零时,直线与椭圆有两个交点。
四、直线包含椭圆的情况:当直线方程将椭圆方程的所有解都包含时,说明直线包含椭圆。
判断方法是将直线方程的x、y分别带入椭圆方程,而不是代入x的解,得到一个关于y的二次方程。
如果这个二次方程对于任何实数x都有解,则直线包含椭圆。
需要注意的是,在判断直线与椭圆的位置关系时,需要先将椭圆方程化简为标准方程,即将h、k分别代表椭圆的中心坐标,a、b分别代表椭圆的长半轴和短半轴长度。
总结起来,判断直线与椭圆的位置关系,可以通过以下步骤实现:1.将椭圆方程化简为标准方程。
2.将直线方程写为一般式。
3.将直线方程的x、y带入椭圆方程,得到关于x的二次方程。
4.判断该二次方程的判别式B^2-4AC的值,确定直线是否与椭圆有交点、相切或相离。
直线与椭圆位置关系(经典)本文介绍了直线与椭圆的位置关系以及弦长计算方法。
1.点与椭圆的位置关系对于椭圆$x^2/a^2+y^2/b^2=1$,点$P(x,y)$在椭圆内部的充要条件是$x^2/a^2+y^2/b^21$,在椭圆上的充要条件是$x^2/a^2+y^2/b^2=1$。
2.直线与椭圆的位置关系设直线$l: Ax+By+C=0$,椭圆$C: x^2/a^2+y^2/b^2=1$,联立$l$与$C$,消去某一变量$(x$或$y)$得到关于另一个变量的一元二次方程,此一元二次方程的判别式为$\Delta$,则$l$与$C$相离的充要条件是$\Delta0$。
3.弦长计算计算椭圆被直线截得的弦长,往往是设而不求,即设弦两端坐标为$P_1(x_1,y_1)$,$P_2(x_2,y_2)$,则$|P_1P_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=1+kx_1-x_2=1+\frac{1}{k}(y_1-y_2)$($k$为直线斜率)。
题目:已知椭圆$\frac{x^2}{5m}+\frac{y^2}{m}=1$,直线$y=kx+1$,求实数$m$的取值范围使得直线与椭圆有公共点。
解法一:将直线方程代入椭圆方程,得到关于$x$的一元二次方程,其判别式为$\Delta=m-5k-1$,要使直线与椭圆有交点,需要$\Delta\geq0$,即$m\geq5k+1$。
另外要注意,当$m=5k+1$时,直线与椭圆可能只有一个交点,在这种情况下也算有公共点。
因此,实数$m$的取值范围为$m\geq1$且$m\neq5$。
解法二:观察椭圆方程,发现其长轴在$x$轴上,短轴在$y$轴上,因此,当$m5$时,椭圆焦点在$y$轴上,与直线的交点只有$1$个或$3$个。
因此,要使直线与椭圆有公共点,需要$m\geq5$。
另外,当$m=5$时,椭圆退化成一个点,直线与该点有交点,因此也算有公共点。
直线与椭圆的位置关系1.直线与椭圆的位置关系.设直线l :Ax +By +C =0,椭圆C :12222=+b y a x 联立⎪⎩⎪⎨⎧=++=+012222C By Ax b y a x 得02=++p nx mx (1)若l 与C 相离的⇔Δ<0;(2)l 与C 相切⇔Δ=0;(3)l 与C 相交于不同两点⇔Δ>0.2.弦长公式 设直线与椭圆交于点P 1(x 1,y 1),P 2(x 2,y 2)则|P 1P 2|=221221)()(y y x x -+- 212212111y y kx x k -+=-+=(k 为直线斜率) 一,直线与椭圆的位置关系例题1、判断直线03=+-y kx 与椭圆141622=+y x 的位置关系例题2、若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围.二、弦长问题例题3、 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.例4、已知椭圆1222=+y x 的左右焦点分别为1F ,2F ,若过点P (0,-2)及1F 的直线交椭圆于A,B 两点,求⊿ABF 2的面积练习、已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.三、中点弦问题例题5、已知椭圆C 的焦点分别为12(F F -,长轴长为6,设直线2y x =+交椭圆C 于A 、B 两点,求线段AB 的中点坐标。
例题6、如果焦点是F (0,±52)的椭圆截直线3x -y -2=0所得弦的中点横坐标为21,求此椭圆方程.例7. 已知椭圆1222=+y x (1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过Q(2,1)引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点A 、B ,O 为原点,且有直线OA 、OB 斜率满足K OA ·K OB =-1/2,求线段AB 中点M 的轨迹方程.四、对称问题例题8、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.五、最值问题类型1:焦点三角形角度最值-------最大角法(求离心率问题)例1. 已知椭圆C :22221(0)x y a b a b+=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使12FQ F Q ⊥,求椭圆离心率的最小值。
§8.6 直线与椭圆考试要求 1.理解直线与椭圆位置关系判断方法.2.掌握直线被椭圆所截的弦长公式.3.了解直线与椭圆相交的综合问题.知识梳理1.直线与椭圆的位置判断将直线方程与椭圆方程联立,消去y (或x ),得到关于x (或y )的一元二次方程,则直线与椭圆相交⇔Δ>0;直线与椭圆相切⇔Δ=0;直线与椭圆相离⇔Δ<0. 2.弦长公式设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2] 或|AB |=1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2],k 为直线斜率且k ≠0. 常用结论已知椭圆x 2a 2+y 2b 2=1(a >b >0).(1)通径的长度为2b 2a.(2)过左焦点的弦AB ,A (x 1,y 1),B (x 2,y 2),则焦点弦|AB |=2a +e (x 1+x 2);过右焦点弦CD ,C (x 3,y 3),D (x 4,y 4),则焦点弦|CD |=2a -e (x 3+x 4).(e 为椭圆的离心率)(3)A 1,A 2为椭圆的长轴顶点,P 是椭圆上异于A 1,A 2的任一点,则2122·PA PA k b k a=-.(4)AB 是椭圆的不平行于对称轴的弦,O 为原点,M 为AB 的中点,则k OM ·k AB =-b 2a 2.(5)过原点的直线交椭圆于A ,B 两点,P 是椭圆上异于A ,B 的任一点,则k P A ·k PB =-b 2a 2.(6)点P (x 0,y 0)在椭圆上,过点P 的切线方程为x 0x a 2+y 0yb 2=1.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)椭圆通径是所有的焦点弦中最短的弦.( √ ) (2)直线y =x 与椭圆x 22+y 2=1一定相交.( √ )(3)直线y =x -1被椭圆x 22+y 2=1截得的弦长为 2.( × )(4)过椭圆上两点A (x 1,y 1),B (x 2,y 2)的直线的斜率k =y 2-y 1x 2-x 1.( × )教材改编题1.直线y =x +1与椭圆x 25+y 24=1的位置关系是( )A .相交B .相切C .相离D .无法判断答案 A解析 方法一 (通解)联立直线与椭圆的方程得⎩⎪⎨⎪⎧y =x +1,x 25+y 24=1,消去y 得9x 2+10x -15=0,Δ=100-4×9×(-15)>0,所以直线与椭圆相交.方法二 (优解)直线过点(0,1),而0+14<1,即点(0,1)在椭圆内部,所以可推断直线与椭圆相交.2.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,则弦AB 的长为( )A.45B.65C.85D.135答案 C解析 由题意得,a 2=4,b 2=1,所以c 2=3, 所以右焦点坐标为(3,0), 则直线l 的方程为y =x -3, 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =x -3,x 24+y 2=1,消y 得,5x 2-83x +8=0, 则x 1+x 2=835,x 1·x 2=85,所以|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=2×⎝⎛⎭⎫8352-4×85=85.即弦AB 的长为85.3.已知椭圆y 2a 2+x 2b 2=1(a >b >0)的右顶点为A (1,0),过其焦点且垂直于长轴的弦长为1,则椭圆方程为________. 答案 y 24+x 2=1解析 因为椭圆y 2a 2+x 2b 2=1的右顶点为A (1,0),所以b =1,因为过焦点且垂直于长轴的弦长为1, 所以2b 2a =1,a =2,所以椭圆方程为y 24+x 2=1.题型一 直线与椭圆的位置关系例1 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,x 24+y 22=1,消去y 并整理得9x 2+8mx +2m 2-4=0. Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. 教师备选(多选)直线y =kx -2k +62与椭圆x 24+y 23=1的位置关系可能为( )A .相交B .相切C .相离D .有3个公共点答案 AB解析 直线y =kx -2k +62=k (x -2)+62恒过定点⎝⎛⎭⎫2,62,又点⎝⎛⎭⎫2,62在椭圆上,故直线与椭圆可能相交也可能相切. 思维升华 判断直线与椭圆位置关系的方法(1)判断直线与椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数. (2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点. 跟踪训练1 已知动点M 到两定点F 1(-m ,0),F 2(m ,0)的距离之和为4(0<m <2),且动点M 的轨迹曲线C 过点N ⎝⎛⎭⎫3,12. (1)求m 的值;(2)若直线l :y =kx +2与曲线C 有两个不同的交点A ,B ,求k 的取值范围.解 (1)由0<m <2,得2m <4,可知曲线C 是以两定点F 1(-m ,0),F 2(m ,0)为焦点,长半轴长为2的椭圆,所以a =2,设曲线C 的方程为x 24+y 2b 2=1,把点N ⎝⎛⎭⎫3,12代入, 得34+14b2=1, 解得b 2=1,由c 2=a 2-b 2, 解得c 2=3, 所以m = 3.(2)由(1)知曲线C 的方程为x 24+y 2=1,联立方程得⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +2,消去y 得⎝⎛⎭⎫14+k 2x 2+22kx +1=0, 则有Δ=4k 2-1>0,得k 2>14.所以k >12或k <-12,所以k 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞. 题型二 弦长及中点弦问题 命题点1 弦长问题例2 (2022·百校联盟开学考)在平面直角坐标系Oxy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.若|AB |=5,求直线l 的方程.解(1)∵e 2=c 2a 2=a 2-b 2a 2=34, ∴a 2=4b 2.又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),∴4a 2+1b 2=1, ∴a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =12x +m ,x 28+y22=1,整理,得x 2+2mx +2m 2-4=0. ∴Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2)=5,解得m =±3.所求直线l 的方程为y =12x ±3.命题点2 中点弦问题例3 已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为__________. 答案 x +2y -3=0解析 方法一 易知此弦所在直线的斜率存在,∴设其方程为y -1=k (x -1),弦所在的直线与椭圆相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y -1=k (x -1),x 24+y 22=1,消去y 得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0, ∴x 1+x 2=4k (k -1)2k 2+1,又∵x 1+x 2=2, ∴4k (k -1)2k 2+1=2,解得k =-12. 经检验,k =-12满足题意.故此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.方法二 易知此弦所在直线的斜率存在,∴设斜率为k ,弦所在的直线与椭圆相交于A ,B 两点, 设A (x 1,y 1),B (x 2,y 2),则x 214+y 212=1,① x 224+y 222=1,② ①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0, 又x 2-x 1≠0,∴k =y 1-y 2x 1-x 2=-12.经检验,k =-12满足题意.∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0. 教师备选已知直线l 与椭圆x 24+y 23=1相交于A ,B 两点,且线段AB 的中点P (1,1).(1)求直线l 的方程; (2)求△OAB 的面积.解 (1)由斜率公式可知k OP =1, 设A (x 1,y 1),B (x 2,y 2). 代入椭圆方程得到,⎩⎨⎧x 214+y 213=1,x 224+y 223=1⇒x 21-x 224+y 21-y 223=0,化简得到-34×x 1+x 2y 1+y 2=y 1-y 2x 1-x 2=k AB,∵x 1+x 2=2,y 1+y 2=2, ∴k AB =-34,∴直线方程为y -1=-34(x -1),∴直线l 的方程为3x +4y -7=0.(2)将直线方程与椭圆方程联立,可得21x 2-42x +1=0, Δ=422-4×21>0, ∴x 1+x 2=2,x 1x 2=121.由弦长公式得到 |AB |=1+k 2|x 1-x 2|=1+916×4-421=54×410521=510521, 再由点到直线的距离公式得到坐标原点到直线AB 的距离d =|-7|9+16=75, ∴△OAB 的面积S =12×510521×75=1056.思维升华 解决圆锥曲线“中点弦”问题的思路跟踪训练2 (1)(2022·济宁模拟)已知椭圆C :x 24+y 23=1,过点P ⎝⎛⎭⎫1,12的直线交椭圆C 于A ,B 两点,若P 为AB 的中点,则直线AB 的方程为( ) A .3x -2y -2=0B .3x +2y -4=0C .3x +4y -5=0D .3x -4y -1=0答案 B解析 设点A (x 1,y 1),B (x 2,y 2), 由中点坐标公式可得⎩⎪⎨⎪⎧x 1+x 22=1,y 1+y 22=12,所以⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=1,由⎩⎨⎧x 214+y 213=1, ①x 224+y223=1,②①-②得x 21-x 224+y 21-y 223=0,即y 21-y 22x 21-x 22=-34, 即y 1+y 2x 1+x 2·y 1-y 2x 1-x 2=12k AB =-34,所以k AB =-32,因此直线AB 的方程为y -12=-32(x -1),即3x +2y -4=0.(2)已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,过原点的直线l 与E 交于A ,B 两点,且AF 1,BF 2都与x 轴垂直,则|AB |=________. 答案13解析 由题意得c 2=a 2-b 2=4-3=1,因为直线l 过原点,且交椭圆E 于A ,B 两点,所以A 与B 关于原点对称,又AF 1,BF 2都与x 轴垂直, 所以设A (-1,y 1),B (1,-y 1), 则|AB |=(-1-1)2+[y 1-(-y 1)]2=4+4y 21.又点A 在椭圆E 上, 所以14+y 213=1,得y 21=94, 则|AB |=4+4×94=13.题型三 直线与椭圆的综合问题例4 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)过点P (1,0)的直线l 与椭圆C 交于A ,B 两点,若△ABO 的面积为35(O 为坐标原点),求直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧c a =32,2b =2,c 2=a 2-b 2,解得a 2=4,b 2=1.故椭圆C 的标准方程为x 24+y 2=1.(2)由题意可知直线的斜率不为0, 则设直线的方程为x =my +1,A (x 1,y 1), B (x 2,y 2).联立⎩⎪⎨⎪⎧x =my +1,x 24+y 2=1,整理得(m 2+4)y 2+2my -3=0,Δ=(2m )2-4(m 2+4)×(-3)=16m 2+48>0, 则y 1+y 2=-2m m 2+4,y 1y 2=-3m 2+4,故|y 1-y 2|=(y 1+y 2)2-4y 1y 2 =⎝ ⎛⎭⎪⎫-2m m 2+42+12m 2+4=4m 2+3m 2+4, 因为△ABO 的面积为35, 所以12|OP ||y 1-y 2|=12×1×4m 2+3m 2+4=2m 2+3m 2+4=35, 设t =m 2+3≥3,则2t t 2+1=35, 整理得(3t -1)(t -3)=0,解得t =3或t =13(舍去),即m =±6. 故直线的方程为x =±6y +1,即x ±6y -1=0.教师备选(2020·天津)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个顶点为A (0,-3),右焦点为F ,且|OA |=|OF |,其中O 为原点.(1)求椭圆的方程;(2)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.解 (1)由已知可得b =3,记半焦距为c ,由|OF |=|OA |可得c =b =3,又由a 2=b 2+c 2,可得a 2=18,所以椭圆的方程为x 218+y 29=1. (2)因为直线AB 与以C 为圆心的圆相切于点P ,所以AB ⊥CP .依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为y =kx -3.联立方程组⎩⎪⎨⎪⎧y =kx -3,x 218+y 29=1,消去y 可得(2k 2+1)x 2-12kx =0,解得x =0或x =12k 2k 2+1. 依题意,可得点B 的坐标为⎝ ⎛⎭⎪⎫12k 2k 2+1,6k 2-32k 2+1. 因为P 为线段AB 的中点,点A 的坐标为(0,-3),所以点P 的坐标为⎝ ⎛⎭⎪⎫6k 2k 2+1,-32k 2+1. 由3OC →=OF →,得点C 的坐标为(1,0),故直线CP 的斜率为-32k 2+1-06k 2k 2+1-1=32k 2-6k +1. 又因为AB ⊥CP ,所以k ·32k 2-6k +1=-1, 整理得2k 2-3k +1=0,解得k =12或k =1. 所以直线AB 的方程为y =12x -3或y =x -3, 即x -2y -6=0或x -y -3=0.思维升华 (1)解答直线与椭圆相交的题目时,常用到“设而不求”的方法,即联立直线和椭圆的方程,消去y (或x )得一元二次方程,然后借助根与系数的关系,并结合题设条件,建立有关参变量的等量关系求解.(2)涉及直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形. 跟踪训练3 已知椭圆C 的两个焦点分别为F 1(-1,0),F 2(1,0),短轴的两个端点分别为B 1,B 2.(1)若△F 1B 1B 2为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点F 2的直线l 与椭圆C 相交于P ,Q 两点,且F 1P -→⊥F 1Q -→,求直线l 的方程.解 (1)由题意知,△F 1B 1B 2为等边三角形,所以c =3b ,又c =1,所以b =33, 又由a 2=b 2+c 2,可得a 2=43, 故椭圆C 的方程为3x 24+3y 2=1. (2)易知椭圆C 的方程为x 22+y 2=1, 当直线l 的斜率不存在时,其方程为x =1,不符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),由⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1, 得(2k 2+1)x 2-4k 2x +2(k 2-1)=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2(k 2-1)2k 2+1, F 1P -→=(x 1+1,y 1),F 1Q -→=(x 2+1,y 2),因为F 1P -→⊥F 1Q -→,所以F 1P -→·F 1Q -→=0,即(x 1+1)(x 2+1)+y 1y 2=x 1x 2+(x 1+x 2)+1+k 2(x 1-1)(x 2-1)=(k 2+1)x 1x 2-(k 2-1)(x 1+x 2)+k 2+1=7k 2-12k 2+1=0, 解得k 2=17,即k =±77, 故直线l 的方程为x +7y -1=0或x -7y -1=0.课时精练1.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是( ) A .(1,+∞)B .(1,3)∪(3,+∞)C .(3,+∞)D .(0,3)∪(3,+∞)答案 B 解析 由⎩⎪⎨⎪⎧ y =x +2,x 2m +y 23=1,得(m +3)x 2+4mx +m =0.由Δ>0且m ≠3及m >0,得m >1且m ≠3. 2.已知椭圆M :x 2a 2+y 2b2=1(a >b >0),过M 的右焦点F (3,0)作直线交椭圆于A ,B 两点,若AB 的中点坐标为(2,1),则椭圆M 的方程为( )A.x 29+y 26=1 B.x 24+y 2=1 C.x 212+y 23=1 D.x 218+y 29=1 答案 D解析 直线AB 的斜率k =1-02-3=-1, 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程可得x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1, 两式相减,整理得2a 2-1b 2=0, 又c =3,a 2=b 2+c 2.联立解得a 2=18,b 2=9.所以椭圆M 的方程为x 218+y 29=1. 3.(多选)已知椭圆x 22+y 2=1与直线y =x +m 交于A ,B 两点,且|AB |=423,则实数m 的值为( )A .-1B .1C .-2D .2答案 AB解析 由⎩⎪⎨⎪⎧x 22+y 2=1,y =x +m消去y 并整理, 得3x 2+4mx +2m 2-2=0.Δ=16m 2-12(2m 2-2)=-8m 2+24>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4m 3,x 1x 2=2m 2-23. 由题意, 得|AB |=2(x 1+x 2)2-8x 1x 2=423, 解得m =±1,满足题意.4.已知直线y =kx +1,当k 变化时,此直线被椭圆x 24+y 2=1截得的最大弦长是( ) A .2 B.433 C .4D .不能确定答案 B解析 直线恒过定点(0,1),且点(0,1)在椭圆上,可设另外一个交点为(x ,y ),则弦长为x 2+(y -1)2=4-4y 2+y 2-2y +1 =-3y 2-2y +5=-3⎝⎛⎭⎫y +132+163, 所以当y =-13时,弦长最大为433. 5.(多选)设椭圆的方程为x 22+y 24=1,斜率为k 的直线不经过原点O ,而且与椭圆相交于A ,B 两点,M 为线段AB 的中点.下列结论正确的是( )A .直线AB 与OM 垂直B .若点M 坐标为(1,1),则直线方程为2x +y -3=0C .若直线方程为y =x +1,则点M 坐标为⎝⎛⎭⎫13,43D .若直线方程为y =x +2,则|AB |=423答案 BD解析 对于A 项,因为在椭圆中,根据椭圆的中点弦的性质k AB ·k OM =-42=-2≠-1,所以A 项不正确;对于B 项,根据k AB ·k OM =-2,所以k AB =-2,所以直线方程为y -1=-2(x -1),即2x +y -3=0,所以B 项正确;对于C 项,若直线方程为y =x +1,点M ⎝⎛⎭⎫13,43,则k AB ·k OM =1×4=4≠-2,所以C 项不正确;对于D 项,若直线方程为y =x +2,与椭圆方程x 22+y 24=1联立, 得到2x 2+(x +2)2-4=0,整理得3x 2+4x =0,解得x 1=0,x 2=-43, 所以|AB |=1+12⎪⎪⎪⎪-43-0=423, 所以D 项正确.6.(多选)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两焦点分别是F 1,F 2,其中|F 1F 2|=2c .直线l :y =k (x +c )(k ∈R )与椭圆交于A ,B 两点,则下列说法中正确的有( )A .△ABF 2的周长为4aB .若AB 的中点为M ,则k OM ·k =b 2a 2 C .若AF 1-→·AF 2-→=3c 2,则椭圆的离心率的取值范围是⎣⎡⎦⎤55,12 D .若|AB |的最小值为3c ,则椭圆的离心率e =13答案 AC解析 由直线l :y =k (x +c )过点(-c ,0),知弦AB 过椭圆的左焦点F 1.所以△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a ,所以A 正确;设A (x 1,y 1),B (x 2,y 2),则M ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, k OM =y 1+y 2x 1+x 2,k =y 1-y 2x 1-x 2, 所以k OM ·k =y 1+y 2x 1+x 2·y 1-y 2x 1-x 2=y 21-y 22x 21-x 22, 由⎩⎨⎧ x 21a 2+y 21b 2=1, ①x 22a 2+y 22b 2=1, ②①-②得x 21-x 22a 2+y 21-y 22b2=0, 所以y 21-y 22x 21-x 22=-b 2a 2, 则k OM ·k =y 21-y 22x 21-x 22=-b 2a 2, 所以B 错误;AF 1-→=(-c -x 1,-y 1),AF 2-→=(c -x 1,-y 1),所以AF 1-→·AF 2-→=x 21-c 2+y 21=c 2a 2x 21+a 2-2c 2∈[a 2-2c 2,a 2-c 2], 则a 2-2c 2≤3c 2≤a 2-c 2,可得e =c a ∈⎣⎡⎦⎤55,12, 所以C 正确;由过焦点的弦中通径最短,则|AB |的最小值为通径2b 2a ,则有2b 2a=3c , 即2a 2-3ac -2c 2=0,解得a =2c ,所以e =c a =12,所以D 错误. 7.已知直线l :y =k (x -1)与椭圆C :x 24+y 2=1交于不同的两点A ,B ,AB 中点的横坐标为12,则k =________.答案 ±12解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1,得(4k 2+1)x 2-8k 2x +4k 2-4=0,因为直线l 过椭圆内的定点(1,0),所以Δ>0,x 1+x 2=8k 24k 2+1, 所以x 1+x 22=4k 24k 2+1=12, 即k 2=14,所以k =±12. 8.与椭圆x 22+y 2=1有相同的焦点且与直线l :x -y +3=0相切的椭圆的离心率为________. 答案 55解析 因为所求椭圆与椭圆x 22+y 2=1有相同的焦点,所以可设所求椭圆的方程为 x 2a 2+y 2a 2-1=1(a >1), 联立方程组⎩⎨⎧ x 2a 2+y 2a 2-1=1,y =x +3⇒(2a 2-1)x 2+6a 2x +10a 2-a 4=0,因为直线l 与椭圆相切,所以Δ=36a 4-4(2a 2-1)(10a 2-a 4)=0,化简得a 4-6a 2+5=0,即a 2=5或a 2=1(舍).则a = 5.又c =1,所以e =c a =15=55. 9.已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,右焦点为F ,椭圆M 的离心率为12,且过点⎝⎛⎭⎫1,32. (1)求椭圆M 的方程;(2)若过点N (1,1)的直线与该椭圆M 交于P ,Q 两点,且线段PQ 的中点恰为点N ,求直线PQ 的方程.解 (1)∵e =c a =1-b 2a 2=12, 则3a 2=4b 2,将⎝⎛⎭⎫1,32代入椭圆方程得 1a 2+94b2=1, 解得a =2,b =3, ∴椭圆M 的方程为x 24+y 23=1. (2)设P (x P ,y P ),Q (x Q ,y Q ),∵线段PQ 的中点恰为点N ,∴x P +x Q =2,y P +y Q =2.∵x 2P 4+y 2P 3=1,x 2Q 4+y 2Q 3=1,两式相减可得 14(x P +x Q )(x P -x Q )+13(y P +y Q )(y P -y Q )=0, ∴y P -y Q x P -x Q=-34, 即直线PQ 的斜率为-34, ∴直线PQ 的方程为y -1=-34(x -1), 即3x +4y -7=0.10.设中心在原点,焦点在x 轴上的椭圆E 过点⎝⎛⎭⎫1,32,且离心率为32.F 为E 的右焦点,P 为E 上一点,PF ⊥x 轴,⊙F 的半径为PF .(1)求椭圆E 和⊙F 的方程;(2)若直线l :y =k (x -3)(k >0)与⊙F 交于A ,B 两点,与E 交于C ,D 两点,其中A ,C 在第一象限,是否存在k 使|AC |=|BD |?若存在,求出直线l 的方程;若不存在,说明理由.解 (1)设E 的方程为x 2a 2+y 2b2=1(a >b >0), 由题设知1a 2+34b 2=1,a 2-b 2a =32. 解得a =2,b =1,故椭圆E 的方程为x 24+y 2=1. 因此F (3,0),|PF |=12,即⊙F 的半径为12. 所以⊙F 的方程为(x -3)2+y 2=14. (2)由题设可知,A 在E 外,B 在E 内,C 在⊙F 内,D 在⊙F 外,在l 上的四点A ,B ,C ,D 满足|AC |=|AB |-|BC |,|BD |=|CD |-|BC |.设C (x 1,y 1),D (x 2,y 2),将l 的方程代入E 的方程得(1+4k 2)x 2-83k 2x +12k 2-4=0,则x 1+x 2=83k 24k 2+1, x 1x 2=12k 2-44k 2+1,|CD|=1+k2(x1+x2)2-4x1x2=4k2+44k2+1=1+34k2+1>1,又⊙F的直径|AB|=1,所以|BD|-|AC|=|CD|-|AB|=|CD|-1>0,故不存在正数k使|AC|=|BD|.11.(2022·临沂模拟)过椭圆内定点M且长度为整数的弦,称作该椭圆过点M的“好弦”.在椭圆x264+y216=1中,过点M(43,0)的所有“好弦”的长度之和为()A.120 B.130C.240 D.260答案 C解析由已知可得a=8,b=4,所以c=43,故M为椭圆的右焦点,由椭圆的性质可得当过焦点的弦垂直x轴时弦长最短,所以当x=43时,最短的弦长为2b2a =2×168=4,当弦与x轴重合时,弦长最长为2a=16,则弦长的取值范围为[4,16],故弦长为整数的弦有4到16的所有整数,则“好弦”的长度和为4+16+(5+6+7+…+15)×2=240.12.(2022·江南十校模拟)已知椭圆C:x2a2+y2=1(a>1)的左、右焦点分别为F1,F2,过F1的直线与椭圆交于M,N两点,若△MNF2的周长为8,则△MF1F2面积的最大值为()A.32 B. 3C.2 3 D.3 答案 B解析 由椭圆的定义可得△MNF 2的周长为|MN |+|MF 2|+|NF 2|=|MF 1|+|NF 1|+|MF 2|+|NF 2|=4a =8,∴a =2,则c =3,则△MF 1F 2面积的最大值为12·2c ·b =bc = 3. 13.(2022·兰州质检)已知P (2,-2)是离心率为12的椭圆x 2a 2+y 2b 2=1(a >b >0)外一点,经过点P 的光线被y 轴反射后,所有反射光线所在直线中只有一条与椭圆相切,则此条切线的斜率是( )A .-18B .-12C .1D.18答案 D解析 由题意可知e =c a =12, 又a 2=b 2+c 2,故b 2=34a 2, 设过点P 的直线斜率为k ,则直线方程为y +2=k (x -2),即y =kx -2k -2,则反射后的切线方程为y =-kx -2k -2, 由⎩⎪⎨⎪⎧ y =-kx -2k -2,x 2a 2+y 2b 2=1,得(3+4k 2)x 2+16k (k +1)x +16k 2+32k +16-3a 2=0,∵所有反射光线所在直线中只有一条与椭圆相切,∴Δ=[16k (k +1)]2-4(3+4k 2)(16k 2+32k +16-3a 2)=0,化简得4a 2k 2+3a 2=16k 2+32k +16,即⎩⎪⎨⎪⎧4a 2=16,3a 2=32k +16,解得⎩⎪⎨⎪⎧a 2=4,k =-18. ∴此切线的斜率为18. 14.(多选)已知O 为坐标原点,椭圆T :x 24+y 23=1的右焦点为F ,过点F 的直线交椭圆T 于A ,B 两点,则下列结论正确的是( )A .|AB |的最小值为32B .若M (异于点F )为线段AB 的中点,则直线AB 与OM 的斜率之积为-34C .若AF →=-2BF →,则直线AB 的斜率为±52D .△AOB 面积的最大值为3答案 BC解析 对于A ,易知当直线AB 垂直于x 轴时,|AB |取得最小值,由椭圆T 的方程知F (1,0),当x =1时,y =±32, 所以|AB |的最小值为3,故A 错误;对于B ,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),x 1≠x 2,x 0≠0,因为M 为线段AB 的中点,所以x 0=x 1+x 22,y 0=y 1+y 22, 又点A ,B 在椭圆T 上,所以x 214+y 213=1,x 224+y 223=1, 两式相减得y 1-y 2x 1-x 2=-34·x 1+x 2y 1+y 2 =-34·x 0y 0, 所以y 1-y 2x 1-x 2·y 0x 0=-34, 即直线AB 与OM 的斜率之积为-34,故B 正确;对于C ,易知直线AB 的斜率存在且不为零,设直线AB 的方程为x =my +1,代入椭圆T 的方程得(3m 2+4)y 2+6my -9=0,则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 因为AF →=-2BF →,所以y 1=-2y 2,所以y 1+y 2=-y 2=-6m 3m 2+4, 则y 2=6m 3m 2+4,y 1=-12m 3m 2+4, 所以y 1y 2=6m 3m 2+4·⎝ ⎛⎭⎪⎫-12m 3m 2+4=-93m 2+4, 解得m =±255, 所以直线AB 的斜率为±52,故C 正确; 对于D ,△AOB 的面积S =12|OF ||y 1-y 2|=12|y 1-y 2| =12(y 1+y 2)2-4y 1y 2=6m 2+13m 2+4, 令m 2+1=t ,则t ≥1,S =6t 3t 2+1=63t +1t, 因为函数y =3t +1t在t ∈[1,+∞)上单调递增,所以当t =1,即m =0时,△AOB 的面积取得最大值,且最大值为32,故D 错误.15.(多选)已知F 1,F 2是椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M ,N 是左、右顶点,e 为椭圆C 的离心率,过右焦点F 2的直线l 与椭圆交于A ,B 两点,若AF 1―→·BF 1―→=0,3AF 2―→=2F 2B ―→,|AF 1|=2|AF 2|,设直线AB 的斜率为k ,直线AM 和直线AN 的斜率分别为k 1,k 2,直线BM 和直线BN 的斜率分别为k 3,k 4,则下列结论一定正确的是( )A .e =55B .k =±12C .k 1·k 2=-45D .k 3·k 4=45答案 AC解析 ∵AF 1―→·BF 1―→=0,∴AF 1⊥BF 1,过点F 2作F 1B 的平行线,交AF 1于点E ,∴AF 1⊥EF 2.设|F 2A |=2t ,|F 1A |=4t ,又3AF 2-→=2F 2B -→,∴|AB |=5t ,∵AF 1⊥BF 1,∴|F 1B |=3t ,∴12t =4a ,∴a =3t .∴|BF 1|=|BF 2|=3t =a ,∴B (0,±b ).在△EF 1F 2中,|EF 1|=35|AF 1|=12t 5, |EF 2|=25|BF 1|=6t 5, |F 1F 2|=2c ,∵|EF 1|2+|EF 2|2=|F 1F 2|2,∴c =3t 5,b =a 2-c 2=6t 5, 椭圆离心率e =c a =55,故A 正确; k =±b c=±2,故B 错误;设A (x ,y ),易得M (-a ,0),N (a ,0),则k 1·k 2=y x +a ·y x -a =y 2x 2-a 2=b 2⎝⎛⎭⎫1-x 2a 2x 2-a 2=-b 2a 2=-45, 故C 正确;同理k 3·k 4=-b 2a 2=-45, 故D 错误.16.已知直线l 经过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点(1,0),交椭圆C 于点A ,B ,点F 为椭圆C 的左焦点,△ABF 的周长为8.(1)求椭圆C 的标准方程;(2)若直线m 与直线l 的倾斜角互补,且交椭圆C 于点M ,N ,|MN |2=4|AB |,求证:直线m 与直线l 的交点P 在定直线上.(1)解 由已知得⎩⎪⎨⎪⎧ c =1,4a =8,∴⎩⎪⎨⎪⎧c =1,a =2,∴b 2=3,∴椭圆C 的标准方程为x 24+y 23=1. (2)证明 若直线l 的斜率不存在,则直线m 的斜率也不存在,这与直线m 与直线l 相交于点P 矛盾,∴直线l 的斜率存在.设l :y =k (x -1)(k ≠0),m :y =-k (x +t ),A (x A ,y A ),B (x B ,y B ),M (x M ,y M ),N (x N ,y N ). 将直线m 的方程代入椭圆方程得,(3+4k 2)x 2+8k 2tx +4(k 2t 2-3)=0,∴x M +x N =-8k 2t 3+4k 2, x M x N =4(k 2t 2-3)3+4k 2,∴|MN |2=(1+k 2)·16(12k 2-3k 2t 2+9)(3+4k 2)2. 同理,|AB |=1+k 2·49k 2+93+4k 2 =12(1+k 2)3+4k 2. 由|MN |2=4|AB |得t =0,此时,Δ=64k 4t 2-16(3+4k 2)(k 2t 2-3)>0, ∴直线m :y =-kx ,∴P ⎝⎛⎭⎫12,-12k ,即点P 在定直线x =12上.。