直线与椭圆的位置关系
- 格式:pdf
- 大小:239.81 KB
- 文档页数:14
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
直线与椭圆位置关系二(教师版)一.知识梳理:1.点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:(1)点P 在椭圆上⇔x 02a 2+y 02b2=1;(2)点P 在椭圆内部⇔x 02a 2+y 02b 2<1;(3)点P 在椭圆外部⇔x 02a 2+y 02b2>12.直线与椭圆的位置关系:(1)直线与椭圆有三种位置关系:①相交——直线与椭圆有两个不同的公共点;②相切——直线与椭圆有且只有一个公共点; ③相离——直线与椭圆没有公共点. 3.直线与椭圆的位置关系的判断:我们把直线与椭圆的位置关系问题转化为直线和椭圆的公共点问题,而直线与椭圆的公共点问题,又可以转化为它们的方程所组成的方程组的解的问题,而它们的方程所组成的方程组的解的问题通常又可以转化为一元二次方程解的问题,一元二次方程解的问题可以通过判别式来判断,因此,直线和椭圆的位置关系,通常可由相应的一元二次方程的判别式来判断.4.弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2,∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2,或|AB |=(1k y 1-1ky 2)2+(y 1-y 2)2=1+1k2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2.二、典例剖析例1: 已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解:(1)设F (c ,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1.故E 的方程为x24+y 2=1.(2)当l ⊥x 轴时不合题意,故可设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0,当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1,从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.,又点O 到直线l 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,满足Δ>0,所以,当△OPQ 的面积最大时,k =±72,l 的方程为y =72x -2或y =-72x -2.例2 设F 1,F 2分别是椭圆:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,椭圆的离心率22,过F 1倾斜角为45°的直线l 与该椭圆相交于P ,Q 两点,点M (0,-1)满足|MP |=|MQ |,求该椭圆的方程.解 (1)直线PQ 斜率为1,设直线l 的方程为y =x +c ,其中c =a 2-b 2,设P (x 1,y 1),Q (x 2,y 2),则P ,Q 两点坐标满足方程组 ⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b2=1,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.所以|PQ |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2]=43a ,化简,得43a =4ab 2a 2+b2,故a 2=2b 2,所以椭圆的离心率e =c a =a 2-b 2a =22.(2)设PQ 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b2=-23c ,y 0=x 0+c =c3.由|MP |=|MQ |,得k MN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3.故椭圆的方程为x 218+y 29=1. 变式训练:设1F 、2F 分别是椭圆1422=+y x 的左、右焦点.设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.本题主要考察直线、椭圆、平面向量的数量积等基础知识, 以及综合应用数学知识解决问题及推理计算能力。
第40讲 直线和椭圆的位置关系[玩前必备]一、直线与椭圆的位置关系1.位置关系的判断直线与椭圆方程联立方程组,消掉y ,得到Ax 2+Bx +C =0的形式(这里的系数A 一定不为0),设其判别式为Δ,(1)Δ>0⇔直线与椭圆相交;(2)Δ=0⇔直线与椭圆相切;(3)Δ<0⇔直线与椭圆相离.2.弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为2a . [玩转典例]题型一 直线与圆的位置关系的判断例1 若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( ) A .(1,+∞)B .(0,+∞)C .(0,1)∪(1,5)D .[1,5)∪(5,+∞)例2 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C : (1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.[玩转跟踪]1.(2020·全国高三课时练习(理))已知直线y =kx -k -1与曲线C :x 2+2y 2=m(m>0)恒有公共点,则m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(3,+∞)D .(-∞,3)2.(2020·全国高三课时练习)若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( ) A .2个 B .至多一个 C .1个 D .0个题型二 椭圆的弦长问题例3 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 的斜率为0时,|AB |=4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[玩转跟踪]1.已知椭圆x 22+y 2=1与直线y =x +m 交于A ,B 两点,且|AB |=423,则实数m 的值为( ) A .±1B .±12 C. 2 D .±22.椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12,过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)若直线AB 的斜率为3,求△ABF 2的面积.题型三 中点弦问题例4 (1)已知椭圆x 22+y 2=1,则斜率为2的平行弦中点的轨迹方程为________________. (2)焦点是F (0,5 2),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________________. 例5 如图,已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点,设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G横坐标的取值范围.[玩转跟踪]1.过椭圆x 216+y 24=1内一点P (3,1),且被点P 平分的弦所在直线的方程是( ) A .4x +3y -13=0B .3x +4y -13=0C .4x -3y +5=0D .3x -4y +5=02.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称,求实数m 的取值范围.题型四 椭圆大题例6 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC ―→·DB ―→+AD ―→·CB―→=8,O 为坐标原点,求△OCD 的面积.[玩转跟踪]1.已知动点M 到两定点F 1(-m,0),F 2(m,0)的距离之和为4(0<m <2),且动点M 的轨迹曲线C 过点N ⎝⎛⎭⎫3,12. (1)求m 的值;(2)若直线l :y =kx +2与曲线C 有两个不同的交点A ,B ,且OA ―→·OB ―→=2(O 为坐标原点),求k 的值.[玩转练习]1.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A .至多一个B .2C .1D .02.椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( )A .-23B .-32C .-49D .-943.已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( ) A.223B.423C. 2 D .24.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP ―→+OF 2―→)·PF 2―→=0(O 为坐标原点),则△F 1PF 2的面积是( )A .4B .3C .2D .15.(多选)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点M (2,1)在椭圆C 上,直线l 平行于OM 且在y 轴上的截距为m ,直线l 与椭圆C 交于A ,B 两个不同的点.下面结论正确的有( )A .椭圆C 的方程为x 28+y 22=1B .k OM =12C .-2<m <2D .m ≤-2或m ≥26.(多选)已知B 1,B 2是椭圆x 2a 2+y 2b 2=1(a >b >0)短轴上的两个顶点,点P 是椭圆上不同于短轴端点的任意一点,点Q 与点P 关于y 轴对称,则下列四个命题中正确的是( )A .直线PB 1与PB 2的斜率之积为定值-a 2b 2 B .PB 1―→·PB 2―→>0C .△PB 1B 2的外接圆半径的最大值为a 2+b 22aD .直线PB 1与QB 2的交点M 的轨迹为双曲线7.已知椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( ) A .(1,6)B .(1,5)C .(3,6)D .(3,5)8.(一题两空)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,点A 在椭圆C 上,|AF 1|=2,∠F 1AF 2=60°,过F 2与坐标轴不垂直的直线l 与椭圆C 交于P ,Q 两点,N 为线段PQ 的中点.则椭圆C 的方程为________;若点M 的坐标为⎝⎛⎭⎫0,18,且MN ⊥PQ ,则线段MN 所在的直线方程为_____________.9.中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是____________.10.过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为__________.11.(2020·上饶模拟)已知两定点A (-1,0)和B (1,0),动点P (x ,y )在直线l :y =x +2上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________.12.(一题两空)已知椭圆C 的两个焦点为F 1(-1,0),F 2(1,0),且经过点E ⎝⎛⎭⎫3,32. (1)椭圆C 的方程为____________.(2)过F 1的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若AF 1―→=2F 1B ―→,则直线l 的斜率k 的值为________.13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),长半轴与短半轴的比值为2. (1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.14.在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴,y 轴上滑动,CP ―→= 2 PD ―→.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线l 与曲线E 相交于A ,B 两点,OM ―→=OA ―→+OB ―→,当点M 在曲线E 上时,求直线l 的方程.15.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 为椭圆C 上任意一点,点A 关于原点O 的对称点为点B ,有|AF 1|+|BF 1|=4,且∠F 1AF 2的最大值为π3. (1)求椭圆C 的标准方程;(2)若A ′是点A 关于x 轴的对称点,设点N (-4,0),连接NA 与椭圆C 相交于点E ,直线A ′E 与x 轴相交于点M ,试求|NF 1|·|MF 2|的值.。
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
直线与椭圆的位置关系
直线与椭圆的位置关系是数学几何学的一个重要问题。
在这篇
文档中,我们将讨论直线与椭圆的几种可能的位置关系。
直线位于椭圆内部
当一条直线完全位于椭圆内部时,我们可以得到以下几种情况:
1. 直线与椭圆没有交点:这意味着直线与椭圆没有任何交点,
且直线与椭圆的轴是平行的。
2. 直线与椭圆有两个交点:这说明直线与椭圆相交于两个点,
椭圆的两个焦点位于直线上。
直线与椭圆位于同一平面
当直线与椭圆位于同一平面时,我们可以得到以下几种情况:
1. 直线与椭圆相切:这种情况下,直线与椭圆只有一个交点,
并且交点是椭圆的一个焦点。
2. 直线与椭圆相交于两点:这意味着直线与椭圆相交于两个不同的点,并且这两个点分别位于椭圆的两个焦点的同侧。
3. 直线与椭圆相离:这种情况下,直线与椭圆没有任何交点,并且直线与椭圆的轴平行。
直线与椭圆相交于无穷多点
当直线与椭圆相交于无穷多点时,这种情况被称为直线与椭圆重叠。
直线与椭圆重叠意味着直线和椭圆重合,任意一点都同时位于直线和椭圆上。
结论
通过研究直线与椭圆的位置关系,我们可以得出结论:直线与椭圆的位置关系取决于直线与椭圆之间的交点数量和位置。
这个问题在计算机图形学、建筑设计等领域都有广泛的应用。
了解这些位置关系有助于我们更好地理解直线和椭圆之间的几何性质。
总之,直线与椭圆的位置关系是一个有趣且复杂的问题,通过分析直线与椭圆的交点情况,我们可以获得更多关于它们的几何特性的信息。