函数与方程思想3
- 格式:doc
- 大小:297.00 KB
- 文档页数:11
函数与方程的思想函数与方程思想是最重要的一种数学思想,在高考中所占比重较大,综合知识多、题型多、应用技巧多。
函数思想是指用函数的概念、性质、图像去分析问题、转化问题和解决问题,具体体现在:①运用函数的性质解决数学问题;②用映射、函数的观点去观察、分析问题中的数量关系,通过函数的形式把这种数量关系表示出来并加以研究,从而解决问题;③对解不等式、讨论方程的解的个数或分布、某些参数范围的讨论问题等可通过构造函数,利用函数的性质解决。
方程思想是分析数学问题中变量间的相等关系,从而建立方程(组)将问题解决的一种思想方法,具体体现在:①解方程及含参数方程的讨论;②可转化为方程(组)求解的讨论问题及构造方程(组)。
下面通过几个具体例题说明它们的应用。
一、运用函数、方程思想转化解决函数、方程和不等式问题【例】若a,b是正数,且满足ab=a+b+3,求ab 的取值范围。
思维精析把方程转化成关于ab的不等式。
解法一:(看成函数的值域):∵ab=a+b+3∴b=而b>0∴>0 即∵a>0 ∴a>1∴ab=a•==(a-1)++5≥9当且仅当a-1=,即a=3时取等号。
又a>3时,a-1++5是关于a的单调增函数,∴ab的取值范围是[9,+∞)。
解法二:(看成不等式的解集):∵a,b为正数,∴a+b≥2又ab=a+b+3∴ab≥2+3即( )2-2-3≥0即≥3或≤-1∴ab≥9解法三:解若设ab=t,则a+b=t-3∴a,b可看成方程x2-(t-3)x+t=0的两个正根△=(t-3)2-4t≥0a+b=t-3>0ab=t=>t≤1,t≥9t>3t>0 得t≥9 ,即ab≥9。
点拨:从以上解法可以看出,对于同一个问题,用不同的观点去看,会产生不同的想法,从而有不同的处理方法,解法一用函数观点去分析,则应将已知条件变形后去消元;解法二,解法三则利用题中和、积特征构造不等式、方程来求解,它们分别体现了用函数、用不等式、用方程来解决问题的意识,因此,在解题过程中,应多方位、多角度去思考、去探索,选用合理简明的解题途径,以求取得事半功倍之效。
函数与方程思想函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。
函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
方程思想是动中求静,研究运动中的等量关系;3.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y-f(x)=0。
(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根.其中真命题是_____________解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*)作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不等的根,②当0<t<1时,原方程有4个根,③当t=1时,原方程有3个根.(1)当k =-2时,方程(*)有一个正根t =2,相应的原方程的解有2个;(2)当k =14时,方程(*)有两个相等正根t =12,相应的原方程的解有4个; (3)当k =0时,此时方程(*)有两个不等根t =0或t =1,故此时原方程有5个根;(4)当0<k <14时,方程(*)有两个不等正根,且此时方程(*)有两正根且均小于1,故相应的满足方程|x 2-1|=t 的解有8个答案:1234【例2】若不等式x 2+ax +1≥0对于一切x ∈(0,12]成立,则a 的最小值为_____________解答:1. 分离变量,有a≥-(x +1x ),x ∈(0,12]恒成立.右端的最大值为-52,a≥-52.2. 看成关于a 的不等式,由f(0)≥0,且f(12)≥0可求得a 的范围.3. 3. 设f(x)=x 2+ax +1,结合二次函数图象,分对称轴在区间的内外三种情况进行讨论.4. 4. f(x)=x 2+1,g(x)=-ax ,则结合图形(象)知原问题等价于f(12)≥g(12),即a≥-52.【例3】 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x <0时,f′(x)·g(x)+f(x)·g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集为___________解析:以函数为中心,考查通性通法,设F(x)=f(x)g(x),由f(x),g(x)分别是定义在R 上的奇函数和偶函数,所以F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),即F(x)为奇函数.又当x <0时,F′(x)=f ′(x)g(x)+f(x)g′(x)>0,所以x <0时,F(x)为增函数.因为奇函数在对称区间上的单调性相同,所以x >0时,F(x)也为增函数.因为F(-3)=f(-3)g(-3)=0=-F(3).如上图,是一个符合题意的图象,观察知不等式F(x)<0的解集是(-∞,-3)∪(0,3)【例4】已知实数,a b 分别满足553,1532323=+-=+-b b b a a a ,则a b +=_________ 解答:已知的等式都是三次方程,直接通过方程解出,a b 有 一定的困难,但是,题设的两个等式的左边的结构相同,使我们想到用统一的式子来表示这两个等式,对题设的两个等式变形为()()()()331212,1212a a b b -+-=--+-=, 根据这两个等式的特征,构造函数()32f x x x =+.函数()f x 是一个奇函数,又是R 上的增函数,则有于是, ()()()111,f a f b f b -=--=-因而得 11.2.a b a b -=-+= 【例5】 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是___________解答: 圆0104422=---+y x y x 整理为222(2)(2)(32)x y -+-=,∴圆心坐标为(2,2),半径为32,要求圆上至少有三个不同的点到直线0:=+by ax l 的距离为22,则圆心到直线0:=+by ax l 的距离应小于等于2,∴ 22|22|2a b a b ++≤,∴ 241a a b b ⎛⎫⎛⎫++≤ ⎪ ⎪⎝⎭⎝⎭0, ∴ 2323a b ⎛⎫--≤≤-+ ⎪⎝⎭,a k b =-,∴ 2323k -≤≤+, 直线l 的倾斜角的取值范围是51212ππ⎡⎤⎢⎥⎣⎦, 【例6】如果实数,x y 满足等式()2223,x y -+=那么y x的最大值为___________ 心,以3为半径的解答:根据已知等式,画出以()2,0为圆圆,则y x的几何意义是圆上一点(),x y 与原点()0,0所连直线的斜率.显然, y x 的最大值是过原点()0,0与圆相切的直线OA 的斜率,由2,3OC CA ==可得3AOC π∠=. 于是,y x 的最大值是tan 33π= 【例7】设是方程0sin 1tan 12=-+θθx x 的两个不等实根,那么过点和的直线与圆的位置关系是___________ 解答:由题意,, 因此和都在直线上,∴原点到该直线的距离,∴过的直线与单位圆相切. 【例8】设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是__________解答:画出函数()x f 的图像,该图像关于对称,且()0≥x f ,令()t x f =,若0)()(2=++c x bf x f 有7个不同实数解,则方程02=++c bt t 有2个不同实数解,且为一正根,一零根. 因此, 充要条件是0<b 且0=c【例9】. 设函数)(x f =x 2-1,对任意x ∈),23(+∞,)(4)1()(4)(2m f x f x f m mx f +-≤-恒成立,则实数m 的取值范围是____________.【答案】 ⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ 解析:(解法1)不等式化为f(x -1)+4f(m)-f ⎝ ⎛⎭⎪⎫x m +4m 2f(x)≥0, 即(x -1)2-1+4m 2-4-x 2m 2+1+4m 2x 2-4m 2≥0,整理得⎝ ⎛⎭⎪⎫1-1m 2+4m 2x 2-2x -3≥0, 因为x 2>0,所以1-1m 2+4m 2≥2x +3x 2,设g(x)=2x +3x 2,x ∈⎣⎢⎡⎭⎪⎫32,+∞. 于是题目化为1-1m 2+4m 2≥g(x),对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞恒成立的问题. 为此需求g(x)=2x +3x 2,x ∈⎣⎢⎡⎭⎪⎫32,+∞的最大值.设u =1x ,则0<u ≤23. 函数g(x)=h(u)=3u 2+2u 在区间⎝⎛⎦⎥⎤0,23上是增函数,因而在u =23处取得最大值. h ⎝ ⎛⎭⎪⎫23=3×49+2×23=83,所以1-1m 2+4m 2≥g(x)max =83, 整理得12m 4-5m 2-3≥0,即(4m 2-3)(3m 2+1)≥0,所以4m 2-3≥0,解得m ≤-32或m ≥32,因此实数m 的取值范围是m ∈⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. (解法2)(前面同解法1)原题化为1-1m 2+4m 2≥g(x),对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞恒成立的问题. 为此需求g(x)=2x +3x 2,x ∈⎣⎢⎡⎭⎪⎫32,+∞的最大值. 设t =2x +3,则t ∈[6,+∞).g(x)=h(t)=4t t 2-6t +9=4t +9t -6. 因为函数t +9t 在(3,+∞)上是增函数,所以当t =6时,t +9t 取得最小值6+32.从而h(t)有最大值46+32-6=83.所以1-1m 2+4m 2≥g max (x)=83,整理得12m 4-5m 2-3≥0,即(4m 2-3)(3m 2+1)≥0,所以4m 2-3≥0,解得m ≤-32或m ≥32,因此实数m 的取值范围是m ∈⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. (解法3)不等式化为f(x -1)+4f(m)-f ⎝ ⎛⎭⎪⎫x m +4m 2f(x)≥0,即 (x -1)2-1+4m 2-4-x 2m 2+1+4m 2x 2-4m 2≥0,整理得⎝ ⎛⎭⎪⎫1-1m 2+4m 2x 2-2x -3≥0,令F(x)=⎝ ⎛⎭⎪⎫1-1m 2+4m 2x 2-2x -3. 由于F(0)=-3<0,则其判别式Δ>0,因此F(x)的最小值不可能在函数图象的顶点得到,所以为使F(x)≥0对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞恒成立,必须使F ⎝ ⎛⎭⎪⎫32为最小值, 即实数m 应满足⎩⎪⎨⎪⎧ 1-1m 2+4m 2>0,F ⎝ ⎛⎭⎪⎫32≥0,解得m 2≥34,因此实数m 的取值范围是m ∈⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 【例10】.某工厂2005年生产利润逐月增加,且每月增加的利润相同,但由于厂方正在改造建设,一月份投入的建设资金恰与一月份的利润相等,随着投入资金的逐月增加,且每月增加投入的百分率相同,到十二月份投入的建设资金又恰与十二月份生产利润相同,问全年总利润W 与全年总投入资金N 的大小关系是___________解答: 设第一个月的投入资金与一月份的利润均为a ,每月的增加投入百分率为r .则每月的利润组成数列,每月投入资金组成数列, 如图,由两函数图象特点可知,有,可见,故W>N1. (2011·北京)已知函数⎪⎩⎪⎨⎧<-≥=2,)1(2,2)(3x x x x x f 若关于x 的方程k x f =)(有两个不同的实根,则实数k 的取值范围是________.2.(2011·广东)等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.3.(2009·福建)若曲线f(x)=ax 3+lnx 存在垂直于y 轴的切线,则实数a 的取值范围是________.4.(2010·天津)设函数f(x)=x -1x ,对任意x ∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m 的取值范围是________.解答:1. (0,1) 解析:f(x)=2x (x ≥2)单调递减且值域为(0,1],f(x)=(x -1)3(x <2)单调递增且值域为(-∞,1),结合函数的图象可得f(x)=k 有两个不同的实根,则实数k 的取值范围是(0,1).2. 10 解析:S 9=S 4,9a 1+9×82d =4a 1+4×32d ,a 1=1,d =-16;由1+(k -1)⎝ ⎛⎭⎪⎫-16+1+3×⎝ ⎛⎭⎪⎫-16=0,得k =10. 本题也可用数列性质解题,S 9=S 4a 7=0.3. (-∞,0) 解析:由题意可知f ′(x)=3ax 2+1x ,又因为存在垂直于y 轴的切线,所以3ax 2+1x ==-13x 3(x >∈(-∞,0).4. (-∞,-1) 解析:因为对任意x ∈[1,+∞),f(mx)+mf(x)=2mx -1mx -m x <0恒成立,显然m ≠0.所以当m <0时,有2m 2x 2-1-m 2>0对任意x ∈[1,+∞)恒成立,即2m 2×1-1-m 2>0,解得m 2>1,即m <-1;当m >0时,有2m 2x 2-1-m 2<0对任意x ∈[1,+∞)恒成立,m 无解,综上所述实数m 的取值范围是m <-1.解答题题型一 构造函数与方程思想【例1】 已知函数f(x)=x|x 2-3|,x ∈[0,m],其中m ∈R ,且m>0(1) 若m<1,求证:函数f(x)是增函数;(2) 如果函数f(x)的值域是[0,2],试求m 的取值范围;(3) 如果函数f(x)的值域是[0,λm 2],试求实数λ的最小值.解答:(1) 证明:当m<1时,f(x)=x(3-x 2)=3x -x 3,因为f ′(x)=3-3x 2=3(1-x 2)>0,所以f(x)是增函数,(2) 解:令g(x)=x|x 2-3|,x ≥0,则g(x)=⎩⎪⎨⎪⎧3x -x 3,0≤x ≤3,x 3-3x ,x> 3. 当0≤x ≤3时,g ′(x)=3-3x 2,由g ′(x)=0得x =1,所以g(x)在[0,1]上是增函数,在[1,3]上是减函数.当x>3时,g ′(x)=3x 2-3>0,所以g(x)在[3,+∞)上是增函数,所以x ∈[0,3]时,g(x)max =g(1)=2,g(x)min =g(0)=g(3)=0,所以0<m<1不符合题意,1≤m ≤3符合题意.当m>3时,在x ∈[0,3]时,f(x)∈[0,2],在x ∈[3,m]时,f(x)∈[0,f(m)],这时f(x)的值域是[0,2]的充要条件是f(m)≤2,即m 3-3m ≤2,(m -2)(m +1)2≤0,解得3<m ≤2.综上,m 的取值范围是[1,2].(3) 由(2)可知,0<m<1时,函数f(x)的最大值为f(m)=3m -m 3,当1≤m ≤2时,函数f(x)的最大值为f(1)=2.由题意知2=λm 2,即λ=2m 2,m ∈[1,2]时这是减函数,∴ λ∈⎣⎢⎡⎦⎥⎤12,2. 当m>2时,函数f(x)的最大值为f(m)=m 3-3m ,由题意知m 3-3m =λm 2,即λ=m -3m ,这是增函数,∴ λ∈⎝ ⎛⎭⎪⎫12,+∞. 综上,当m =2时,实数λ取最小值为12.变式训练 已知函数g(x)=xlnx ,设0<a <b ,求证:0<g(a)+g(b)-2g ⎝ ⎛⎭⎪⎫a +b 2<(b -a)ln2. 点拨:确定变量,构造函数证明不等式.证明:g(x)=xlnx ,g ′(x)=lnx +1.构造函数F(x)=g(a)+g(x)-2g ⎝ ⎛⎭⎪⎫a +x 2, 则F ′(x)=g ′(x)-2⎣⎢⎡⎦⎥⎤g ⎝ ⎛⎭⎪⎫a +x 2′=lnx -ln a +x 2. 当0<x <a 时,F ′(x)<0,在此F(x)在(0,a)内为减函数;当x >a 时,F ′(x)>0,因此F(x)在(a ,+∞)上为增函数.从而,当x =a 时,F(x)有极小值F(a).因为F(a)=0,b >a ,所以F(b)>0,即0<g(a)+g(b)-2g ⎝ ⎛⎭⎪⎫a +b 2. 再构造函数G(x)=F(x)-(x -a)ln2,则G ′(x)=lnx -ln a +x 2-ln2=lnx -ln(a +x).当x >0时,G ′(x)<0.因此G(x)在(0,+∞)上为减函数.因为G(a)=0,b >a ,所以G(b)<0,即g(a)+g(b)-2g ⎝ ⎛⎭⎪⎫a +b 2<(b -a)ln2. 综上得0<g(a)+g(b)-2g ⎝ ⎛⎭⎪⎫a +b 2<(b -a)ln2. 【例2】已知二次函数y =g(x)的导函数的图象与直线y =2x 平行,且y =g(x)在x =-1处取得最小值m -1(m ≠0).设函数f(x)=g ?x ?x .(1) 若曲线y =f(x)上的点P 到点Q(0,2)的距离的最小值为2,求m 的值(2) k(k ∈R )如何取值时,函数y =f(x)-kx 存在零点,并求出零点.解:(1) 设g(x)=ax 2+bx +c ,则g ′(x)=2ax +b ;又g ′(x)的图象与直线y =2x 平行,∴ 2a =2,a =1.(1分)又g(x)在x =-1取极小值,-b 2=-1,b =2,∴ g(-1)=a -b +c =1-2+c =m -1,c =m ;(2分)f(x)=g ?x ?x =x +m x +2,设P(x 0,y 0),则|PQ|2=x 20+(y 0-2)2=x 20+⎝ ⎛⎭⎪⎫x 0+m x 02=2x 20+m 2x 20+2m ≥22m 2+2m ,(4分) 当且仅当2x 02=m 2x 02时,|PQ|2取最小值,即|PQ|取最小值 2. 当m>0时,22m +2m =2,∴ m =2-1(6分)当m<0时,-22m +2m =2,∴ m =-2-1(7分)(2) 由y =f(x)-kx =(1-k)x +m x +2=0,得(1-k)x 2+2x +m =0. (*)当k =1时,方程(*)有一解x =-m 2,函数y =f(x)-kx 有一零点x =-m 2;(8分)当k ≠1时,方程(*)有二解=4-4m(1-k)>0,若m>0,k>1-1m ,函数y =f(x)-kx 有两个零点x =-2±4-4m ?1-k ?2?1-k ?=1±1-m ?1-k ?k -1;(10分) 若m<0,k<1-1m ,函数y =f(x)-kx 有两个零点,x =-2±4-4m ?1-k ?2?1-k ?=1±1-m ?1-k ?k -1;(12分) 当k ≠1时,方程(*)有一解=4-4m(1-k)=0,k =1-1m , 函数y =f(x)-kx 有一个零点,x =1k -1.(14分) 【例3】.对于定义域为D 的函数,若同时满足下列条件: ①f(x)在D 内单调递增或单调递减;②存在区间使f(x)在上的值域为;那么把叫闭函数.(1)求闭函数符合条件②的区间;(2)判断函数是否为闭函数?并说明理由;(3)若是闭函数,求实数k的范围.分析:这是一个新定义型的题目,要能从题中所给信息,进行加工提炼,得出解题的条件.解:(1)由题意,上递减,则解得所以,所求的区间为[-1,1].(2)当所以,函数在定义域上不单调递增或单调递减,从而该函数不是闭函数.(3)若是闭函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,的两个实数根,即方程有两个不等的实根.设f(x)=x2-(2k+1)x+k2-2.法一:当时有解得.当有此时不等式组无解.综上所述,.法二:只需满足方程x2-(2k+1)x+k2-2=0有两大于或等于k的不等实根,即:点评:在解数学题的过程中,寻找一个命题A的等价命题B往往是解题的关键,本题就是运用函数与方程的思想把一个看似函数性质讨论的问题转化为方程解的讨论问题.题型二函数与方程思想在不等式中的应用【例4】.设a>b>c,且a+b+c=0,抛物线被x轴截得的弦长为l,求证:.证明:,且.从而.故抛物线与x轴有两个不同的交点,即方程必有两个不相等的实数根,由韦达定理得..可见,是的二次函数.由及,得,解得.在上是减函数,,即.题型三函数与方程思想在三角函数中的应用【例5】.已知函数f(x)=x2-(m+1)x+m(m∈R).(1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5;(2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3;(3)在(2)的条件下,若函数f(sinα)的最大值是8,求m.(1)证明:f(x)+4=0即x2-(m+1)x+m+4=0.依题意:又A、B锐角为三角形内两内角,∴<A+B<π.∴tan(A+B)<0,即.∴∴m≥5.(2)证明:∵f(x)=(x-1)(x-m),又-1≤cosα≤1,∴1≤2+cosα≤3,恒有f(2+cosα)≤0.=3,∴m≥x max=3.即1≤x≤3时,恒有f(x)≤0即(x-1)(x-m)≤0,∴m≥x但xmax(3)解:∵f(sinα)=sin2α-(m+1)sinα+m=,且≥2,∴当sinα=-1时,f(sinα)有最大值8.即1+(m+1)+m=8,∴m=3.题型四函数与方程思想在解析几何中的应用【例6】.直线和双曲线的左支交于A、B两点,直线l过点P(-2,0)和线段AB的中点M,求l在y轴上的截距b的取值范围.解:由消去y,得.()因为直线m与双曲线的左支有两个交点,所以方程()有两个不相等的负实数根.所以解得.设,则由三点共线,得出.设,则在上为减函数,,且.,或,,或.题型五函数与方程思想在立体几何中的应用【例7】.如图,已知面,于D,.(1)令,,试把表示为x的函数,并求其最大值;(2)在直线PA上是否存在一点Q,使成立?解答:(1)∵面,于D,∴.∴..∵为在面上的射影.∴,即.∴.即的最大值为,等号当且仅当时取得.(2).令,解得:,与交集非空.∴满足条件的点Q存在.点评:本题将立体几何与代数融为一体,不仅要求有一定的空间想象力,而且,做好问题的转化是解决此题的关键.。
函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。
函数与方程的思想函数思想就是用运动、变化的观点分析和研究现实中的数量关系,通过问题所提供的数量特征及关系建立函数关系式,然后运用有关的函数知识解决问题。
如果问题中的变量关系可以用解析式表示出来,则可把关系式看作一个方程,通过对方程的分析使问题获解。
所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。
函数与方程思想是中学数学中最常用、最重要的数学思想。
中考函数试题解法及新颖题目研究函数是初中代数的重点,也是难点,在中考的代数部分所占比重最大,综合题中离不开函数内容。
中考函数考察的重点是:函数自变量取值范围,正反比例函数、一次函数、二次函数的定义和性质,画函数图像,求函数表达式。
近年来中考比较侧重实际应用问题的考察。
中考的最后一道题,常常要用到多个数学思想方法,纵观近几年的中考题,基本上都是函数、方程、几何(主要是圆)的综合题。
1.初中函数知识网络2.命题思路与知识要点:2.1一般函数2.1.1考查要点:平面直角坐标系的有关概念;常量、变量、函数的意义;函数自变量的取值范围和函数值的意义及确定。
2.1.2考纲要求:理解平面直角坐标系的有关概念,掌握各象限及坐标轴上的点的坐标特征,会求对称点坐标,能确定函数自变量的取值范围。
2.1.3主要题型:填空题,选择题,阅读理解题。
2.1.4知识要点:(1)平面直角坐标系中,每一个点都与有序实数对一一对应;象限与坐标符号如图1。
(2)特殊位置上点的坐标特点:①点P(x ,y)在xy=0; 点P(x ,y)在y ; ②点P(x ,y)x=y ; 点P(x ,y)③点P(x ,y)关于x 轴对称的点的坐标是(x ,-y);点P(x ,y)关于y 轴对称的点的坐标是(-x ,y); 点P(x ,y)关于原点对称的点的坐标是(-x ,-y);确定函数自变量取值范围,就是要找出使函数有意义的自变量的全部取值。
高中四大数学思想方法高中四大数学思想方法数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
数学家和哲学家对数学的确切范围和定义有一系列的看法。
下面是店铺整理的高中四大数学思想方法,希望对你有所帮助!一、数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。
应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。
运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。
应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线。
以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法。
以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。
二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决。
分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”。
应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏。
如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结。
高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
方程和函数思想的关系(摘录)方程、函数这两个术语在中小学数学组十分常见,也是大多数孩子们最为头疼的两个词,不止一次的问自己:这两个到底是什么东东,它认识我,我不认识它。
王永春(课程教材研究所)1、方程和函数思想的概念方程和函数是初等数学代数领域的主要内容,也是解决实际问题的重要工具,他们都可以用来描述现实世界的数量关系,而且他们之间有着密切的联系,因此,本文将二者放在一起进行讨论。
(1) 方程思想。
含有未知数的等式叫方程,判断一个式子是不是方程,只需要同时满足两个条件;一个是含有未知数,另一个必须是等式。
如有些小学老师经常有疑问的判断题;x=0和x=1是不是方程?根据方程的定义,他们满足方程的条件,都是方程。
方程按照未知数的个数和未知数的最高次数,可以分为一元一次方程、一元二次方程、二元一次方程、三元一次方程等等,这些都是初等数学代数领域中最基本的内容。
方程思想的核心是将问题中未知量用数字以外的数学符号(常用x、y等字母)表示,根据数量关系之间的相等关系构建方程模型。
方程思想体现了已之与未知数的对立统一。
(2) 函数思想。
设集合ab是两个非空数集,如果按照某种确定的对立关系f,如果对于集合a中的任意一个数x,在集合b中都有唯一确定的数y和它的对应,那么就称y是x的函数,记作y=f(x)。
其中x叫做自变量,x的取值范围a叫做函数的定义域;y叫做函数或因变量,与x相对应的y的值叫做函数值,y 的取值范围b叫做值域。
以上函数的定义是从初等数学的角度出发的,自变量只有一个与之对应的函数值也是唯一的。
这样的函数研究的是两个变量之间的关系,一个变量的取值发生了变化,另一个变量的取值也相应发生了变化,中学里学习的正比例函数、一次函数、二次函数、幂函数、指数函数、对数函数和三角函数都是这类函数。
实际现实中变量的变化而相应变化,这样的函数是多元函数。
虽然在中小学里不学习多元函数,但只机上它是存在的,如圆柱的体积与底面半径r和圆柱的高的关系;v=πr2 h.半径和高有一对取值;也就是说,体积随半径和高的变化而变化,通过对这种变化的探究找出对应关系之间的法则,从而构建函数模型。
函数与方程思想一、选择题(本题每小题5分,共60分)1.设直线 ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足 ( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为( )A .B .C .D .3. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是( )A .4005B .4006C .4007D .40084.每个顶点的棱数均为三条的正多面体共有 ( ) A .2种 B .3种C .4种D .5种5.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b ](a <b ),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b )有 ( )A .0个B .1个C .2个D .无数多个6.设)(1x f -是函数)1(log )(2+=x x f 的反函数,若8)](1)][(1[11=++--b f a f ,则)(b a f +的值为( )A .1B .2C .3D .3log 27.把正方形ABCD 沿对角线AC 折起,当A 、B C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为( )A .90°B .60°C .45°D .30°8.若函数f (x )=(1-m )x 2-2mx -5是偶函数,则f (x ) ( )A .先增后减B .先减后增C .单调递增D .单调递减9.定义在(-∞,+∞)上的奇函数f (x )和偶函数g (x )在区间(-∞,0]上的图像关于x 轴对称,且f (x )为增函数,则下列各选项中能使不等式f (b )-f (-a )>g (a )-g (-b )成立的是 ( )A .a >b >0B .a <b <0C .ab >0D .ab <010.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+11.两个正数a 、b 的等差中项是5,等比中项是4。
若a >b ,则双曲线122=-by a x 的离心率e 等于 ( )A .23B .415C .25D .312.天文台用3.2万元买一台观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为1049+n 元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均耗资最少)为止,一共使用了 ( )A .800天B .1000天C .1200天D .1400天二、填空题(本题每小题4分,共16分) 13.若1(2)n x x+-的展开式中常数项为-20,则自然数n = . 14.x 0是x 的方程a x =log a x (0<a <1)的解,则x 0,1,a 这三个数的大小关系是 . 15.已知函数y f x y fx ==-()()与1互为反函数,又y fx y g x =+=-11()()与的图象关于直线y x =对称,若f x x x fx ()log ()()()=+>=-122120,则___ __;g ()6=_______ .16.已知矩形ABCD 的边⊥==PA BC a AB ,2,平面,2,=PA ABCD 现有以下五个数据:,4)5(;2)4(;3)3(;1)2(;21)1(=====a a a a a 当在BC 边上存在点Q ,使QD PQ ⊥时,则a 可以取_____________.(填上一个正确的数据序号即可) 三、解答题(本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知集合A={x |x 2-ax +a 2-19=0},集合B={x |log 2(x 2-5x +8)=1},集合C={x |m 822-+x x =1,m ≠0,|m |≠1}满足A ∩Bφ, A ∩C=φ,求实数a 的值.18.(本小题满分12分)有一组数据)(,,,:2121n n x x x x x x <<< 的算术平均值为10,若去掉其中最大的一个,余下数据的算术平均值为9;若去掉其中最小的一个,余下数据 的算术平均值为11.(1)求出第一个数1x 关于n 的表达式及第n 个数n x 关于n 的表达式;(2)若n x x x ,,,21 都是正整数,试求第n 个数n x 的最大值,并举出满足题目要求且n x 取到最大值的一组数据.19.(本小题满分12分)某公司生产的A 型商品通过租赁柜台进入某商场销售.第一年,商场为吸引厂家,决定免收该年管理费,因此,该年A 型商品定价为每件70元,年销售量为11.8万件.第二年,商场开始对该商品征收比率为p %的管理费(即销售100元要征收p 元),于是该商品的定价上升为每件%170p -元,预计年销售量将减少p 万件.(1)将第二年商场对该商品征收的管理费y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p %的范围是多少?(3)第二年,商场在所收管理费不少于14万元的前提下,要让厂家获得最大销售金额,则p 应为多少?20.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.21.(本小题满分12分)已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.(1)求f(x)的解析式;(2)是否存在实数m ,n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m ,n 的值;如果不存在,说明理由.22.(本小题满分14分)设无穷等差数列{a n }的前n 项和为S n . (1)若首项=1a 32 ,公差1=d ,求满足2)(2k k S S =的正整数k ;(2)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S=成立.答 案一、选择题(每小题5分,共60分)(1).D (2).C (3).B (4).A (5). A(6).B (7).C (8).B (9).A (10).B (11).C (12).A 二、填空题(每小题4分,共16分) (13). 3; (14). 10或1031- (15).12214⎛⎝ ⎫⎭⎪-<--xx (),; (16). ①或② 三、解答题(共74分,按步骤得分)17.解:由条件即可得B={2,3},C={-4,2},由A ∩Bφ,A ∩C=φ,可知3∈A ,2∉A 。
将x=3代入集合A 的条件得:a 2-3a -10=0 ∴a=-2或a=5 当a=-2时,A={x|x 2+2x -15=0}={-5,3},符合已知条件。
当a=5时,A={x|x 2-5x+6=0}={2,3},不符合条件“A ∩C ”=φ,故舍去. 综上得:a=-2.18.解:(1) 依条件得:⎪⎩⎪⎨⎧-=+++-=+++=+++-)3()1(11)2()1(9)1(103212121n x x x n x x x nx x x n n n 由)2()1(-得:9+=n x n ,又由)3()1(-得:n x -=111 (2)由于1x 是正整数,故1111≥-=n x ,101≤≤⇒n ,故199≤+=n x n 当n =10时, 11=x ,1910=x ,80932=+++x x x , 此时,62=x ,73=x ,84=x ,95=x ,116=x ,127=x ,138=x ,149=x .19. 解:(1)依题意,第二年该商品年销售量为(11.8-p )万件,年销售收入为%170p -(11.8-p )万元,则商场该年对该商品征收的总管理费为%170p -(11.8-p )p %(万元).故所求函数为:y =p-1007(118-10p )p .11.8-p >0及p >0得定义域为0<p <559.(2)由y ≥14,得p-1007(118-10p )p ≥14.化简得p 2-12p +20≤0,即(p -2)(p -10)≤0,解得2≤p ≤10. 故当比率在[2%,10%]内时,商场收取的管理费将不少于14万元. (3)第二年,当商场收取的管理费不少于14万元时, 厂家的销售收入为g (p )=%170p -(11.8-p )(2≤p ≤10).∵g (p )=%170p -(11.8-p )=700(10+100882-p )为减函数,∴g (p )max =g (2)=700(万元).故当比率为2%时,厂家销售金额最大,且商场所收管理费又不少于14万元. 20. 解:,2111)(x x x f -+=' ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加;当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.21.解:(1)∵方程ax 2+bx -2x=0有等根,∴△=(b -2)2=0,得b=2。
由f(x -1)=f(3-x)知此函数图像的对称轴方程为x=-ab2=1,得a=-1, 故f(x)=-x 2+2x.(2)∵f(x)=-(x -1)2+1≤1,∴4n ≤1,即n ≤41. 而抛物线y=-x 2+2x 的对称轴为x=1,∴当n ≤41时,f(x)在[m,n]上为增函数。
若满足题设条件的m,n 存在,则⎩⎨⎧==n n f mm f 4)(4)(- 11 - 即⎪⎩⎪⎨⎧=+-=+-nn n m m m 424222⇒⎩⎨⎧-==-==2020n n m m 或或又m<n ≤41. ∴m=-2,n=0,这时,定义域为[-2,0],值域为[-8,0]. 由以上知满足条件的m,n 存在,m=-2,n=0.22. 解:(1)当1,231==d a 时, n n n n n d n n na S n +=-+=-+=21212)1(232)1( 由22242)21(21,)(2k k k k S S k k +=+=得,即 0)141(3=-k k 又4,0=≠k k 所以. (2)设数列{a n }的公差为d ,则在2)(2n n S S =中分别取k=1,2,得 ⎪⎩⎪⎨⎧⨯+=⨯+=⎪⎩⎪⎨⎧==211211224211)2122(2344,,)()(d a d a a a S S S S 即由(1)得 .1011==a a 或当,60)2(,01===d d a 或得代入时若21)(,0,0,0,0k k n n S S S a d a =====从而则成立若知由则216,324)(,18),1(6,6,02331===-===n n S S S n a d a,)(239S s ≠故所得数列不符合题意.当20,)2(64)2(,121==+=+=d d d d a 或解得得代入时若;)(,,1,0,1212成立从而则k k n n S S n S a d a =====若成立从而则221)(,)12(31,12,2,1n n n S S n n S n a d a ==-+++=-=== .综上,共有3个满足条件的无穷等差数列:①{a n } : a n =0,即0,0,0,…;②{a n } : a n =1,即1,1,1,…; ③{a n } : a n =2n -1,即1,3,5,…,(1) (2)。