空间桁架结构程序设计
- 格式:doc
- 大小:179.00 KB
- 文档页数:14
4.3 钢桁架加工方案4.3.1 工程概述:4.3.1.1 工程概况:****大屋盖以树壮支柱及两个塔搂为支座,整体展翅在****综合建筑群之上。
该屋盖长486m,宽度由两端的154m 向中间缩小为120m。
钢桁架就是架设在两个塔楼四周的钢结构构件,通过钢桁架支撑着大屋盖网架。
钢桁架布置图如下:圆塔桁架布置图如下左图,方塔桁架布置如下右图:4.3.1.2 本工程钢结构桁架分为:a. 圆塔部分桁架: HJ-1~2、5~6、9~12共8榀。
b. 方塔部分桁架:桁架HJ-3~4共2榀。
4.3.2 焊接材料选用:本工程钢桁架钢材采用国产Q345和Q235B系列钢材,相对应的焊接材料选用如下:4.3.3 技术标准4.3.3.1 采用标准:《钢结构施工与验收规范》 GB50205—95 《钢结构工程质量检验评定标准》 GB50221--95 《建筑钢结构焊接规程》 JGJ81—91 《钢结构设计规范》 GBJ17--88 《低合金钢焊条》 GBJ5118--85 《高层民用建筑钢结构技术规程》 JGJ9--98 《手工电弧焊焊缝坡口的基本形式和尺寸》 GB 985 《埋弧焊焊缝坡口的基本形式和尺寸》 GB 986 《钢结构高强螺栓连接设计施工及验收规范》 JGJ82-91 《钢结构防火涂料应用技术条件》 CECS24-90 《涂装前的钢材表面锈蚀等级和防锈等级》 GB8923--88 《涂装前的表面处理:表面粗糙度的测试评定》 ISO8502-6:1995 《钢材力学及工艺性能试样取样规定》 GB2975--82 等。
4.3.4 材料控制及详图设计4.3.4.1 材料控制a. 本工程钢结构钢桁架杆件均是焊接箱形,材料计划必须按照构件的实际尺寸从钢厂直接进行定尺采购。
定尺尺寸要考虑加工余量等。
b. 材料采购前,必须对供应材料的生产厂家进行考核。
考核合格后方可在该分供方处进行材料采购。
c. 进厂的原材料,除必须有生产厂的出厂质量证明书外,并应按合同要求和有关现行标准进行检验和验收,做好检查记录。
pkpm桁架结构建模步骤
PKPM(普通框架分析计算机程序)是一种用于框架结构建模和分析的计算机程序,常用于工程结构分析和设计中。
下面是PKPM桁架结构建模的一般步骤:
1. 确定结构几何形状,首先需要确定桁架结构的几何形状,包括梁的长度、截面尺寸和连接方式等。
这些参数将直接影响到后续的分析和设计。
2. 建立模型,在PKPM中,可以通过输入节点、梁和支座等信息来建立桁架结构的模型。
需要确保模型的准确性和完整性,包括考虑到各种受力情况和支座约束等。
3. 设置材料和截面属性,在建模的过程中,需要为桁架结构中使用的材料(如钢材、混凝土等)和截面属性(如梁的截面形状和尺寸)进行设定,这些参数将直接影响到结构的受力性能。
4. 施加荷载,在PKPM中,可以施加各种静载荷、动载荷和温度荷载等,以模拟实际工程中的受力情况。
需要根据实际情况合理设置荷载大小和作用位置。
5. 进行分析,完成模型建立和荷载施加后,可以进行结构的静力分析、动力分析和稳定性分析等,获取结构在各种工况下的受力情况和变形情况。
6. 结果评定,根据分析结果,可以评定结构的受力性能、安全性能和稳定性能,以指导后续的设计和施工。
总的来说,PKPM桁架结构建模的步骤包括确定结构几何形状、建立模型、设置材料和截面属性、施加荷载、进行分析和结果评定等。
在实际工程中,还需要根据具体情况进行调整和优化,以确保结构的安全可靠性。
桁架结构优化设计一般所谓的优化,是指从完成某一任务所有可能方案中按某种标准寻找最佳方案。
结构优化设计的基本思想是,使所设计的结构或构件不仅满足强度、刚度与稳定性等方面的要求,同时又在追求某种或某些目标方面(质量最轻,承载最高,价格最低,体积最小)达到最佳程度。
对于图1-1的结构,已知L=2m,x b=1m,载荷P=100kN,桁架材料的密度r=7.7x10-5N/mm3,[δt]=150Mpa,[δc]=100Mpa,y b的范围:0.5m≦y b≦1.5m。
图1-1 桁架结构设计变量与目标函数(质量最小)预定参数(设计中已确定,设计者不能任意修改的量):L , x b ,P ,r ,[δt ] ,[δc ]设计变量(可由设计者调整的量)y b ,A 1,A 2 约束条件(对设计变量的约束条件) (1) 强度条件约束(截面、杆件的强度) (2) 几何条件约束(B 点的高度范围) 目标函数:桁架的质量W (最小)解:1. 应力分析0sin sin 02112=--=∑θθN N F x0cos cos 02112=---=∑P N N Fyθθ由此得:)sin(sin 2111θθθ+=p N )sin(sin 2122θθθ+-=p N由正弦定理得:ly l x pN B B 21)(2-+=ly x pN BB 222+=由此得杆1和2横截面上的正应力121)(2lA y l x pB B -+=σ2222lA y x pB B +=σ2.最轻质量设计目标函数(桁架的质量)))((222122B B y x A y l x A W B B ++-+=γ(1-1)约束条件[][]⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤+≤-+c B t B lA y x p lA y l x p B B σσ221222)( (1-2)0.5≦y b ≦1.5(m ) (1-3) (于是问题归结为:在满足上述约束条件下,确定设计变量y b ,A 1,A 2,使目标函数W 最小。
桁架搭设规范标准最新桁架搭设是建筑施工中的重要环节,对于确保施工安全和工程质量具有至关重要的作用。
以下是桁架搭设的最新规范标准:1. 设计规范:- 桁架设计应遵循国家和行业相关标准,确保结构合理、安全、经济。
- 桁架的尺寸、材料、连接方式等应根据实际工程需求和环境条件进行精确计算。
2. 材料选择:- 桁架材料应选用符合国家标准的钢材,确保材料的强度和耐久性。
- 材料应有明确的生产日期、批次号和质量证明。
3. 施工准备:- 在桁架搭设前,应对施工现场进行彻底清理,确保施工环境符合安全要求。
- 施工人员应经过专业培训,熟悉桁架搭设流程和安全操作规程。
4. 基础处理:- 桁架的基础应坚实可靠,必要时应进行加固处理,以确保桁架的稳定性。
5. 搭设过程:- 桁架搭设应按照设计图纸和施工方案进行,确保每一步操作符合规范要求。
- 搭设过程中应使用合适的起重设备,并确保操作人员的安全。
6. 连接与固定:- 桁架的连接点应使用符合标准的连接件,确保连接牢固可靠。
- 桁架与基础、墙体等的连接应使用锚固或其他固定方式,防止位移。
7. 检查与验收:- 桁架搭设完成后,应进行全面的检查,确保没有遗漏和错误。
- 检查合格后,应按照相关程序进行验收,确保桁架搭设符合设计和安全要求。
8. 安全措施:- 施工过程中应设置明显的安全警示标志,确保非施工人员远离施工区域。
- 施工人员应配备必要的安全防护装备,如安全帽、安全带等。
9. 环境保护:- 施工过程中应采取措施减少对环境的影响,如控制噪音、防尘等。
10. 维护与保养:- 桁架搭设完成后,应定期进行检查和维护,确保其长期稳定运行。
以上规范标准旨在确保桁架搭设的安全性和可靠性,同时也考虑到了施工效率和环境保护。
施工单位和个人应严格遵守这些规范,以保障工程的顺利完成。
设计60中国建筑金属结构钢屋盖设计中的桁架和网架设计要点陈卓【摘要】随着建筑设计中对空间和跨度要求越来越高,钢屋盖的应用越来越普遍,常见的结构形式有平面桁架和空间网架,本文针对钢屋盖设计中的桁架和网架设计要点进行了分析和探讨。
【关键词】桁架结构;网架结构;支座;用钢量1.结构选型常规钢屋盖跨度为30m~60m之间。
一般结构形式为钢网架、钢桁架等。
屋盖结构形式的确定因素,主要是建筑的形状和规则性。
当建筑造型规则性较好时,可以选用钢桁架。
而建筑造型相对复杂时,可以选用钢网架。
桁架结构屋架形式一般有三种:平行弦式,梯形式,三角形式。
各种屋架形式有其适用情况。
无论选用哪种桁架形式,主要原则是:(1)满足建筑功能,主要是净空和排水坡度及造型要求;(2)施工方便,应适当减少杆件和节点的数量和种类;(3)受力合理,使得桁架造型与弯矩图接近。
网架屋架形式也有三种:由四角锥体系组成的正放四角锥网架等,由交叉桁架体系组成的两向正交正放网架,由三角锥体系组成的三角锥网架。
选择的主要原则是平面形状:(1)当平面为圆形,正六边形及近似正六边形时,可选用三角锥体系;(2)当平面为矩形时,边长比大于1.5以上,导荷方式趋于单向受力,宜选用两向正交正放网架;边长比小于1.5时,导荷方式趋于双向受力,宜选用正放四角锥体系[1]。
2.结构尺寸屋架尺寸是屋盖设计中的重要内容,直接决定美观度和经济性。
一般是根据屋架确定的选型,结合经验确定端部尺寸,由屋面坡度和屋面建筑做法(荷载)确定屋架跨中高度,最后综合确定。
3.支座节点支座节点是整个结构中的重要部位,是连接屋盖结构与下部支承结构的纽带。
从概念上讲,受力明确、传力简捷、安全可靠是基本要求,从经济性上讲,构造简单,安装方便。
支座落位于钢筋混凝土柱或砖柱上时,通常设计为铰接。
支座构造包括锚栓、支座底板、节点板、加劲肋等部件,见图1。
鉴于支座的重要性,要保证安全而可靠地传递反力,除了具有足够的强度和刚度之外,还应该满足以下条件:(1)支座节点的构造应与电算模型相符合。
钢管桁架结构技术规程本技术规程旨在规范钢管桁架结构的设计、制造、安装、验收和维护等方面的技术要求,以确保钢管桁架结构的安全可靠,达到设计要求。
1. 设计要求1.1 设计原则钢管桁架结构应按照强度、稳定性、刚度、耐久性等要求进行设计,确保结构的安全可靠性和使用寿命。
1.2 桁架结构的材料钢管桁架结构的材料应符合国家相关标准和规定,应为耐腐蚀、耐高温、强度高的钢管。
1.3 桁架结构的构件桁架结构的构件应严格按照设计要求进行制造,构件的加工、焊接、热处理等应符合相关标准和规定。
2. 制造要求2.1 制造工艺制造工艺应符合设计要求,对于重要部位的构件应进行无损探伤,确保构件的质量。
2.2 焊接工艺焊接应使用符合规定的焊接材料和工艺,确保焊缝质量。
2.3 表面处理在制造过程中,应对构件进行适当的表面处理,去除锈蚀和油污等杂质,确保构件的表面光洁度和质量。
3. 安装要求3.1 安装前准备安装前应对安装场地进行勘查和测量,确保场地的平整度和承载能力符合设计要求。
3.2 安装工艺安装工艺应符合设计要求,对于重要部位的连接应进行可靠的固定和加固,确保安装的稳固性和安全性。
4. 验收要求4.1 验收标准钢管桁架结构的验收应符合国家相关标准和规定,对结构的强度、稳定性、刚度、耐久性等进行检测和评估。
4.2 验收程序验收程序应按照国家相关标准和规定进行,包括初验、中验和终验等环节,确保结构的安全可靠性和使用寿命。
5. 维护要求5.1 定期检查钢管桁架结构应定期进行检查和维护,对于锈蚀、变形、裂纹等问题应及时处理。
5.2 维护措施维护措施应符合设计要求,对于出现的问题应采取正确有效的措施进行处理,确保结构的安全可靠性和使用寿命。
以上为《钢管桁架结构技术规程》的内容。
第三章桁架3.1设计条件(工程实例)某厂房建筑东西24.48m,南北72.48m,总建筑面积1774.3m2。
结构类型为混凝土柱钢屋架的排架体系。
屋架标志跨度24m,屋架间距6m,车间内设一台30t/3t中级工作制吊车。
屋架支撑在钢筋混凝土柱上,上柱截面为400mm×400mm。
混凝土标号C25。
具体建筑图见图3.1-1,图3.1-2,图3.1-3。
屋面结构类型:桁架屋面材料:采用压型钢板轻钢屋面屋面坡度:1:20屋架钢材:采用Q235-B,焊接材料采用E43系列。
结构的重要性:二类建筑物设计使用年限:50年本地设防烈度:8度,场地土类别III类基本风压:0.45kN/m2基本雪压:0.40 kN/m2不上人屋面活荷载:0.5 kN/m2图3.1-1 F~A立面图图3.1-3 1-1剖面图本工程中设置未设置支撑的屋架为WJ-1,设置支撑的为WJ-2,端部为WJ-3。
屋架的布置、屋架的几何尺寸,以及支撑的布置具体见图3-4,图3-5,图3-6,图3-7,图3-8。
图3.1-4 屋架几何尺寸图图3.1-5 屋架布置及上弦支撑布置图图3.1-6 屋架下弦支撑布置图图3.1-7 屋架端部竖向支撑布置图图3.1-8 屋架跨中竖向支撑布置图3.2平面建模编着按:STS的“桁架模块”可以完成平面桁架的建模、计算和施工图绘制。
对于建模,其步骤和过程基本与门式刚架的平面建模相同。
操作时,读者可参考第一章门式刚架中的相关内容。
本章仅重点叙述与桁架本身特点有关的项目。
3.2.1建立工作目录首先完成工作目录的创建,方法与1.2中方法相同(桁架模块界面如图3.2-1所示)。
接着完成文件名的输入,本工程文件名为“HJ-1”,进入桁架建模的工作界面,如图3.2-2。
图3.2—1 桁架模块界面图3.2—2 桁架建模工作界面3.2.2轴网建立利用“网格生成”\“快速建模”\“桁架”打开“桁架网线输入向导”对话框(如图3.2-3).图3.2-3 桁架网线输入向导跨度:此处输入的跨度是屋架的标志跨度,因为本屋架跨度刚好是程序默认长度24000,不用修改。
空间桁架静力分析程序及算例1、变量及数组说明2、空间桁架结构有限元分析程序源代码!主程序(读入文件,调用总计算程序,输出结果)CHARACTER IDFUT*20,OUTFUT*20WRITE(*,*) 'Input Data File name:'READ (*,*)IDFUTOPEN (11,FILE=IDFUT,STATUS='OLD')WRITE(*,*) 'Output File name:'READ (*,*)OUTFUTOPEN(12,FILE=OUTFUT,STATUS='UNKNOWN')WRITE(12,*)'*****************************************'WRITE(12,*)'* Program for Analysis of Space Trusses *'WRITE(12,*)'* School of Civil Engineering CSU *'WRITE(12,*)'* Designed By MuZhaoxiang *'WRITE(12,*)'*****************************************'WRITE(12,*)' 'WRITE(12,*)'*****************************************'WRITE(12,*)'*************The Input Data****************'WRITE(12,*)'*****************************************'WRITE(12,100)READ(11,*)NF,NP,NE,NM,NR,NCF,NDWRITE(12,110)NF,NP,NE,NM,NR,NCF,ND100 FORMAT(6X,'The General Information'/2X,'NF',5X,'NP',5X,'NE',5X,'NM',5X,'NR',& 5X,'NCF',5X,'ND')110 FORMAT(2X,I2,6I7)NPF=NF*NPNDF=ND*NFCALL ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF)END!********************************************************************!总计算程序SUBROUTINE ANALYSE(NF,NP,NE,NM,NR,NCF,ND,NPF,NDF)DIMENSION X(NP),Y(NP),Z(NP),MM(NE),ME(ND,NE),IT(NF,NP),RR(ND,NR), NAE(NE),&AE(1,2),PF(4,NCF),LMT(NDF,NE),MAXA(NPF),CKK(1000),V(NPF),DIST(NPF),&PP(NPF),FF(NPF),SG(NE),SM(NE)READ(11,*)(X(I),Y(I),Z(I),I=1,NP)READ(11,*)(MM(I),ME(1,I),ME(2,I),NAE(I),I=1,NE)READ(11,*)(RR(1,J),RR(2,J),J=1,NR)READ(11,*)(AE(1,J),J=1,2)WRITE(12,120)WRITE(12,121)(I,X(I),Y(I),Z(I),I=1,NP)WRITE(12,130)WRITE(12,131)(MM(I),ME(1,I),ME(2,I),NAE(I),I=1,NE)WRITE(12,140)WRITE(12,141)(INT(RR(1,J)),RR(2,J),J=1,NR)WRITE(12,150)WRITE(12,151)(AE(1,J),J=1,2)IF(NCF/=0)THENREAD(11,*)((PF(I,J),I=1,4),J=1,NCF)WRITE(12,160)WRITE(12,161)(INT(PF(1,J)),PF(2,J),PF(3,J),PF(4,J),J=1,NCF)ENDIF120 FORMAT(/6X,'The Information of Joints'/2x,'Joint',5X,'X',5X,'Y',5X,'Z')121 FORMAT(1X,I4,130 FORMAT(/6X,'The Information of Members'/2x,'Member',2X,'START',4X,'END',6X,'NAE')131 FORMAT(1X,I4,3I8)140 FORMAT(/6X,'The Information of SUPPORTS'/2x,'Joint',5X,'S')141 FORMAT(1X,I4,150 FORMAT(/6X,'The Information of Sections'/4x,'E0',8X,'A0')151 FORMAT(1X,,160 FORMAT(/6X,'The Loading at Joints'/2x,'Joint',5X,'FX',5X,'FY',7X,'FZ')161 FORMAT(1X,I4,CALL FLMT(NP,NE,NN,NNM,NR,RR,ND,NF,NDF,ME,IT,LMT)CALL FMAXA(NNM,NE,LMT,MAXA,NWK,NPF,NDF)CALL LP(V,PP,IT,PF,NN,NCF,NF,NP,NPF)CALL CONKB(NP,NE,NM,NWK,ME,X,Y,Z,AE,NAE,LMT,MAXA,CKK,NNM)ISH=1CALL LDLT(CKK,MAXA,NN,ISH,IOUT,NWK,NNM)CALL REBACK(CKK,V,MAXA,NN,NWK,NNM)CALL DISPLS(NP,NE,NPF,NM,NN,IT,V,DIST,AE,NAE,X,Y,Z,PP,FF,SG,SM,ME,NR,RR,NF)END!********************************************************************!矩阵转置子程序SUBROUTINE MAT(M,N,A,B)DIMENSION A(M,N),B(N,M)DO I=1,MDO J=1,NB(J,I)=A(I,J)END DOEND DORETURNEND!单元刚度矩阵的形成SUBROUTINE FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)DIMENSION X(NP),Y(NP),Z(NP),ME(2,NE),NAE(NE),AE(2,NM) ,AKE(2,2) N1=ME(1,IE)N2=ME(2,IE)X1=X(N1);Y1=Y(N1);Z1=Z(N1)X2=X(N2);Y2=Y(N2);Z2=Z(N2)BL=SQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)NMI=NAE(IE)E0=AE(1,NMI);A0=AE(2,NMI)C=E0*A0/BLAKE(1,1)=CAKE(1,2)=-CAKE(2,1)=-CAKE(2,2)=CRETURNEND!单元坐标转换矩阵SUBROUTINE FT(IE,NP,NE,X,Y,Z,ME,T)DIMENSION X(NP),Y(NP),Z(NP),ME(2,NE),T(2,6)T=0N1=ME(1,IE);N2=ME(2,IE)X1=X(N1);Y1=Y(N1);Z1=Z(N1)X2=X(N2);Y2=Y(N2);Z2=Z(N2)BL=SQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)CX=(X2-X1)/BLCY=(Y2-Y1)/BLCZ=(Z2-Z1)/BLT(1,1)=CX;T(2,4)=CXT(1,2)=CY;T(2,5)=CYT(1,3)=CZ;T(2,6)=CZRETURNEND!生成单元联系数组LMTSUBROUTINE FLMT(NP,NE,NN,NNM,NR,RR,ND,NF,NDF,ME,IT,LMT)DIMENSION IT(NF,NP),LMT(NDF,NE),ME(ND,NE),RR(2,NR)NN=0;NNM=0;IT=0;LMT=0N=0DO I=1,NPC=0DO K=1,NRKR=RR(1,K)IF C=RR(2,K)ENDDONC=C !NC=0,提取了整数部分C=C-NC !C=0.***,例如C=DO J=1,NFC=C* !例如C=L=C+ !提取C整数部分,例如L=1,即提取了约束RR(2,K)十分位 !上的数字,这里"+"是为了防止四舍五入是出现错误 C=C-LIF N=N+1IT(J,I)=NELSEIT(J,I)=0ENDIFENDDOENDDONN=NNNM=NN+1DO IE=1,NEDO I=1,NDNI=ME(I,IE)DO J=1,NFLMT((I-1)*NF+J,IE)=IT(J,NI)ENDDOENDDOENDDORETURNEND!二维总刚中对角线元地址数组SUBROUTINE FMAXA(NNM,NE,LMT,MAXA,NWK,NPF,NDF)DIMENSION MAXA(NPF),LMT(NDF,NE)MAXA=0;NWK=0MAXA(1)=1DO I=2,NNMIP=I-1IG=IPDO IE=1,NEDO J=1,NDFIF(LMT(J,IE). THENDO K=1,NDFIF(LMT(K,IE). IG=LMT(K,IE)ENDDOEND IFENDDOENDDOMAXA(I)= MAXA(I-1)+IP-IG+1ENDDONWK= MAXA(NNM)-1RETURNEND!生成一维存储结构总刚度矩阵SUBROUTINE CONKB(NP,NE,NM,NWK,ME,X,Y,Z,AE,NAE,LMT,MAXA,CKK,NNM)DIMENSION CKK(NWK),X(NP),Y(NP),Z(NP),AE(2,NM),NAE(NE),LMT(6,NE),ME(2,NE),& MAXA(NNM),AK(6,2),AKE(2,2),T(2,6),TT(6,2),TAK(6,6)CKK=0DO 10 IE=1,NETAK=0CALL FKE(NP,NE,NM,IE,X,Y,Z,ME,NAE,AE,AKE)CALL FT(IE,NP,NE,X,Y,Z,ME,T)CALL MAT(2,6,T,TT)AK=MATMUL(TT,AKE)TAK=MATMUL(AK,T) !总体坐标系下的单元刚度矩阵DO 220 I=1,6DO 220 J=1,6NI=LMT(I,IE)NJ=LMT(J,IE)IF((NJ-NI). THENIJ=MAXA(NJ)+NJ-NICKK(IJ)=CKK(IJ)+TAK(I,J)ENDIF220 CONTINUE10 CONTINUERETURNEND!生成荷载矩阵SUBROUTINE LP(V,PP,IT,PF,NN,NCF,NF,NP,NPF)DIMENSION V(NN),PP(NPF),IT(NF,NP),PF(4,NCF)V=0PP=0DO I=1,NFDO J=1,NPDO K=1,NCFIF V(IT(I,J))=PF(I+1,K)ENDIFENDDOENDDOENDDODO K=1,NCFDO I=1,NPIF PP(NF*(I-1)+1)=PF(2,K)PP(NF*(I-1)+2)=PF(3,K)PP(NF*(I-1)+3)=PF(4,K)ENDIFENDDOENDDORETURNEND!对一维结构总刚度矩阵进行矩阵分解(LDLT)SUBROUTINE LDLT(A,MAXA,NN,ISH,IOUT,NWK,NNM) DIMENSION A(NWK),MAXA(NNM)IF RETURNDO 200 N=1,NNKN=MAXA(N)KL=KN+1KU=MAXA(N+1)-1KH=KU-KLIF(KH)304,240,210210 K=N-KHIC=0KLT=KUDO 260 J=1,KHKLT=KLT-1IC=IC+1KI=MAXA(K)ND=MAXA(K+1)-KI-1IF(ND) 260,260,270270 KK=MIN0(IC,ND)C=DO 280 L=1,KK280 C=C+A(KI+L)*A(KLT+L)A(KLT)=A(KLT)-C260 K=K+1240 K=NB=DO 300 KK=KL,KUK=K-1KI=MAXA(K)C=A(KK)/A(KI)IF(ABS(C). GOTO 290WRITE(IOUT,2010) N,CSTOP290 B=B+C*A(KK)300 A(KK)=CA(KN)=A(KN)-B304 IF(A(KN)) 310,310,200 310 IF GOTO 320IF(A(KN). A(KN)=GOTO 200320 WRITE(IOUT,2000) N,A(KN) STOP200 CONTINUERETURN2000 FORMAT3 13 24 1 6 1 2 0 -10 50-10 25-10 -250 -10 -50-10 -25-10 25-2-225 -2 0-2-2-25 -2 00 0 01 1 7 12 1 8 13 2 8 14 2 9 15 3 9 16 3 10 17 4 10 18 4 11 19 5 11 110 5 12 111 6 12 112 6 7 113 7 8 114 8 9 115 9 10 116 10 11 117 11 12 118 7 12 119 7 13 120 8 13 121 9 13 122 10 13 123 11 13 124 12 13 1123456210E613 0 -500 0②输出文件.txt****************************************** Program for Analysis of Space Trusses ** School of Civil Engineering CSU ** Designed By MuZhaoxiang ************************************************************************************************The Input Data*********************************************************The General InformationNF NP NE NM NR NCF ND3 13 24 1 6 1 2The Information of JointsJoint X Y Z1 .0234 .056789 .0101112 .013 .0 .0 .0The Information of Members Member START END NAE1 1 7 12 1 8 13 2 8 14 2 9 15 3 9 16 3 10 17 4 10 18 4 11 19 5 11 110 5 12 111 6 12 112 6 7 113 7 8 114 8 9 115 9 10 116 10 11 117 11 12 118 7 12 119 7 13 120 8 13 121 9 13 122 10 13 123 11 13 124 12 13 1The Information of SUPPORTS Joint S1 .1112 .1113 .1114 .1115 .1116 .111The Information of Sections E0 A0+08 .0400The Loading at JointsJoint FX FY FZ13 .00 .00*************************************************The Results of Calculation********** ****************************************The Joint DisplacementJoint X(mm) Y(mm) Z(mm)1 +00 +00 +002 +00 +00 +003 +00 +00 +004 +00 +00 +005 +00 +00 +006 +00 +00 +007 +00 +00 +008 +00 +00 +009 +00 +0010 +00 +00 +0011 +00 +00 +0012 +00 +0013 +01The Terminal ForcesMember FN(kN) σ(MPa)123456789101112131415161718192021222324The Bearing ForceJoint X Y Z1 .00234 .0056。