解法一:把圆C1和圆C2的方程化为标准方程:
C1 : ( x 1)2 ( y 4)2 52 C1的圆心(1,4), 半径为r1 5 C2 : (x 2)2 ( y 2)2 ( 10)2 C2的圆心(2, 2),半径为r2 10
连心线长为 (1 2)2 (4 2)2 3 5
r O2
R
r
O
O
1
2
外离 O1O2>R+r
外切 O1O2=R+r
相交 │R-r│<O1O2<R+r
O
1
R
Or
2
R
O
1
Or
2
R
O Or
12
内切
内含
同心圆 (一种特殊的内含)
O1O2=│R-r│ 0≤O1O2<│R-r│ O1O2=0
圆与圆的位置关系转化为圆心距d与R+r、|R-r|关系
圆与圆的位置关系的判定方法二(代数法):
弦长公式为| AB | 2 r2 d2
例题(变式):已知圆 C1 : x2 y2 2x 8y 8 0 与圆 C2 : x2 y 2 4x 4 y 2 0
试求两圆公共弦长
解:联立两圆方程得方程组源自x2 y2 2x 8y 8 0 ①
x
2
y2
4x
4
y
2
0
②
①-②得
x 2y 1 0 ③
把上式代入① x2 2x 3 0 解得x1 1, x2 3
x1 y1
1 ,
1
x2 y2
3 1
所以交点A,B坐标分别为(-1,1),(3,-1)
思考3:
已知两圆C1:x2+y2+D1x+E1y+F1=0 和C2:x2+y2+D2x+E2y+F2=0相交,