不等式与不等关系
- 格式:doc
- 大小:128.50 KB
- 文档页数:6
不等关系与不等式知识集结知识元不等关系与不等式知识讲解1.不等关系与不等式【不等关系与不等式】不等关系就是不相等的关系,如2和3不相等,是相对于相等关系来说的,比如与就是相等关系.而不等式就包含两层意思,第一层包含了不相等的关系,第二层也就意味着它是个式子,比方说a>b,a﹣b>0就是不等式.【不等式定理】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.例题精讲不等关系与不等式例1.设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.|a-b|≤|a-c|+|b-c|B.C.D.例2.已知a,b,c,d∈R,则下列命题中必然成立的是()A.若a>b,c>b,则a>cB.若a>b,c>d,则C.若a2>b2,则a>bD.若a>-b,则c-a<c+b例3.若a,b∈R下列说法中正确的个数为()①(a+b)2≥a2+b2;②若|a|>b,则a2>b2;③a+b≥2A.0B.1C.2D.3不等式比较大小知识讲解1.不等式比较大小【知识点的知识】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.【典型例题分析】方法一:作差法典例1:若a <0,b <0,则p =与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q解:p ﹣q =﹣a ﹣b ==(b 2﹣a 2)=,∵a <0,b <0,∴a +b <0,ab >0,若a =b ,则p ﹣q =0,此时p =q ,若a ≠b ,则p ﹣q <0,此时p <q ,综上p ≤q ,故选:B方法二:利用函数的单调性典例2:三个数,,的大小顺序是()A .<<B .<<C .<<D .<<解:由指数函数的单调性可知,>,由幂函数的单调性可知,>,则>>,故<<,故选:B.例题精讲不等式比较大小例1.已知-1<a<0,b<0,则b,ab,a2b的大小关系是()A.b<ab<a2b B.a2b<ab<bC.a2b<b<ab D.b<a2b<ab例2.a=80.7,b=0.78,c=log0.78,则下列正确的是()A.b<c<a B.c<a<bC.c<b<a D.b<a<c例3.三个数a=,b=()2020,c=log2020的大小顺序为()A.b<c<a B.b<a<cC.c<a<b D.c<b<a当堂练习单选题练习1.已知t=a+4b,s=a+b2+4,则t和s的大小关系是()A.t>s B.t≥sC.t<s D.t≤s练习2.已知a=,b=,c=,则()A.a>b>c B.a>c>bC.b>a>c D.c>b>a练习3.设a=,b=2,c=log32,则()A.b>a>c B.a>b>cC.c>a>b D.b>c>a练习4.设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<aC.a<c<b D.c<a<b练习5.若a=(),b=(),e=log,则下列大小关系正确的是()A.c<a<b B.c<b<aC.a<b<c D.a<c<b填空题练习1._____.不等式≤3的解集是__________练习2.于实数a、b、c,有下列命题①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是______.练习3.已知a,b∈R,且>1,则下列关系中①②a3<b3③ln(a2+1)<ln(b2+1)④若c>d>0,则其中正确的序号为_____。
探究高中数学中的不等式与不等关系数学是一门抽象而又具有逻辑性的学科,而不等式与不等关系作为数学中的一个重要概念,在高中数学中占据着重要的地位。
不等式与不等关系不仅仅是一种数学工具,更是一种思维方式和解决问题的方法。
本文将探究高中数学中的不等式与不等关系,分析其应用和意义。
一、不等式与不等关系的基本概念不等式是数学中比较两个数大小关系的一种表示方法,常用的不等关系有大于、小于、大于等于、小于等于等。
例如,a > b表示a大于b,a < b表示a小于b,a ≥ b表示a大于等于b,a ≤ b表示a小于等于b。
通过不等式与不等关系,我们可以比较两个数的大小关系,进而进行数值的比较和运算。
二、不等式与不等关系的性质及运算规则不等式与不等关系具有一些重要的性质和运算规则,这些性质和规则对于解决不等式问题具有重要的指导意义。
1. 不等式的传递性:如果a > b,b > c,那么可以推出a > c。
这个性质告诉我们,如果两个数之间存在大小关系,那么通过传递性可以推出更多的大小关系。
2. 不等式的加减乘除性质:对于不等式a > b,c > 0,有以下性质:- 加法性质:a + c > b + c- 减法性质:a - c > b - c- 乘法性质:a × c > b × c(当c > 0时)- 除法性质:a ÷ c > b ÷ c(当c > 0时)通过这些性质,我们可以对不等式进行加减乘除运算,从而得到新的不等式。
三、不等式的解集与图像表示解不等式就是找到满足不等式条件的数的集合,这个集合被称为不等式的解集。
不等式的解集可以用图像表示,从而更直观地理解不等式的解集。
对于一元一次不等式,我们可以通过构建不等式的解集来表示。
例如,对于不等式2x + 3 > 5,我们可以通过移项得到2x > 2,进而得到x > 1。
不等关系与不等式一、学习指导不等式的性质是解(证)不等式的基础,关键是正确理解和运用, 要弄清条件和结论,考试中多以小题出现,题目难度不大,学 习时,应抓好基本概念,少做偏难题.二、基础梳理1.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数 学符号 连接两个数或代数式以表示它们 之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a -b >0⇔ ;a -b =0⇔ ;a -b <0⇔ . 另外,若b >0,则有a b >1⇔a >b ;a b =1⇔a =b ;a b <1⇔a <b .3.不等式的性质(1)对称性:a >b ⇔b <a ;(2)传递性:a >b ,b >c ⇔ ;(3)可加性:a >b ⇔a +c b +c ,a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ;(5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥2);(6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).三、典型题型题型一 比较大小【例1】已知a ,b ,c 是实数,试比较a 2+b 2+c 2与 ab +bc +ca 的大小.解:∵a 2+b 2+c 2-(ab +bc +ca )=12[(a -b )2+(b -c )2+(c -a )2]≥0, 当且仅当a =b =c 时取等号.∴a 2+b 2+c 2≥ab +bc +ca .【训练1】 已知a ,b ∈R 且a >b ,则下列不等式中一定成立的是( ).A.a b >1B .a 2>b 2C .lg(a -b )>0D.⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12 b题型二 不等式的性质【例2】 若a >0>b >-a ,c <d <0,则下列命题:(1)ad >bc ;(2)a d +b c <0;(3)a -c >b -d ;(4)a ·(d -c )>b (d -c )中能成立 的个数是( ).A .1B .2C .3D .4方法总结:在判断一个关于不等式的命题真假时,先把要判断的 命题和不等式性质联系起来考虑,找到与命题相近的性质,并应 用性质判断命题真假,当然判断的同时还要用到其他知识,比如 对数函数,指数函数的性质等.题型三 不等式性质的应用【例3】已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4. 求f (-2)的取值范围.[审题视点] 可利用待定系数法寻找目标式f (-2)与已知式f (-1), f (1)之间的关系,即用f (-1),f (1)整体表示f (-2),再利用 不等式的性质求f (-2)的范围.解:f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .∴⎩⎪⎨⎪⎧ m +n =4,m -n =-2,∴⎩⎪⎨⎪⎧ m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1).∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.题型四 利用不等式的性质证明简单不等式【例4】设a >b >c ,求证:1a -b +1b -c +1c -a >0. 证明:∵a >b >c ,∴-c >-b .∴a -c >a -b >0,∴1a -b >1a -c >0. ∴1a -b +1c -a >0.又b -c >0,∴1b -c>0. 1a -b +1b -c +1c -a>0.四 、小结。
不等关系与不等式编稿:张希勇 审稿:李霞【学习目标】1.了解实数运算的性质与大小顺序之间的关系;2.会用差值法比较两实数的大小;3.掌握不等式的基本性质,并能运用这些性质解决有关问题.【要点梳理】要点一、符号法则与比较大小实数的符号:任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立.两实数的加、乘运算结果的符号具有以下符号性质:①两个同号实数相加,和的符号不变符号语言:0,00a b a b >>⇒+>;0,00a b a b <<⇒+<②两个同号实数相乘,积是正数符号语言:0,00a b ab >>⇒>;0,00a b ab <<⇒>③两个异号实数相乘,积是负数符号语言:0,00a b ab ><⇒<④任何实数的平方为非负数,0的平方为0符号语言:20x R x ∈⇒≥,200x x =⇔=.比较两个实数大小的法则:对任意两个实数a 、b①0b a b a ->⇔>;②0b a b a -<⇔<;③0b a b a -=⇔=.对于任意实数a 、b ,a b >,a b =,a b <三种关系有且只有一种成立.要点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系.它是本章的基础,也是证明不等式与解不等式的主要依据.要点二、不等式的性质不等式的性质可分为基本性质和运算性质两部分基本性质有:(1) 对称性:a>b b<a ⇔(2) 传递性:a>b, b>c a>c ⇒(3) 可加性:a b a c b c >⇔+>+ (c ∈R)(4) 可乘性:a>b ,⎪⎩⎪⎨⎧<⇒<=⇒=>⇒>bc ac c bc ac c bc ac c 000运算性质有:(1) 可加法则:,.a b c d a c b d >>⇒+>+(2) 可乘法则:,a b>0c d>0a c b d>0>>⇒⋅>⋅(3) 可乘方性:*0,0n n a b n N a b >>∈⇒>>(4)可开方性:a b 0,n N ,n 1+>>∈>⇒>要点诠释:不等式的性质是不等式同解变形的依据.要点三、比较两代数式大小的方法作差法:任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小.①0b a b a ->⇔>;②0b a b a -<⇔<;③0b a b a -=⇔=.作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较a b与1的关系,进一步比较a 与b 的大小. ①1b a a b>⇔>; ②1b a a b<⇔<; ③1b a a b =⇔=. 中间量法:若a>b 且b>c ,则a>c (实质是不等式的传递性).一般选择0或1为中间量.利用函数的单调性比较大小若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小.作差比较法的步骤:第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化为“积”;第三步:定号,就是确定差是大于、等于还是小于0;最后下结论.要点诠释:概括为:“三步一结论”.这里“定号”是目的,“变形”是关键过程.【典型例题】类型一:用不等式表示不等关系例1.某人有楼房一幢,室内面积共2180m ,拟分割成大、小两类房间作为旅游客房,大房间面积为218m ,可住游客5人,每名游客每天住宿费40元;小房间每间面积为215m ,可住游客3人,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元,如果他只能筹款8000元用于装修,试写出满足上述所有不等关系的不等式.【思路点拨】把已知条件用等式或不等式列出来(代数化),把目标用代数式表示,再研究条件和目标的关系。
《不等关系与不等式》知识清单一、不等关系在日常生活和数学中,我们经常会遇到各种不等关系。
比如,身高的比较、成绩的高低、物品价格的差异等等。
不等关系是客观存在的,它反映了事物之间的数量差异和大小顺序。
不等关系可以用文字语言来描述,例如“大于”“小于”“不超过”“不少于”等;也可以用符号语言来表示,常见的不等号有“>”(大于)、“<”(小于)、“≥”(大于或等于)、“≤”(小于或等于)。
二、不等式不等式是用不等号连接两个代数式所形成的式子。
例如,2x + 3 >5 就是一个不等式。
1、不等式的性质性质 1:如果 a > b,那么 b < a ;如果 b < a ,那么 a > b 。
(对称性)性质 2:如果 a > b 且 b > c ,那么 a > c 。
(传递性)性质 3:如果 a > b ,那么 a + c > b + c 。
(加法法则)性质 4:如果 a > b 且 c > 0 ,那么 ac > bc ;如果 a > b 且 c <0 ,那么 ac < bc 。
(乘法法则)这些性质是解决不等式问题的重要依据,需要熟练掌握和运用。
2、一元一次不等式形如 ax + b > 0 或 ax + b < 0 (其中a ≠ 0 )的不等式叫做一元一次不等式。
解一元一次不等式的一般步骤:(1)去分母(根据不等式的性质 2 和 3 )(2)去括号(乘法分配律)(3)移项(根据不等式的性质 1 )(4)合并同类项(5)系数化为 1 (根据不等式的性质 4 )在系数化为1 时,需要注意当系数为负数时,不等号的方向要改变。
3、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (其中a ≠ 0 )的不等式叫做一元二次不等式。
解一元二次不等式通常需要先求出对应的一元二次方程的根,然后根据二次函数的图像来确定不等式的解集。
例如,对于不等式 x² 2x 3 > 0 ,先解方程 x² 2x 3 = 0 ,得到 x=-1 或 x = 3 。
不等式与不等关系一、概念引入不等式是数学中的一种重要概念,与等式相对应。
不等式表示了数值之间的大小关系,常用于描述实际问题中的约束和条件。
不等式由不等号连接的两个数或表达式组成,不等号可以是大于号(>)、小于号(<)、大于等于号(≥)或小于等于号(≤)。
二、基本性质1. 不等式的传递性不等式的传递性指若a>b 且b>c,则有a>c。
例如,若3>2 且2>1,则有 3>1。
2. 不等式的加减运算性质若 a>b,则 a+c>b+c。
例如,若 3>2,则有 3+1>2+1。
3. 不等式的乘除运算性质当 c>0 时,若 a>b,则 ac>bc。
例如,若 3>2,则有 3×2>2×2。
当c<0 时,不等号方向反向。
三、一元一次不等式一元一次不等式是指只包含一个未知数,并且该未知数的最高次幂为一次的不等式。
例如,2x+3>5、4x-1<10等都是一元一次不等式。
解一元一次不等式的方法包括图解法、试值法和代数法。
图解法将不等式表示在数轴上,利用数轴的方向性确定不等式的解集。
试值法则通过给定一个试探值,并代入不等式中验证是否成立。
代数法则通过一系列的变形和运算,将不等式化简为更简单的形式,从而求得解集。
四、二元一次不等式组二元一次不等式组是指包含两个未知数的一次不等式的系统。
常用于描述平面上的几何关系和约束条件。
解二元一次不等式组一般采用图解法。
将两个不等式表示在二维直角坐标系中,分别确定两个不等式的解集,然后找出二者的交集区域,即为不等式组的解集。
五、不等关系不等关系是用于比较两个不等式的关系。
常见的不等关系包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)以及不等于(≠)。
不等关系可以根据两个不等式之间的关系,利用布尔运算(与、或、非)进行合并和推导。
2023-11-06CATALOGUE 目录•不等关系•不等式•不等式的解法•不等式在实际问题中的应用•不等式的扩展知识01不等关系不等关系是数学中的一个基本概念,它描述了两个数或量之间的大小关系。
在日常生活中,不等关系也广泛存在,例如人的身高、体重、年龄等都可以用不等式来表示。
引言如果对于任意两个实数a和b,可以用一个大于号(>)或者小于号(<)来表示它们之间的关系,那么就说a与b之间存在不等关系。
特别地,当a=b时,称a与b相等;当a>b时,称a大于b;当a<b时,称a小于b。
如果a>b且b>c,那么a>c。
不等关系的传递性如果a>b,那么b<a;如果a<b,那么b>a。
不等关系的逆向性如果a>b且c>d,那么a+c>b+d。
不等关系的可加性如果a>b且c>d,那么ac>bd(当c>0时);如果a>b且c<d,那么ac<bd(当c<0时)。
不等关系的可乘性02不等式用不等号(“>”、“<”、“≥”、“≤”或“≠”)连接两个数的式子,称为不等式。
不等式的定义严格不等式非严格不等式用严格不等号“≠”连接两个数的式子,称为严格不等式。
用“>”、“<”、“≥”、“≤”连接两个数的式子,称为非严格不等式。
03不等式的定义0201极值定理对称性如果a>b,那么b<a;如果b<a,那么a>b。
加法单调性也就是不等式方向不变。
乘法单调性积大于每一个因数。
任何数都有大于、小于、等于它自身的关系,这是自然界的普遍规律。
反身性传递性如果a>b,b>c,那么a>c。
如果f(x)在区间[a,b]上单调,则f(x)在[a,b]上的最大值与最小值之差为零。
不等式的性质一元不等式只含有一个未知数的不等式。
线性不等式未知数是线性组合的不等式。
不等关系与不等式一、不等式的定义用不等号(<,>,≤,≥,≠)表示不等关系的式子叫不等式。
如:)()(x g x f >,)()(x g x f ≤等等。
例1:已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与5枝康乃馨的二、掌握实数的运算性质与大小顺序间的关系实数的运算性质:b a b a >⇔>-0;b a b a =⇔=-0;b a b a <⇔<-0。
例2:已知a 、b 为正实数,试比较a b b a +与b a +的大小。
三、不等式的性质与推论①对称性:a b b a <⇔>;②传递性:b a >,c a c b >⇒>;③加法性质:c b c a b a +>+⇒>;(这是不等式移项法则的基础)推论:b a >,d b c a d c +>+⇒>;(这是同向不等式相加法则的依据,它还可以推广到任意有限个同向不等式的两边分别相加,所得不等式与原不等式同向) ④乘法性质:b a >,bc ac c >⇒>0;b a >,bc ac c <⇒<0;推论1:0>>b a ,bd ac d c >⇒>>0推论2:0>>b a ,N n ∈,n n b a n >⇒>1; ⑤开方性质:0>>b a ,N n ∈,n n b a n >⇒>1。
主要题型:1.利用不等式的性质证明不等式利用不等式的性质及其推论可以证明一些不等式。
解决此类问题一定要在理解的基础上,记准、记熟不等式的几条性质并注意在解题中灵活准确地加以应用。
例3:若0>>b a ,0<c ,求证:bc a c >。
2.利用不等式的性质求取值范围利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围。
第12讲:不等关系与不等式【学习目标】1.能用不等式(组)表示实际问题中的不等关系.2.初步学会作差法、作商法比较两实数的大小.【基础知识】基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.依据a>b⇔a-b>0. a=b⇔a-b=0. a<b⇔a-b<0结论要比较两个实数的大小,可以转化为比较它们的差与0的大小【考点剖析】考点一:不等式组表示不等关系例1.为了全面贯彻党的教育方针,落实“立德树人”的根本任务,切实改变边远地区孩子上学难的问题,某市政府准备投资1800万元兴办一所中学.经调查,班级数量以20至30个为宜,每个初、高中班硬件配置分别需要28万元与58万元,该学校的规模(初、高中班级数量)所满足的条件是___________.【答案】2030, 28581800,0,0,,x yx yx y x y N【详解】设该校有初中班x个,高中班y个,则有:2030, 28581800,0,0,,x yx yx y x y N故答案为:2030, 28581800,0,0,,x yx yx y x y N变式训练1:《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为________.【答案】 91110813x y y x x y【详解】设每枚黄金重x 两,每枚白银重y 两,由题意得: 91110813x y y x x y 故答案为: 91110813x y y x x y 变式训练2:A 杯中有浓度为%a 的盐水x 克,B 杯中有浓度为%b 的盐水y 克,其中A 杯中的盐水更咸一些.若将A 、B 两杯盐水混合在一起,其咸淡的程度可用不等式表示为___________.【答案】ax by b a x y【详解】由题意,将A 、B 两杯盐水混合再一起后浓度为ax by x y, b a y ax by a x y x y ∵, a b x ax by b x y x y,∵A 杯中的盐水更咸一些,a b ,ax by b a x y,故答案为:ax by b a x y.变式训练3:已知b 克盐水中含有 0a b a 克盐,若给盐水加热,蒸发了 0m m b a 克水后盐水更咸了,请将这一事实表示为一个不等式:______.【答案】a ab m b 【详解】原来盐占盐水的比例为a b ,给盐水加热,蒸发了 0m m b a 克水后,盐占盐水的比例为a b m ,则a a b m b考点二:作差法比较大小(一)例2.比较231x x 与221x x 两个代数式的大小:;【答案】(1)223121x x x x ;【详解】(1) 2222312122110x x x x x x x ∵,因此,223121x x x x ;变式训练1:已知2253M x x ,242N x x ,则M ________N (用>,<,=填)【答案】>【详解】2253M x x ,242N x x ,222225342131024M N x x x x x x x ,故M N .故答案为: .变式训练2:试比较 15x x 与 23x 的大小.【答案】2(1)(5)(3)x x x 【详解】因为222153656940x x x x x x x ,2(1)(5)(3)x x x 变式训练3:比较3x 与21x x 的大小;【答案】详解见解析;【详解】作差得:323222(1)()(1)(1)(1)(1)(1)x x x x x x x x x x x (i)当1x 时,32(1)0x x x ,故321x x x ;(ii)当1x 时,32(1)0x x x ,故321x x x ;(iii)当1x 时,32(1)0x x x ,故321x x x .考点三:作差法比较大小(二)例3.证明不等式:(1)设0,0a b ,求证:3322a b ab a b ;(2)设,x y R ,求证:2252(2)x y x y .【答案】(1)证明见解析;(2)证明见解析.【详解】证明:(1)因为3322a b ab a b 3322a b ab a b 3232a ab b a b 2222a a b b b a 222a b a b a b a b ,因为00a b ,,所以 20a b a b ,所以33220a b ab a b ,所以3322a b ab a b ;(2)因为 22522x y x y 22542x y x y 22425x x y y22210x y ,所以 22522x y x y .变式训练1:若221a x ,22b x x ,3c x ,比较a ,b ,c 的大小.【答案】a b c .详解:∵221a x ,22b x x ,3c x ,∴22212a b x x x 222110x x x ,即a b , 223b c x x x 223333024x x x ,即b c ,综上可得:a b c .变式训练2:已知a,b R ,比较22a b 与245a b 的大小.【答案】22245a b a b .【详解】a ∵,b R ,22245a b a b 222144a ab b 22(1)(2)0a b ,22245a b a b ,当且仅当1a ,2b 时,等号成立,两式相等.变式训练3:已知0a b ,比较22a b b a 与11a b 的大小.【答案】2211a b b a a b【详解】解:222211a b a b b a b a a b b a2211()a b b a222()()a b a b a b.∵0a b ,2()0a b ,∴222()()0a b a b a b ,当且仅当a b 时,取等号,∴2211a b b a a b.考点四:作商法比较大小例4.设 121p a a ,21q a a ,则()A.p qB.p q C.p qD.p q 【答案】D【详解】 1222110132411p a a a a a,22131024q a a a ,则222121111a a a a a a a q a p 222222111a a a a .故p q ,当且仅当0a 时,取等号,故选:D变式训练1:2211,,()1P a a Q a R a a ,则,P Q 的大小关系为_______.【答案】≥【详解】因为22131024P a a a ,22131024a a a 则0Q 由 222224211111P a a a a a a a a Q所以P Q故答案为:变式训练2:已知0a ,0b,试比较a b 时取等号)【详解】a b2211,当且仅当ab 时等号成立,a b 时取等号).变式训练3:设0a b ,比较2222a b a b与a b a b 的大小【答案】2222a b a b a b a b【详解】220,0,a b a b a b ∵,22220,0a b a b a b a b,.两数作商 222222a b a b a b a b a b a b a b a b a b22222211a b ab a b a b,2222a b a b a b a b.【过关检测】1、已知,a b R ,则2252a b _______42ab a .(用“>”或“<”填空)【答案】>【详解】因为225242a b ab a 22(2)(1)1a b a ,又2(2)0a b ≥,2(1)0a ,所以2252420a b ab a ,所以225242a b ab a ,故答案为:>.2、已知0x ,则 221x 与421x x 的大小关系为_______.【答案】 221x 421x x 【详解】因为 221x 421x x 42422211x x x x x ,又0x ,所以20x .所以221x 421x x .故答案为: 221x 421x x .3、设222m a a , 21n a ,则m ,n 的大小关系是______.【答案】m n .【详解】因为 2222110m n a a a ,所以m n .故答案为:m n .4、已知241Ma a ,122N a ,则M ________N .(填“>”或“<”)【答案】 【详解】22312(1)022M N a a a,∴M N .故答案为: .5、已知231M a a ,122N a,则M________N.(填“>”或“<”)【答案】 【详解】22111()0224M N a a a,∴M N .故答案为: .6、设x R ,231Mx x ,21N x x ,则M 与N 的大小关系为________.【答案】M N【详解】22311M N x x x x ∵222132222(1)2[(]024x x x x x ,M N故答案为:M N .7、已知a ,b 为实数,则221214a b______2ab a .(填“>”、“<”、“≥”或“≤”)【答案】≥【详解】2222112121042a b ab a a b a ,当且仅当1a ,2b 取等号.故答案为:≥8、设2,1M x N x ,则M 与N 的大小关系是________.【答案】M N【详解】由作差比较法,可得22213(1)1(024M N x x x x x,所以M N .故答案为:M N .9、若 23x a a , 34y a a ,则x 与y 的大小关系是__________.【答案】x y【详解】22233461260x y a a a a a a a a ,因此,x y .故答案为:x y .10、已知1x ,比较36x x 与26x 的大小.【答案】3266x x x .【详解】解: 32226616161x x x xx x x x ∵1x ,∴ 2610x x ∴3266x x x .11、若0x ,试比较251x 和2331x x 的大小;【答案】答案见解析;【详解】作差得: 22251331232212x x x x x x x ;所以当2x 时,2251331x x x ;当2x 时,2251331x x x ;当02x 时,2251331x x x ;12、设a 、b 为实数,比较22a b 与448a b 的值的大小.【答案】22448a b a b 【详解】由于a 、b 为实数,则 2222224484444220a ba b a a b b a b ,当且仅当22a b时,等号成立.因此,22448a b a b .13、比较221x y 与 21x y 的大小;【答案】 22121x y x y ;【详解】因为 2222211111x y x y x y ,又 2210,10x y ,所以222101x y x y ,所以 22121x y x y ;14、x R ,比较2(1)(1)2x x x 与 2(112x x x 的大小.【答案】 22111122x x x x x x【详解】由22(1)(1)(1212x x x x x x 323233331110222222x x x x x x所以 22111122x x x x x x15、设a ,b 为实数,比较22a b 与1ab a b 的大小.【答案】见解析详解:解:22(1)a b ab a b 221(222222)2a b ab a b22221[(2)(21)(21)]2a b ab a a b b 2221[()(1)(1)]2a b a b 222()0,(1)0,(1)0a b a b ∵,当且仅当1a b 时同时取等号22(1)0a b ab a b ,当且仅当1a b 时取等221a b ab a b 16、已知0a ,0b ,试比较11a b M a b 与11b a N a b的大小.【答案】当a b 时,M N =;当a b ¹时,M N .【详解】11111111a b b a a b a b M N a b a b a a b b Q 211111111a b a b a b a b a b a b a b .因为0a ,0b ,所以 110a b , 20a b ,得0M N 当a b 时,M N =;当a b ¹时,M N .17、已知,R a b的大小.【详解】a ba ba b2,显然成立, ,当且仅当a b 时取等号.18、若0a b ,0c d ,0e ,试比较 2e a c 与 2e b d 的大小.【答案】22e e a c b d 【详解】 22ee a c b d2222e b d a c a c b d22e a b c d b a c d a c b d ∵0a b ,0c d ,0a b ,0c d ,0b a ,0c d ,0a b c d , 0b a c d .∵0e , 0e a b c d b a c d 又 220a c b d , 220eea cb d ,即 22e ea cb d .19、先后两次购买同一种物品,可采取两种不同的方式,第一种是不考虑物品价格的升降,每次购买该物品的数量一定;第二种是不考虑物品价格的升降,每次购买该物品所花的钱数一定.甲、乙二人先后两次结伴购买同一种物品,其中甲在两次购物时采用第一种方式,乙在两次购物时采用第二种方式.已知第一次购物时该物品单价为1p ,第二次购物时该物品单价为2p (12p p ).甲两次购物的平均价格记为1Q ,乙两次购物的平均价格记为2Q .(1)求1Q ,2Q 的表达式(用12p p ,表示);(2)通过比较1Q ,2Q 的大小,说明哪种购物方式比较划算.【答案】(1)1212121222p p p p Q Q p p,;(2)第二种购物方式比较划算.【详解】解:(1)设甲两次购物时购物量均为m,则两次购物总花费为1p m+2p m,购物总量为2m,平均价格为1212122p m p m p p Q m .设乙两次购物时用去钱数均为n,则两次购物总花费2n,购物总量为12n n p p ,平均价格为122121222p p n Q n n p p p p =综上,1212121222p p p p Q Q p p (2)∵12p p ,∴ 2212121212121212121242022()2()p p p p p p p p p p Q Q p p p p p p 12Q Q 由此可知,第二种购物方式比较划算.20、甲、乙两位消费者同时两次购买同一种物品,分别采用两种不同的策略,甲的策略是不考虑物品价格的升降,每次购买这种物品的数量一定;乙的策略是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.(1)若两次购买这种物品的价格分别为6元,4元,求甲两次购买这种物品平均价格和乙两次购买这种物品平均价格分别为多少;(2)设两次购买这种物品的价格分别为a 元,b 元(0,0)a b ,问甲、乙谁的购物比较经济合算.【答案】(1)5,245;(2)乙的购物比较经济合算.【详解】(1)设甲每次购买这种物品的数量为m ,乙每次购买这种物品所花的钱数为n ,所以甲两次购买这种物品平均价格为,645m m m m ,乙两次购买这种物品平均价格为,224564n n n .(2)设甲每次购买这种物品的数量为m ,乙每次购买这种物品所花的钱数为n ,所以甲两次购买这种物品平均价格为,2am bm a b m m ,乙两次购买这种物品平均价格为22n ab n n a b a b ,22222()42()022()2()2()a b ab a b ab a b ab a b a b a b a b a b ,所以乙的购物比较经济合算.。
不等关系与不等式介绍不等关系是数学中常用的一种关系,用于描述两个数之间的大小关系,即比较两个数的大小。
在数学中,不等关系可以表示为"大于"、“小于”、“大于等于”、“小于等于”。
不等关系可以形成不等式,不等式是含有不等号的数学式子。
不等关系是不等式的基础,而不等式则是对不等关系进行了约束。
在不等关系中,常常使用符号“>”(大于)、“<”(小于)、“≥”(大于等于)、“≤”(小于等于)来表示。
为方便表达,我们将两个数用变量表示,一般用字母x或y来表示。
例如,若x>y,表示x比y大;若x<y,表示x比y小;若x≥y,表示x大于等于y;若x≤y,表示x小于等于y。
不等关系可以直接表示两个数之间的大小关系,而不等式则将不等关系进行了约束,通过不等式可以表示一系列满足条件的数的范围。
不等式可以分为一元不等式和二元不等式。
一元不等式是只含有一个未知数的不等式,二元不等式是含有两个未知数的不等式。
解不等式即求不等式的解集,即满足不等式条件的变量值的范围。
解不等式的方法与解方程的方法有些相似,但由于不等式的特殊性,有一些注意事项。
对于一元不等式,可以通过将不等式化简为等价的形式,然后求解,在不等式两边施以同一个正数或同一个负数时,不等号的方向会发生改变。
例如,对于不等式2x-5>7,我们可以将其化简为2x>12,再除以2得到x>6,所以该不等式的解集为{x,x>6}。
当不等式左右两边均含有未知数,即为二元不等式时,需要绘制不等式的图形来找出解集。
一般将不等式转化为一元不等式的形式,取出一个未知数,再通过绘制图形来求解。
例如,对于二元不等式2x+3y≤8,我们可以将其转化为一元不等式2x≤8-3y,再通过绘制图形求解。
在绘制图形时,将不等式转化为等式,将未知数看作坐标轴上的变量,找出所有使等式成立的点,再根据不等式的符号来确定图形中的哪些点属于解集。
不等式与不等关系一、不等式的定义用不等号(<、>、≤、≥、≠)表示不等关系的式子叫不等式。
二、文字语言与数学符号间的转换b a b a >⇔>-0 b a b a =⇔=-0 b a b a <⇔<-0四、不等式的基本性质1、a b b a <⇔> (对称性)2、,a b b c a c >>⇒> (传递性)3、a b a c b c >⇒+>+(移项法则)4、,0a b c ac bc >>⇒> bc ac c b a <⇒<>0, (乘法法则)5、a>b,c>d,⇒a+c>b+d (加法法则)6、a>b>0,c>d>0⇒ac>bd (乘法法则)7、a>b>0⇒a n >b n (乘方法则) 8、a>b>0⇒n n b a >(n ∈N ,n ≥2) (开方法则)五、比较两代数式大小的方法1、作差法:步骤:第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化为“积”;第三步:定号,就是确定差是大于、等于还是小于0;最后下结论。
概括为:“三步一结论”。
这里“定号”是目的,“变形”是关键过程。
2、作商法: 任意两个值为正的代数式b a ,,可以作商b a ÷后比较ba 与1的关系,进一步比较与的大小。
①;②; ③.六、题型分析|(一)不等式性质1、对于实数a ,b ,c ,判断下列命题的真假.(1)若a>b,则ac<bc ;(2)若ac2>bc2,则a>b ;(3)若a<b<0,则a2>ab>b2;(4)若a<b<0,则|a|>|b|; (5)若c>a>b>0,则b c b a c a ->-,(6)若a>b,ba 11>,则a>0,b<0. 2、分别判断下列各命题是否成立,并简述理由.(1)a>b ⇒2-x ·a>2-x ·b; (2)a>b,c>d ⇒a-c>b-d;(3)a>b,c<d,cd ≠0⇒db c a >;(4)|a|>b>0⇒a n >b n (n ∈N,n ≥1). 3、利用不等式的性质证明不等式 (1)已知0,0,a b c >><求证:c c a b >。
不等式与不等关系考纲要求1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景. 考情分析1.从高考内容上来看,不等关系、不等式的性质及应用 是命题的热点.2.着重突出考查对不等式性质的灵活运用,有时与充要 性的判断交汇命题,体现了化归转化思想,难度中、 低档.3.考查题型多为选择、填空题. 教学过程基础梳理一、实数大小顺序与运算性质之间的关系a -b >0⇔ ;a -b =0⇔ ; a -b <0⇔ . 二、不等式的基本性质1.对称性a >b ⇔2.传递性a >b ,b >c ⇒3.可加性a >b ⇒4.可乘性 a >b c >0⇒ ,⎭⎬⎫a >bc <0⇒5.同向可加性⎭⎬⎫a >bc >d ⇒6.同向同正可乘性⎭⎬⎫a >b >0c >d >0⇒7.可乘方性a >b >0⇒ (n ∈N ,n ≥2)8.可开方性a >b >0⇒ (n ∈N ,n ≥2)两条常用性质① a >b ,ab >0⇒1a <1b;② 若a >b >0,m >0,则b a <b +ma +m;双基自测1.若x +y >0,a <0,ay >0,x -y 的值为 ( ) A .大于0 B .等于0 C .小于0D .不确定2.(教材习题改编)已知a ,b ,c 满足c <b <a ,且ac <0.那么下列选项中一定成立的是 ( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>03.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(教材习题改编)3+7与25的大小关系是________. 5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c以上命题中正确的是____________(请把正确命题的序号都填上).1.不等式性质使用时注意的问题:在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加、“同向且两边同正的不等式”才可相乘;可乘性中的“c 的符号”等都需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在大小比较中的作用.典例分析考点一、比较大小[例1] (2012·珠海模拟)已知b >a >0,x >y >0,求证:x x +a >yy +b .[巧练模拟]——————(课堂突破保分题,分分必保!) 1.(2012·杭州模拟)已知a >b ≥2.现有下列不等式: ①b 2>3b -a ;②ab >a +b .其中正确的是 ( ) A .① B .② C .①② D .都不正确2.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )[冲关锦囊] 比较大小的方法 1.作差法:其一般步骤是:(1)作差;(2)变形;(3)定号;(4)结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,也可以先平方再作差. 2.作商法:其一般步骤是:(1)作商;(2)变形;(3)判断商与1的大小;(4)结论. 3.特例法:若是选择题还可以用特殊值法比较大小,若是解答题,也可以用特殊值法探路.考点二、不等式的性质[例2] (2011·全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是 ( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3[巧练模拟]———————(课堂突破保分题,分分必保!)3.(2012·义乌模拟)设a ,b ∈R ,若b -|a |>0,则下列不等式中正确的是( )A .a -b >0B .a +b >0C .a 2-b 2>0D .a 3+b 3<04.(2012·天津调研)已知三个不等式:①ab >0;②c a >db ;③bc >ad .以其中两个作条件,余下一个作结论,则可组成________个正确 命题. [冲关锦囊](1)判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的 性质.(2)特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立, 则该命题为假命题. 考点三、不等式性质的应用[例3] (2011·浙江高考)若a ,b 为实数,则“0<ab <1”是“b <1a”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[巧练模拟]—————(课堂突破保分题,分分必保!)5.(2012·金华质检)已知a ∈R ,则“a >2”是“a 2>2a ”成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2012·山西四校第二次联考)设实数x ,y 满足3≤xy 2≤8,4≤x 2y≤9,则x 3y 4的最大值是 ( )A .27B .3 C.818 D .72一、选择题1.(2011·长沙一模)若a ,b ∈R ,则下列命题正确的是( ) A .若a >b ,则a 2>b 2 B .若|a |>b ,则a 2>b 2 C .若a >|b |,则a 2>b 2D .若a ≠|b |,则a 2≠b 22.(2011·泉州质检)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定3.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b4.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .12log b <12log a <0C .2b <2a <2D .a 2<ab <15.(2012·厦门模拟)设命题p :若a >b ,则1a <1b ,q :若1ab <0,则ab <0.给出以下3个复合命题,①p ∧q ;②p ∨q ;③綈p ∧綈q .其中真命题的个数为( )A .0个B .1个C .2个D .3个二、填空题6.若1<α<3,-4<β<2,则α-|β|的取值范围是________. 解析:∵-4<β<2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)7.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y .因此①不成立.又∵ax =-6,by =-6,∴ax =by .因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx .因此⑤不正确.由不等式的性质可推出②④成立. 答案:②④ 三、解答题8.已知a >0,b >0,试比较M =a +b 与N =a +b 的大小. 解:∵M 2-N 2=(a +b )2-(a +b )2 =a +b +2ab -a -b =2ab >0, ∴M >N .9.已知奇函数f (x )在区间(-∞,+∞)上是单调递减函数,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试说明f (α)+f (β)+f (γ)的值的与0的关系.解:由α+β>0,得α>-β.∵f (x )在R 上是单调减函数,∴f (α)<f (-β). 又∵f (x )为奇函数,∴f (-β)=-f (β). ∴f (α)<-f (β).∴f (α)+f (β)<0. 同理f (β)+f (γ)<0,f (γ)+f (α)<0. ∴f (α)+f (β)+f (γ)<0.10.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,试判断谁先到教室?解:设从寝室到教室的路程为s ,甲、乙两人的步行速度为v 1,跑步速度为v 2,且v 1<v 2. 甲所用的时间t 甲=s 2v 1+s 2v 2=s (v 1+v 2)2v 1v 2,乙所用的时间t 乙=2sv 1+v 2,∴t 甲t 乙=s (v 1+v 2)2v 1v 2×v 1+v 22s =(v 1+v 2)24v 1v 2=v 21+v 22+2v 1v 24v 1v 2>4v 1v 24v 1v 2=1. ∵t 甲>0,t 乙>0,∴t 甲>t 乙,即乙先到教室.。