七年级数学幂的乘方2
- 格式:doc
- 大小:46.00 KB
- 文档页数:2
幂的乘方的公式好嘞,以下是为您生成的关于“幂的乘方的公式”的文章:在咱们数学的奇妙世界里,幂的乘方公式就像是一把神奇的钥匙,能打开很多复杂计算的大门。
先来说说这个幂的乘方公式到底是啥。
它呀,就是$(a^m)^n =a^{mn}$。
这看起来挺简单几个字母和符号,其实藏着大大的智慧呢!就拿咱们平时做数学题来说吧。
有一次,我在课堂上给学生们出了一道题:计算$(2^3)^4$。
好多同学一开始都有点懵,不知道从哪儿下手。
这时候,咱们的幂的乘方公式就派上用场啦!按照公式,那就是$2^{3×4}=2^{12}$,这一下子就变得清晰明了了。
再比如说,遇到像$(x^2)^5$这样的式子,用公式一算,那不就是$x^{2×5}=x^{10}$嘛。
那为啥要学这个幂的乘方公式呢?其实啊,在解决很多数学问题的时候,它能让咱们的计算变得又快又准。
想象一下,要是没有这个公式,每次遇到幂的乘方运算,咱们都得一个一个去乘,那得多麻烦,多容易出错呀!有了这个公式,就像是给咱们的数学计算安上了小翅膀,能飞得又高又快。
我还记得有一次,有个学生做作业的时候,总是忘记幂的乘方公式。
结果呢,一道本来很简单的题,他算了半天也没算对。
我就给他耐心地讲解,让他一步一步按照公式来,最后他恍然大悟,那种“哦,原来是这样”的表情,真的让我觉得特别有成就感。
在实际生活中,幂的乘方公式也有用武之地呢。
比如说,计算面积或者体积的时候,如果边长或者棱长是幂的形式,那这公式就能帮咱们轻松算出结果。
学习幂的乘方公式,就像是在攀登数学山峰的过程中找到了一条捷径。
虽然这条路上可能还会有一些小坎坷,但是只要咱们牢牢记住这个公式,多做练习,就能走得稳稳当当。
所以呀,同学们可别小瞧了这个幂的乘方公式,它可是咱们数学学习中的好帮手,能让咱们在数学的海洋里畅游得更加畅快!。
幂的乘方与积的乘方
1、幂的乘方:底数不变,指数相乘
(a^n)^m=a^(m·n),m个a^n相乘
(a^n)^(1/m)=a^(n/m),1/m个a^n相乘
2、积的乘方:
(a·b)^n=a^n·b^n
(m^a·n^b)^c=m^(a·c)·n^(b·c)
2、同底数幂的乘法:既然底数相同,指数就可以相加
a^m·a^n=a^(m+n)
扩展资料
数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的,故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
幂不符合结合律和交换律。
因为十的次方很易计算,只需在后加零即可,所以科学记数法借助此简化记录数的方式;二的次方在计算机科学中很有用。
北师大版七下数学1.2.2幂的乘方与积的乘方教学设计一. 教材分析北师大版七下数学1.2.2幂的乘方与积的乘方是本册书中的一个重要内容,主要让学生掌握幂的乘方和积的乘方的运算法则。
本节课的内容在学生的学习过程中起到了承上启下的作用,为后续学习指数函数和其他数学概念奠定了基础。
教材通过丰富的例题和练习题,引导学生理解和掌握幂的乘方与积的乘方的运算规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、幂的定义等基础知识,对于幂的运算有一定的了解。
但学生对于幂的乘方和积的乘方的运算法则的理解和应用能力还有待提高。
因此,在教学过程中,教师需要结合学生的实际情况,通过生动的实例和丰富的练习,引导学生深入理解幂的乘方与积的乘方的运算规律,提高学生的数学运算能力。
三. 教学目标1.理解幂的乘方的运算法则;2.理解积的乘方的运算法则;3.能够运用幂的乘方与积的乘方的运算规律解决实际问题。
四. 教学重难点1.幂的乘方的运算法则;2.积的乘方的运算法则;3.幂的乘方与积的乘方的运算规律的应用。
五. 教学方法1.实例教学:通过生动的实例,引导学生理解幂的乘方与积的乘方的运算规律;2.小组合作:学生进行小组讨论,培养学生的合作意识和团队精神;3.练习巩固:通过丰富的练习题,巩固学生对幂的乘方与积的乘方的运算规律的理解;4.问题解决:引导学生运用幂的乘方与积的乘方的运算规律解决实际问题。
六. 教学准备3.练习题;4.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)教师通过一个实例,如“计算(-3)^2 * (-3)^3”,引导学生思考幂的乘方和积的乘方的运算规律。
2.呈现(10分钟)教师通过多媒体课件,呈现幂的乘方与积的乘方的运算法则,并用生动的实例进行解释。
3.操练(10分钟)教师学生进行小组合作,让学生通过互相讨论和解答练习题,巩固对幂的乘方与积的乘方的运算规律的理解。
1、幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘. 特别注意负数及分数的乘方,应把底数加上括号. 2、“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:()33---=-⎡⎤⎣⎦;()33-+-=⎡⎤⎣⎦. (2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号.(3)有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正.3、特别地:当n 为奇数时,()n n a a -=-;而当n 为偶数时,()nn a a -=.负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”. 4、运算法则:(1)同底数幂相乘.同底数的幂相乘,底数不变,指数相加. 用式子表示为:m n m n a a a +⋅=(,m n 都是正整数). (2)幂的乘方.幂的乘方的运算性质:幂的乘方,底数不变,指数相乘. 用式子表示为:()nm mn a a =(,m n 都是正整数).(3)积的乘方.积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 用式子表示为:()nn n ab a b =(n 是正整数). (4)同底数幂相除.同底数幂相除,底数不变,指数相减.用式子表示为:m n m n a a a -÷=(0a ≠,m ,n 都是正整数).(5)规定()010a a =≠;1p p a a -=(0a ≠,p 是正整数).幂的运算(二)一、选择题1. 化简()()23x x -⋅--⎡⎤⎣⎦,结果是() A .6x - B .6xC .5xD .5x -【答案】D【解析】()()23325=x x x x x -⋅---⋅=-⎡⎤⎣⎦.【总结】本题主要考查同底数幂的运算,运算中注意式子符号.2. 下列各式计算过程正确的是( ) A .33336x x x x +==+B .333·2x x x = C .350358··x x x x x ==++D .()32235x x x x +⋅-=-=-【答案】D【解析】A 的正确结果是32x ,B 的正确结果是6x ,C 的正确结果是159335··x x x x x ++==. 【总结】本题主要考查幂的运算的基本法则,熟练掌握相关法则.3. 下列计算:①()2525x x =;②()257x x =;③()5210x x =;④()752·x y xy =;⑤()1052·x y xy =;⑥()555x y xy =;其中错误的有( ) A .2个B .3个C .4个D .5个【答案】C【解析】①②③本题主要考查幂的乘方运算,底数不变,指数相乘,①②错误;④⑤⑥主要考查积的乘方运算,底数相乘,指数不变,④⑤错误.【总结】本题主要考查幂的运算法则,计算时需要注意法则的准确运用.4. 下列计算中,运算错误的式子有( )(1)33354a a a -=;(2)2m m m x x x =+;(3)62·3n m n m =+;(4)12·m m a a a =++.A .0个B .1个C .2个D .3个【答案】C【解析】本题主要考查幂的运算和合并同类项相关知识,一定注意运算中是乘号还是加号,分清楚是幂的运算还是合并同类项计算,故(2)(3)错误.【总结】本题主要考查幂的运算法则,计算时需要注意法则的准确运用.5. 计算()()1009922-+-所得的结果是()A .-2B .2C .992-D .992【答案】D【解析】原式=()1009999999999222222122-=⨯-=-⨯=. 【总结】本题在计算时要注意“奇负偶正”的运用.6. 计算()()()22b a a b b a ---的结果是()A .()5a b - B .()5a b --C .()6a b - D .()6a b --【答案】B【解析】()()()()()()225252()()b a a b b a b a b c b a a b a b =---=-=-----. 【总结】本题在计算时要将底数全部化作相同,按照同底数幂的运算法则计算.7. 当n 是正整数时,下列等式成立的有( )(1)()22m m a a =(2)()22m m a a =(3)()22m m a a =- (4)()22mm a a =-A .4个B .3个C .2个D .1个【答案】B【解析】(1)(2)根据幂的乘方运算法则,正确;(3)正确,左侧式子确定为非负数;(4)不能确定正负.【总结】本题主要考查幂的乘方的运算及其逆用,注意法则的准确运用.8. 计算:()3211n n x x x -+⋅⋅的结果为() A .33n x + B .63n x +C .12n xD .66n x +【答案】D【解析】()3211211322366()()n n n n n n x x x x x x -++-++++⋅⋅===【总结】本题主要考查同底数幂和幂的乘方的运算法则.9. 如果2339.48 1.5610=⨯,则20.3948=( )A .1.56B .0.156C .0.0156D .0.00156【答案】B【解析】()22220.394839.4810039.48100=÷=÷,由已知2339.48 1.5610=⨯,可知2320.3948 1.5610100 1.56100.156=⨯÷=÷=【总结】本题主要考查同底数幂相除的运算,但是要注意39.48与0.3948的关系.二、填空题(1)()()()()()235x x x x x -⋅-⋅-+-⋅-=________;(2)()()3223a b b a ⎡⎤⎡⎤---⎣⎦⎣⎦=_________.【答案】(1)62x ;(2)0【解析】(1)原式()()666==2x x x -+-;(2)原式6666()()()()0a b b a a b a b =---=---=. 【总结】本题主要考查同底数幂的运算法则.10. 计算:()()2003200422______-+-=.【答案】20032.【解析】原式=()200420032003200320032003222222122-=⨯-=-⨯=. 【总结】本题主要考查同底数幂运算法则的逆用,m n m n a a a +=⋅. 11. 计算:()()20052004232-+⨯-=_______________.【答案】20042.【解析】原式=()20042005200420042004200432232223222⨯-=⨯-⨯=-⨯=.【总结】本题一方面考查同底数幂运算法则的运用,另一方面考查负底数幂的运算.12. 比较大小:(1)()()422_____4--;(2)()()355_____3--.【答案】(1)=;(2)>.【解析】(1)因为()()42216416-=-=,,因此()()4224-=-;(2)因为()()3551253243125243-=--=-->-,,,因此()()3553->-.【总结】本题主要考查负底数幂的运算,当底数为负数,但指数是偶数时,结果为正数;当 底数为负数,但指数是奇数时,结果为负数.13. 计算:()32122n m n m ⎛⎫-+⋅- ⎪⎝⎭=_______________.【答案】5142m n ⎛⎫- ⎪⎝⎭.【解析】原式=23511124222m n m n m n ⎡⎤⎛⎫⎛⎫⎛⎫-⋅-=- ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【总结】本题主要考查同底数幂相乘的运算法则,但是要注意先要将底数化为相同.14. 长为32.210⨯米,宽是41.510⨯厘米,高是2410⨯米的长方体的体积为____________.【答案】831.3210m ⨯【解析】421.510 1.510b cm m =⨯=⨯,322832.210 1.510410=1.3210V abh m ==⨯⨯⨯⨯⨯⨯. 【总结】本题一方面考查长方体的体积公式,另一方面考查同底数幂相乘的法则. 15. 若25m =,26n =,则212m n ++=_______________.【答案】360.【解析】()221222222222562360m n m n m n ++=⋅⋅=⋅⋅=⨯⨯=.【总结】本题主要考查同底数幂相乘的法则.16. 已知2m a =,3n a =,则32m n a +=__________.【答案】72【解析】()()323232322372m n m n m n a a a a a +=⋅=⋅=⨯=.【总结】本题主要考查同底数幂相乘和幂的乘方的运算法则,注意有时要对法则进行逆用.17. 若53022x y +-=,则432x y ⋅=_______________.【答案】8 【解析】由53022x y +-=,得253x y +=,故()()25252534322222228x y x y x y x y +⋅=⋅=⋅===. 【总结】本题一方面考查同底数幂的运算法则,另一方面考查整体代入思想的运用.18. 设503a =,404b =,305c =,比较a ,b ,c 的大小,用<号连接:________________.【答案】c a b <<.【解析】因为()105051033243a ===,()104041044256b ===,()103031055125c ===,所以c a b <<.【总结】本题主要考查如何运用幂的乘方将三个数字化作指数相同的幂的运算.19. 若111999a =,222111b =,则a 、b 的大小关系,用<号连接:_________________.【答案】a b <.【解析】因为()1112222111111b ==,又2999111<,所以a b <.【总结】本题主要考查如何运用幂的乘方将三个数字化作指数相同的幂的运算.20. 已知:227371998a b c ⋅⋅=,其中a 、b 、c 是自然数,则()2016a b c --=_________________.【答案】1【解析】因为3322737233719982337a b c a b c ⋅⋅=⋅⋅==⨯⨯,又a 、b 、c 是自然数,故可得111a b c ===,,,代入可得()20161111--=.【总结】本题一方面考查幂的乘方的逆用,另一方面考查对1998的分解.21. 你能比较两个数20092008和20082009的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较1n n +与(1)n n +的大小(n 是自然数),然后,我们分析1n =,2n =,3n =,…中发现规律,经归纳,猜想得出结论. (1)通过计算,比较下列各组中两个数的大小(在空格中填写“>”、“=”、“<”号)①21____12;②32____23;③43____34;④54____45;⑤65____56…(2)从第(1)题的结果经过归纳,可以猜想出1n n +和()1nn +的大小关系是_______. (3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小20092008____20082009.【答案】(1)①<;②<;③>;④>;⑤>; (2)()111(2)(1)(2)n n n n n n n n n n ++⎧<+≤⎪⎨>+>⎪⎩;(3)>.【解析】通过代入数值进行计算后,发现其中的大小关系,再进行比对.三、简答题22. 计算: (1)()()()()()1333335⨯-⨯-⨯-⨯-⨯-;(2)()()()()()2345a a a a a -⋅-⋅-⋅-⋅-; (3)()()()()n a ba b a b a b a b +++++个;(4)()()66666-⨯⨯-⨯⨯-.【答案】(1)5135-⨯;(2)15a -;(3)()na b +;(4)56-.【解析】(1)原式()5511=3355⨯-=-⨯;(2)原式()1515a a =-=-;(3)原式()n a b =+;(4)原式56=-.【总结】本题主要考查乘方的概念.23. 计算:(1)()()32422393m n m n +-;(2)()()32242433a b ab a ⋅-⋅;(3)()()()()32232238a b a a b -+⋅-⋅-;(4)()()()33223733345a a a a a a -⋅+-⋅-⋅.【答案】(1)4618m n ;(2)6424a b ;(3)6335a b -;(4)91211125a a --【解析】(1)原式4646469918m n m n m n =+=; (2)原式64646427324a b a b a b =-=; (3)原式63636327835a b a b a b =--=-;(4)原式9912912271612511125a a a a a =-+-=--.【总结】本题主要考查幂的运算,并作合并同类项运算,注意运算符号.24. 计算:()()()3421332229m n n m n m ⎡⎤----⎣⎦【答案】()11144m n -.【解析】原式=()()()()()46111141132832814499m n m n m n m n m n ⎛⎫⎡⎤-----=⨯⨯⨯-=-⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎣⎦⎝⎭. 【总结】本题主要考查同底数幂的运算法则和积的乘方的运算法则,注意符号的变化.25. 计算:()()43242142x y x y ⎡⎤⎡⎤-+-+⎢⎥⎣⎦⎣⎦.【答案】()20256x y -+.【解析】原式=()()()()48122020661144256216x y x y x y x y ⎛⎫⎛⎫⎡⎤-+⋅-+=-⨯+=-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭.【总结】本题主要考查积的乘方和同底数幂相乘的运算法则,注意符号的变化.26. 当n 是正整数时,求()()212222n n+-+⋅-.的值.【答案】0【解析】因为n 是正整数,所以2n 是偶数,21n +是奇数,所以()()2122122222n nn n ++-=--=,;所以原式=2212220n n +⋅-=.【总结】本题主要考查负底数幂的乘方,注意指数是奇数和偶数时的区别.27. 比较大小:20.4a =-,214b ⎛⎫=- ⎪⎝⎭,()24c =-,214d ⎛⎫=- ⎪⎝⎭.【答案】c d b a >>>.【解析】因为()2222114444c d ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭,,所以0c d >>;又因为2220.45a ⎛⎫=-=- ⎪⎝⎭,214b ⎛⎫=- ⎪⎝⎭,所以0a b <<,所以c d b a >>>.【总结】本题主要考查幂的乘方,计算时先确定正负,再根据有理数大小比较法则判断大小.28. 已知()432a =,()342b =,()423c =,()234d =,()324e =,试比较a 、b 、c 、d 、e的大小关系.【答案】c a b d e >===.【解析】根据幂的乘方运算法则,可得122a b d e ====;又()()4434242839a c ====,,可得c a >;由此c a b d e >===.【总结】本题主要是考查幂的乘方的运算法则,底数不变,指数相乘.29. 计算:(1)1011000.254⨯;(2)()()200220030.1258-⨯-.【答案】(1)0.25;(2)8-.【解析】(1)原式=()1001001000.250.2540.2540.250.25⨯⨯=⨯⨯=;(2)原式=()()()()2002200220020.125880.125888⨯-⨯-=⨯-⨯-=-⎡⎤⎣⎦.【总结】本题主要考查同底数幂的乘法和积的乘方运算的逆用.30. 计算:()()25331133223a b b a a b b a ⎛⎫⎛⎫-⋅-⋅-⋅- ⎪ ⎪⎝⎭⎝⎭.【答案】()111312a b -. 【解析】原式=()()()()2231151113(3)3332312a b b a a b b a a b ⎛⎫⋅-⋅-⋅-⋅-=- ⎪⎝⎭. 【总结】本题主要考查同底数幂相乘的运算法则,注意将底数化作相同.31. 已知:5n a =,3n b =,求()2nab -.【答案】225.【解析】()()()()()2222253225n n n n n ab ab ab a b ⎡⎤-===⋅=⨯=⎣⎦. 【总结】本题主要考查幂的运算以及整体思想的应用.32. 已知3m a =,2n a =,m 、n 是正整数且m n >.求下列各式的值:(1)()4m a ;(2)()3m n a +.【答案】(1)81;(2)216.【解析】(1)()44381m a ==; (2)()()()33332216m n m n a a a +=⋅=⨯=. 【总结】本题主要考查幂的运算以及整体思想的应用.33. 若15m x =,3n x =,求()42m n x +-的值. 【答案】9625. 【解析】原式=()()442424221935625m n m n m n x x x x x +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭. 【总结】本题主要考查幂的乘方的逆用.34. 已知4m a =,3n a =,22p a =,求324m n p a ++的值.【答案】2304【解析】()()()32232432423224322304m n p m n p m n p a a a a a a a ++=⋅⋅=⋅⋅=⨯⨯=. 【总结】本题主要考查幂的乘方的逆用以及整体思想的应用.35. 已知5x a =,25x y a +=,求x y a a +的值.【答案】10【解析】因为25x y x y a a a +=⋅=,由5x a =,可得5y a =,所以10x y a a +=.【总结】本题主要考查同底数相乘法则的逆用.36. 若2340x y +-=,求927x y ⋅的值.【答案】,【解析】由2340x y +-=,得234x y +=;所以()()232323492733333381x yx y x y x y +⋅=⋅=⋅===. 【总结】本题主要考查幂的乘方以及整体思想的应用.37. 已知:13205x y +-=,12305x y --=,求832x y ⋅.【答案】64. 【解析】由方程组1320512305x y x y ⎧+-=⎪⎪⎨⎪--=⎪⎩,可解得135x y =⎧⎪⎨=⎪⎩, 所以()()331535353565832222222264x y x y x y x y ⨯+⨯+⋅=⋅=⋅====.【总结】本题主要考查幂的乘方法则的运用.38. 已知22n a =,求()()223223nn a a -的值.【答案】20.【解析】原式=()()326422324343423220n n n n a a a a -=-=⨯-⨯=. 【总结】本题主要考查幂的运算以及整体思想的应用.39. 已知:232122192x x ++-=,求x .【答案】52x =. 【解析】22121222192x x ++⋅-=2162642x +==52x = 【总结】本题主要考查同底数幂相乘的法则的逆用在解方程中的运用.40. 解方程:313333648x x ++-=-.【答案】1x =.【解析】31312333648x x ++-⋅=-3183648x +-⋅=- 3143813x +==1x =【总结】本题主要考查同底数幂相乘的法则的逆用在解方程中的运用.41. 已知742521052m n ⋅⋅=⋅,求m n ,的值.【答案】23m n ==,.【解析】因为()()221742521052255252m n m n m n n ++⋅⋅=⋅⋅⨯=⋅=⋅,所以2714m n n +=⎧⎨+=⎩,则23m n =⎧⎨=⎩. 【总结】本题一方面考查同底数幂的相乘,另一方面考查积的乘方的逆用.42. 如果()2323k a b c+比()24582ka a a a bc ⎡⎤⋅⋅⋅-⋅⎢⎥⎣⎦的次数大1,那么k 的值是多少?【答案】1k =.【解析】因为第一个单项式次数为()()3232816k k +++=+,第二个单项式次数为 ()4582211617k k +++⨯++=+,依题意有()()8166171k k +-+=,解得1k =. 【总结】本题一方面考查单项式的次数的概念,另一方面考查同底数幂相乘的运算法则.43. 比较552,443,335,226这4个数的大小关系.【答案】334422555362>>>.【解析】因为()()()()111111115551144411333112221122323381551256636========,,,, 又125813632>>>,所以11111111125813632>>>,即334422555362>>>.【总结】本题主要是利用幂的乘方运算法则,将这些幂化作指数相同,比较底数大小即可.44. 比较1615与1333的大小关系.【答案】13163315>.【解析】因为16166415162<=,131********>=,又656422>,所以13163315>.【总结】本题主要考查两个数的大小比较方法,选取合适的中间量进行大小比较.45. 比较5553、4444、3335的大小.【答案】444555333435>>.【解析】因为()()()1111111115555111444411133331113=3=2434=4=2565=5=125,,,又256243125>>, 所以111111111256243125>>,即444555333435>>.【总结】本题主要考查几个数的大小比较,常用的方法是将它们化为底数相同或者是指数相同再进行比较.46. 已知3181a =,4127b =,619c =,比较a ,b ,c 的大小.【答案】a b c >>.【解析】因为()()()31416131412441312361212281332733933======,,,所以31416181279>>. 【总结】本题主要考查利用幂的乘方运算法则,将这些幂化作底数相同,比较指数大小即可.47. 若n 为不等式2003006n >的解,求n 的最小正整数值.【答案】n 的最小正整数值是15.【解析】因为2003006n >,即()()100100231006216n >=,故2216n >. 所以n 的最小正整数值是15.【总结】本题主要考查幂的乘方的逆用.48. 已知:123n a ++++=,求代数式()()()()()122321n n n n nx y x y x y x y xy ---的值.【答案】a a x y .【解析】原式=()()13211231n n n n a a x y x y +-+⋅⋅⋅++++++⋅⋅⋅+-+⋅=.【总结】本题主要考查同底数幂相乘的运算法则以及整体代入思想的运用.49. 已知:22737471998a b c d ⋅⋅⋅=,其中a 、b 、c 、d 为自然数,求a b c d --+的值.【答案】1-.【解析】因为2273747199822737a b c d ⋅⋅⋅==⨯⨯,又a 、b 、c 、d 为自然数,所以 1110a b c d ====,,,,故11101a b c d --+=--+=-.【总结】本题主要考查幂的乘方的逆用,另外注意01a =的运用.50. 已知2001200367M =+,2003200167N =+,试比较M 、N 的大小关系.【答案】M N >.【解析】因为()()()()20012003200320012001200122001220016767666777M N -=+-+=-⋅+⋅-20012001487356=⨯-⨯,又20012001483576>>,,所以20012001487356⨯>⨯.即200120014873560⨯-⨯>. 所以M N >.【总结】本题主要考查利用直接作差法来比较两个数的大小.。
2 幂的乘方与积的乘方路漫漫其修远兮,吾将上下而求索。
屈原《离骚》原创不容易,【关注】店铺,不迷路!第1课时幂的乘方教学目标一、基本目标1.了解幂的乘方的运算法则,并能解决一些实际问题.2.经历探索幂的乘方的运算法则的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、重难点目标【教学重点】会进行幂的乘方的运算.【教学难点】幂的乘方法则的总结及其运用.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P5~P6的内容,完成下面练习.【3min反馈】1.(1)乘方的意义:32中,底数是3,指数是2,表示2个3相乘.(32)3的意义:3个32相乘;(2)根据幂的意义填空:(32)3=32×32×32(根据幂的意义)=32+2+2(根据同底数幂的乘法法则)=32×3,(am)2=am·am=a2m(根据am·an=am+n),(am)n=am·am·…·am(幂的意义)=am+m+…+m(同底数幂相乘的法则)=amn(乘法的意义);(3)幂的乘方法则:(am)n=amn(m、n都是正整数),即幂的乘方,底数不变,指数相乘.2.已知球体的体积公式为V=43πR3.(1)若乙球的半径为3cm,则乙球的体积V乙=36πcm3.甲球的半径是乙球的10倍,则甲球的体积V甲=36_000πcm3,V甲是V乙的103倍;(2)地球、木星、太阳可以近似地看作球体.木星、太阳的半径分别约是地球的10倍、100倍,它们的体积分别约是地球的103倍、106倍.3.(教材P6例1)计算:(1)(102)3;(2)(b5)5;(3)(an)3;(4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.解:(1)原式=106. (2)原式=b25.(3)原式=a3n. (4)原式=-x2m.(5)原式=y7. (6)原式=a12.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-24)3;(2)(xm-1)2;(3)[(24)3]3;(4)(-a5)2+(-a2)5.【互动探索】(引发学生思考)确定各式的底数→利用幂的乘方法则计算.【解答】(1)原式=212.(2)原式=x2(m-1)=x2m-2.(3)原式=24×3×3=236.(4)原式=a10-a10=0.【互动总结】(学生总结,老师点评)(1)运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.(2)在幂的乘方中,底数可以是单项式,也可以是多项式.(3)幂的乘方的推广:((am)n)p=amnp(m、n、p都是正整数).【例2】若92n=38,求n的值.【互动探索】(引发学生思考)比较等式两边的底数→将等式转化为(32)2n=38→建立方程求n值.【解】依题意,得(32)2n=38,即34n=38,所以4n=8,所以n=2.【互动总结】(学生总结,老师点评)解此类题时,可将等式两边化成底数或指数相同的数,再比较.【例3】已知ax=3,ay=4(x、y为整数),求a3x+2y的值.【互动探索】(引发学生思考)将a3x+2y变形,得a3x·a2y,再利用幂的乘方进行解答.【解答】因为ax=3,ay=4,所以a3x+2y=a3x·2y=(ax)3·(ay)2=33×42=27×16=432.【互动总结】(学生总结,老师点评)利用amn=(a)n=(an)m,可对式子进行变形,从而使问题得到解决.活动2 巩固练习(学生独学)1.计算(-a3)2的结果是( A )A.a6 B.-a6C.-a5 D.a52.下列运算正确的是( B )A.(x3)2=x5 B.(-x)5=-x5C.x·x2=x6 D.x2+2x3=5x53.当n为奇数时,(-a2)n+(-an)2=0.4.计算:(1)a2·(-a)2·(-a2)3+a10;(2)x4·x5·(-x)7+5(x4)4-(x8)2.解:(1)原式=a2·a2·(-a6)+a10=-a10+a10=0.(2)原式=x4·x5·(-x7)+5x16-x16=-x 16+5x 16-x 16=316.活动3 拓展延伸(学生对学)【例4】请看下面的解题过程:比较2100与375的大小.解:因为2100=(24)25,375=(33)25,而24=16,33=27,16<27, 所以2100<375.请你根据上面的解题过程,比较3100与560的大小.【互动探索】仔细阅读材料,确定例子的解题方法是将指数化为相同,再比较底数的大小来比较所求两个数的大小.【解答】因为3100=(35)20,560=(53)20,而35=243,53=125,243>125, 所以3100>560.【互动总结】(学生总结,老师点评)此题考查了幂的乘方法则的应用,根据题意得到3100=(35)20,560=(53)20是解此题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)幂的乘方法则⎩⎨⎧ 内容:幂的乘方,底数不变,指数相乘字母表示:am n =amn m 、n 都是正整数推广:am n p =amnp m 、n 、p 都是正整数练习设计请完成本课时对应练习!第2课时 积的乘方教学目标一、基本目标1.了解积的乘方的运算法则,并能解决一些实际问题.2.经历探索积的乘方的运算法则的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、重难点目标【教学重点】会进行积的乘方的运算.【教学难点】明确幂的乘方与积的乘方的异同.教学过程环节1 自学提纲,生成问题【5min 阅读】阅读教材P7~P8的内容,完成下面练习.【3min 反馈】1.(1)(3×5)4=3(4 )·5(4 );(2)(3×5)m =3(m )·5(m );(3)(ab )n =a (n )·b (n );(4)(ab )n =(ab )·(ab )·…·(ab n 个ab =a ·a ·…·a n 个a ·b ·b ·…·b n 个b =anbn .2.积的乘方法则:(ab )n =anbn (n 是正整数),即积的乘方等于积的每一个因式分别乘方,再把所得的幂相乘.推广:(abc )n =anbncn (n 是正整数).3.(教材P7例2)计算:(1)(3x )2;(2)(-2b )5;(3)(-2xy )4;(4)(3a 2)n .解:(1)原式=9x 2. (2)原式=-32b 5.(3)原式=16x 4y 4. (4)原式=3na 2n .环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(x 4·y 2)3;(2)(anb 3n )2+(a 2b 6)n ;(3)[(3a 2)3+(3a 3)2]2;(4)⎝ ⎛⎭⎪⎫991002018×⎝ ⎛⎭⎪⎫100992019; (5)0.12515×(23)15.【互动探索】(引发学生思考)先确定运算顺序,再根据积的乘方法则计算.【解答】(1)原式=x 12y 6.(2)原式=a 2nb 6n +a 2nb 6n =2a 2nb 6n .(3)原式=(27a 6+9a 6)2=(36a 6)2=1296a 12.(4)原式=⎝ ⎛⎭⎪⎫99100×100992018×10099=1×10099=10099. (5)原式=⎝ ⎛⎭⎪⎫1815×815=⎝ ⎛⎭⎪⎫18×815=1. 【互动总结】(学生总结,老师点评)(1)~(3)题按先乘方再乘除后加减的运算顺序计算;(4)、(5)题逆用(ab )n =anbn 可使计算简便.活动2 巩固练习(学生独学)1.计算(x 2y )2的结果是( B )A .x 6yB .x 4y 2C .x 5yD .x 5y 22.(am )m ·(am )2不等于( C )A .(am +2)mB .(am ·a 2)mC .am 2+am 2D .(am )3·(am -1)m 3.已知am =2,an =3,则a 2m +3n =108.4.计算:(1)-4xy 2·(xy 2)2·(-2x 2)3;(2)(-a 3b 6)2+(-a 2b 4)3;(3)⎝ ⎛⎭⎪⎫232018×⎝ ⎛⎭⎪⎫322019. 解:(1)原式=-4xy 2·x 2y 4·(-8x 6)=32x 9y 6.(2)原式=a 6b 12-a 6b 12=0.(3)原式=⎝ ⎛⎭⎪⎫23×322018×32 =32. 活动3 拓展延伸(学生对学)【例2】太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3) 【互动探索】已知球的体积公式和其半径,代入数据直接计算. 【解答】因为R =6×105千米,所以V =43πR 3=43×3×(6×105)3=8.64×1017(立方千米). 即它的体积大约是8.64×1017立方千米.【互动总结】(学生总结,老师点评)读懂题目信息,理解球的体积公式并熟记积的乘方法则是解此题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)积的乘方法则⎩⎨⎧内容:积的乘方等于积的每一个因式分 别乘方,再把所得的幂相乘字母表示:ab n =anbn n 是正整数逆用:anbn =ab n n 是正整数练习设计请完成本课时对应练习!【素材积累】 宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
人教版数学七年级上册《幂的乘方》教学设计一. 教材分析人教版数学七年级上册《幂的乘方》是初中学段幂的运算部分的重要内容。
学生在学习了有理数的乘方的基础上,进一步学习幂的乘方和积的乘方。
本节课的内容对于学生理解幂的运算规律,提高解决问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和运算能力,对于有理数的乘方已经有了一定的了解。
但是,对于幂的乘方和积的乘方的运算规律,还需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.知识与技能:理解幂的乘方的概念,掌握幂的乘方的运算规律,能够正确进行幂的乘方的运算。
2.过程与方法:通过实例和练习,培养学生的运算能力和解决问题的能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.重点:幂的乘方的概念和运算规律。
2.难点:幂的乘方的运算规律的应用。
五. 教学方法采用问题驱动法,通过实例和练习,引导学生探究幂的乘方的运算规律,培养学生的运算能力和解决问题的能力。
六. 教学准备1.教学课件:幂的乘方的概念和运算规律。
2.练习题:巩固幂的乘方的运算规律。
七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引出幂的乘方,让学生思考:幂的乘方应该如何运算?2.呈现(15分钟)展示幂的乘方的概念和运算规律,让学生跟随讲解,理解并掌握幂的乘方的运算方法。
3.操练(10分钟)让学生独立完成练习题,教师巡回指导,及时纠正错误,帮助学生巩固幂的乘方的运算规律。
4.巩固(10分钟)让学生通过小组讨论,总结幂的乘方的运算规律,并分享给其他小组,教师点评并总结。
5.拓展(10分钟)引导学生思考:幂的乘方在实际问题中的应用,让学生举例说明。
6.小结(5分钟)教师引导学生总结幂的乘方的运算规律,并强调其在数学中的重要性。
7.家庭作业(5分钟)布置相关练习题,让学生巩固幂的乘方的运算规律。
8.板书(5分钟)幂的乘方:( (a m)n = a^{mn} )八. 教学反思通过本节课的教学,学生应该已经掌握了幂的乘方的运算规律,并能够应用到实际问题中。
(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案一. 教材分析《幂的乘方与积的乘方》是湘教版七年级数学下册第2章第1节的内容。
本节课主要让学生掌握幂的乘方运算法则和积的乘方运算法则,培养学生运用幂的运算性质解决实际问题的能力。
教材通过引入实例,引导学生发现规律,从而得出幂的乘方与积的乘方的运算法则。
二. 学情分析学生在之前的学习中已经掌握了有理数的乘法、幂的定义及简单的幂的运算。
但对于幂的乘方与积的乘方,学生可能存在理解上的困难。
因此,在教学过程中,教师需要注重引导学生发现规律,让学生在理解的基础上掌握运算法则。
三. 教学目标1.理解幂的乘方与积的乘方的运算法则。
2.能够运用幂的运算性质解决实际问题。
3.培养学生的观察能力、推理能力及运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:幂的乘方与积的乘方的运算法则。
2.教学难点:理解幂的乘方与积的乘方的本质,能够灵活运用运算法则解决实际问题。
五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中发现幂的乘方与积的乘方的规律。
2.引导发现法:教师引导学生观察、分析、推理,从而得出幂的乘方与积的乘方的运算法则。
3.实践操作法:让学生在课堂上动手操作,巩固幂的乘方与积的乘方的运算法则。
六. 教学准备1.教学课件:制作课件,展示幂的乘方与积的乘方的实例及运算法则。
2.教学素材:准备一些实际问题,让学生在解决实际问题的过程中运用幂的运算性质。
3.学生活动材料:为学生提供一些练习题,让学生在课堂上进行实践操作。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,让学生尝试解决。
例如:计算(23)2,32×33等。
引导学生发现这些问题都可以转化为幂的乘方与积的乘方的问题。
2.呈现(10分钟)教师通过课件展示幂的乘方与积的乘方的实例,引导学生发现规律。
如:(a m)n=a mn,(ab)n=a n b n等。
让学生总结出幂的乘方与积的乘方的运算法则。
幂的乘方法则幂的乘法是指两个幂相乘的运算方法。
在数学中,幂是指一个数自身连乘若干次,这个数称为底数,连乘的次数称为指数。
幂的乘法则是指两个幂相乘时,底数不变,指数相加的运算规则。
在实际运用中,幂的乘法则有着广泛的应用,例如在代数表达式的化简、指数函数的运算等方面都有着重要的作用。
首先,我们来看一下幂的乘法的基本规则。
设有两个幂a^m和a^n,根据乘法的交换律,这两个幂相乘的结果为a^m a^n。
根据幂的定义,a^m表示a连乘m次,a^n表示a连乘n次,那么a^m a^n就表示a连乘m+n次。
根据这一规则,我们可以得出幂的乘法法则,a^m a^n = a^(m+n)。
这就是幂的乘法的基本规则,即底数不变,指数相加。
其次,我们来看一下具体的应用。
在代数表达式的化简中,幂的乘法法则可以帮助我们简化复杂的表达式。
例如,当我们需要计算a^3 a^4时,根据乘法法则,我们可以将指数相加,得到a^(3+4)=a^7。
这样,我们就可以将两个幂相乘的结果简化为一个幂,大大简化了计算的复杂度。
另外,在指数函数的运算中,幂的乘法法则也有着重要的应用。
指数函数是一种常见的数学函数,其定义域为实数集,值域为正实数集。
在指数函数中,底数为常数,指数为自变量,幂的乘法法则可以帮助我们简化指数函数的运算,从而更方便地进行函数的分析和计算。
总的来说,幂的乘法法则是数学中一个重要的运算规则,它有着广泛的应用。
通过幂的乘法法则,我们可以简化复杂的代数表达式,方便指数函数的运算,从而更方便地进行数学分析和计算。
因此,对于幂的乘法法则的理解和掌握对于数学学习和应用都具有重要的意义。
希望通过本文的介绍,读者能够对幂的乘法法则有更深入的理解,从而更好地运用于实际问题的解决中。
七年级幂的概念知识点在初中数学学习的过程中,我们会接触到一些比较抽象的数学概念,其中就包括幂的概念。
幂是数学中的一种运算,普遍存在于初中数学课程中。
那么,在七年级的数学学习中,我们该掌握哪些幂的概念知识点呢?一、幂的定义幂是指一个数自乘若干次,用乘方表示,其中包括一个底数和指数。
底数表示被乘的数,指数表示幂的次数,用a^n表示,读作“a的n次方”,其中a是底数,n是指数。
例如:2^3 = 2 × 2 × 2 = 8,其中2是底数,3是指数。
二、乘方的基本性质1. 同底数乘方的积,底数不变,指数相加。
例如:2^3 × 2^4 = 2^(3+4) = 2^72. 幂的乘方,底数不变,指数相乘。
例如:(2^3)^4 = 2^(3×4) = 2^123. 幂的倒数,是幂的底数倒数,并且指数变为负数。
例如:(2^3)^-1 = 1/(2^3) = 1/8 = 2^-34. 相同指数的幂的商,底数不变,指数相减。
例如:2^5 ÷ 2^2 = 2^(5-2) = 2^35. 幂的零次方等于1。
例如:3^0 = 1三、指数的运算法则1. 计算指数之积时,指数相加。
例如:(2^3)×(2^4)^2=2^(3+4×2)=2^112. 计算指数之商时,指数相减。
例如:(2^3)÷(2^4)=2^(3-4)=2^-13. 计算幂的整数次方时,将指数与整数相乘。
例如:2^5=2×2×2×2×2,所以2^5=324. 当幂的指数是分数时,可以用开方的形式来表示。
例如:2^(3/2)=√(2^3)=√8四、幂的应用1. 幂在数学中的应用很广泛,如在计算数列、代数式、函数图像等方面很常见。
2. 在物理学中,幂也是一个重要的概念,如速度、加速度、功率等都与幂有关。
总之,在初中数学学习的过程中,了解和掌握幂的概念及其基本性质是非常重要的。
幂的乘方
学习目标: 探索得出幂的乘方运算性质并能解决一些实际问题。
学习重点:会进行幂的乘方的运算,进一步体会幂的意义。
学习难点:幂的乘方法则的探索及灵活运用。
课前练习 温故知新
一、相关知识回顾:
同底数幂相乘,底数 指数 ;同底数幂相除,底数 指数 。
1、计算:(1)=⋅231010 (2)(-3x )2= (3)(2a) 2= (4)(-2a )2= ;(5)(-2a)3= (6) 35×(13)5= .
2、填空:(1)102×102×102= ;(2)a 2×a 2×a 2= 。
二、自主学习(预习课本P129)
从课本计算中我们发现了什么? 新课学习 合作交流
一、探索规律.
1、与同伴交流你的预习情况,由组长收集意见后向老师反馈。
2、思考并尝试解答:(1) (a 3)3= ; (2) (-x 3)4= ; (3)(22)m = 由此,我们可以知道:(a n )m = .也就是说, 。
例 计算:(1)(23)2×(-33) 3
(2)(xa 3)5×(-xa 2) 4÷(x a 2) 8
二、新知运用
(一)小试牛刀:
1、下列计算正确的是( )
A 、(x 8)4= x 12
B 、-2a 4+ (2a)4=0
C 、(2a 2)4= 16a 6
D 、x 4 x 4= x 8 (二)大展身手: 2、计算:
(1)(m 2ac 2)4 (2)(3a 2b 3)4 (3)(-2a 2)3
(4)-(-3a 2b 3)2 (5)(-3m 2n 3)4 (6)(x 2y)12·(xy 2) 8 ·(-yx 3) 3
(三)知识拓展:
我们把(a m )n =a m m 的左右两边反过来,你发现了什么? =
如,32×2=( )2 , (1
3
)5×2=( )5
巩固练习:1、a 3(n+1) =( ) n+1 =( ) 3 = ( ) ·a 3n 2、已知2x =5,2y =9,求23x 与24y 的值。
学以致用:
1、计算(a 5)4的结果是( )
A 、a 20
B 、a 9
C 、4a 5
D 、a 125 2、计算(-3b 3)2的结果是( )
A 、-3b 2
B 、9b 6
C 、9b 5
D 、-9b 6 3、计算:
(1)(-x 2)4+(3x 2 )4 (2)(-3
4x 2)3 (3)(-x 2y) 5
(4) (-7x2y4)2 (5) (-6m2n)2
(6)-82012×(-0.125) 2013+0.252013×(-4)2012+220×(-4)10+(0.75) 2012×(-4 3)
2012
(7)已知22m-1=(23)2×16,试求m的值。
三、小结与反思:
1、本节课你有什么收获?
2、本节课你还有什么疑问?
四、课后提高:1、计算(-3x)2的结果是:A、6x2 B、12x2 C、9x2 D、-9x2
2、化简(-2a3)2的结果是A、4a2 B、4a6 C、-4a6 D、4a5
3、若x2n=2,(y n)3=3,则(xy)6n= .
4、〔(a-b)3〕= ; -〔-(-1)3〕2012= .
5、如果一个正方体的棱长是2a3,那么这个正方体的表面积是。
6、计算:(1)2a2·a4-a3·a3-(a3) 2(2) 3(x2) 4·4(x3) 2-(-x2) ·(x4) 3
7、已知5m+1·2 m -5 m·2 m+1=2 2·5 2·3
五、挑战无极限:
你能比较277 344 533的大小吗?
六、作业:课后练习P130。