铁碳相图和铁碳合金(白底+简化)
- 格式:ppt
- 大小:5.60 MB
- 文档页数:58
铁碳合金与铁碳合金相图1 铁碳合金的基本组织1.1. 铁素体碳与α-Fe中形成的间隙固溶体称为铁素体,用F表示。
强度和硬度低,塑性和韧性好。
1.2. 奥氏体碳与γ-Fe中形成的间隙固溶体称为铁素体,用A表示。
高温组织,在大于727℃时存在。
塑性好,强度和硬度高于F,在锻造、轧制时常要加热到A,提高塑性,易于加工。
1.3. 渗碳体铁与碳形成的金属化合物,硬度高,脆性大。
用Fe3C1.4. 珠光体F与Fe3C混合物。
强度,硬度,塑性,韧性介于两者之间。
1.5. 莱氏体A与Fe3C混合物硬度高,塑性差。
2 铁碳合金状态图2.1 状态图主要点线主要点主要线:ABCD线液相线,液相冷却至此开始析出,加热至此全部转化。
AHJECF线固相线,液态合金至此线全部结晶为固相,加热至此开始转化GS线A3线,A开始析出F的转变线,加热时F全部溶入AES线Acm线,C在A中溶解度曲线ECF线共晶线,含C量2.11-6.69%至此发生共晶反应,结晶出A与Fe3C混合物,莱氏体。
PSK线共析线,含C量在0.0218-6.69%至此反生共析反应,产生出珠光体2.2 铁碳合金分类2.2.1 钢含C量0.0218~2.11%共析钢含C量0.77%亚共析钢0.0218-0.77%过共析钢0.77-2.11%2.2.2 白口铸铁 2.11-6.69%共晶白口铸铁 4.3%亚共晶白口铸铁 2.11-4.3%过共晶白口铸铁 4.3-6.69%2.3 铁碳合金相图的作用在铸造方面选择合适的浇铸温度,流动性好在煅造方面选择合适的温度区,奥氏体区在热处理方面退火,正火,淬火等2.4 碳对铁碳合金平衡组织和性能的影响一、含碳量对平衡组织的影响室温下,铁碳合金均由α+ Fe3C两相组成随含碳量不同,可分为七个典型组织区二、含碳量对机械性能的影响•珠光体P:为F + Fe3C的混合物,呈层片状,由于Fe3C的强化作用,珠光体性能较好;•亚共析钢:由F + P组成,随碳量增加,珠光体量增加,强度性能提高;•过共析钢:P+ Fe3C(II)组成,当含碳量<1%,Fe3C(II)断续分布在晶界处,强度提高;当含碳量>1%,Fe3C(II)呈网状分布在晶界处,强度性能下降。
最全的铁碳相图首先,想要了解铁碳合金、铁碳相图,则需要一些准备知识,比如合金、相、组元成分的概念等,基本如下:合金:一种金属元素与另外一种或几种元素,通过熔化或其他方法结合而成的具有金属特性的物质。
相:合金中同一化学成分、同一聚集状态,并以界面相互分开的各个均匀组成部分。
固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。
固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。
金属化合物:合金的组元间以一定比例发生相互作用儿生成的一种新相,通常能以化学式表示其组成。
铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。
铁存在着同素异晶转变,即在固态下有不同的结构。
不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。
由于α-Fe和γ-Fe 晶格中的孔隙特点不同,因而两者的溶碳能力也不同。
在铁碳合金中一共有三个相,即铁素体、奥氏体和渗碳体。
1.铁素体铁素体是碳在α-Fe中的间隙固溶体,用符号“F”(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有0.0218%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性。
δ=30%~50%,A KU=128~160J,σb=180~280MPa,50~80HBS.铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围。
2.奥氏体奥氏体是碳在γ-Fe中的间隙固溶体,用符号“A”(或γ)表示,面心立方晶格;虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有2.11%(1148℃时),727℃时为0.77%。
钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。
因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。
Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。
所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。
由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。
化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。
因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图5.6-1)。
Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。
这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。
【说明】图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。
铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。
纯铁的同素异晶转变如下:由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。
碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。
工业纯铁的显微组织见图5.6-2。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。