铁碳相图以及铁碳合金
- 格式:doc
- 大小:599.00 KB
- 文档页数:19
铁碳合金与铁碳合金相图1 铁碳合金的基本组织1.1. 铁素体碳与α-Fe中形成的间隙固溶体称为铁素体,用F表示。
强度和硬度低,塑性和韧性好。
1.2. 奥氏体碳与γ-Fe中形成的间隙固溶体称为铁素体,用A表示。
高温组织,在大于727℃时存在。
塑性好,强度和硬度高于F,在锻造、轧制时常要加热到A,提高塑性,易于加工。
1.3. 渗碳体铁与碳形成的金属化合物,硬度高,脆性大。
用Fe3C1.4. 珠光体F与Fe3C混合物。
强度,硬度,塑性,韧性介于两者之间。
1.5. 莱氏体A与Fe3C混合物硬度高,塑性差。
2 铁碳合金状态图2.1 状态图主要点线主要点主要线:ABCD线液相线,液相冷却至此开始析出,加热至此全部转化。
AHJECF线固相线,液态合金至此线全部结晶为固相,加热至此开始转化GS线A3线,A开始析出F的转变线,加热时F全部溶入AES线Acm线,C在A中溶解度曲线ECF线共晶线,含C量2.11-6.69%至此发生共晶反应,结晶出A与Fe3C混合物,莱氏体。
PSK线共析线,含C量在0.0218-6.69%至此反生共析反应,产生出珠光体2.2 铁碳合金分类2.2.1 钢含C量0.0218~2.11%共析钢含C量0.77%亚共析钢0.0218-0.77%过共析钢0.77-2.11%2.2.2 白口铸铁 2.11-6.69%共晶白口铸铁 4.3%亚共晶白口铸铁 2.11-4.3%过共晶白口铸铁 4.3-6.69%2.3 铁碳合金相图的作用在铸造方面选择合适的浇铸温度,流动性好在煅造方面选择合适的温度区,奥氏体区在热处理方面退火,正火,淬火等2.4 碳对铁碳合金平衡组织和性能的影响一、含碳量对平衡组织的影响室温下,铁碳合金均由α+ Fe3C两相组成随含碳量不同,可分为七个典型组织区二、含碳量对机械性能的影响•珠光体P:为F + Fe3C的混合物,呈层片状,由于Fe3C的强化作用,珠光体性能较好;•亚共析钢:由F + P组成,随碳量增加,珠光体量增加,强度性能提高;•过共析钢:P+ Fe3C(II)组成,当含碳量<1%,Fe3C(II)断续分布在晶界处,强度提高;当含碳量>1%,Fe3C(II)呈网状分布在晶界处,强度性能下降。
铁碳合⾦相图及结晶组织变化铁碳合⾦相图及结晶组织变化铁碳合⾦的组元和相⼀、基本概念铁碳合⾦:碳钢和铸铁的统称,都是以铁和碳为基本组元的合⾦碳钢:含碳量为0.0218%~2.11%的铁碳合⾦铸铁:含碳量⼤于2.11%的铁碳合⾦铁碳合⾦相图:研究铁碳合⾦的⼯具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加⼯⼯艺的依据。
注:由于含碳量⼤于Fe3C的含碳量(6.69%)时,合⾦太脆,⽆实⽤价值,因此所讨论的铁碳合⾦相图实际上是F e-Fe3C⼆、组元1.纯铁纯铁指的是室温下的α-Fe,强度、硬度低,塑性、韧性好。
2.碳碳是⾮⾦属元素,⾃然界存在的游离的碳有⾦刚⽯和⽯墨,它们是同素异构体。
3.碳在铁碳合⾦中的存在形式有三种:C与Fe形成⾦属化合物,即渗碳体;C以游离态的⽯墨存在于合⾦中。
C溶于Fe的不同晶格中形成固溶体;A. 铁素体:C溶于α-Fe中所形成的间隙固溶体,体⼼⽴⽅晶格,⽤符号“F”或“α”表⽰,铁素体是⼀种强度和硬度低,⽽塑性和韧性好的相,铁素体在室温下可稳定存在。
B. 奥⽒体:C溶于γ-Fe中所形成的间隙固溶体,⾯⼼⽴⽅晶格,⽤符号“A”或“γ”表⽰,奥⽒体强度低、塑性好,钢材的热加⼯都在奥⽒体相区进⾏,奥⽒体在⾼温下可稳定存在。
C. C与Fe形成⾦属化合物:即渗碳体Fe3C,Fe与C组成的⾦属化合物,Fe与C组成的⾦属化合物,含碳量为6. 69%。
以“Fe3C”或“Cm”符号表⽰,渗碳体的熔点为1227℃,硬度很⾼(HB=800)⽽脆,塑性⼏乎等于零。
渗碳体在钢和铸铁中,⼀般呈⽚状、⽹状或球状存在。
它的形状和分布对钢的性能影响很⼤,是铁碳合⾦的重要强化相。
碳在a-Fe中溶解度很低,所以常温下碳以渗碳体或⽯墨的形式存在。
铁碳合⾦相图的分析1.铁碳合⾦相图由三个相图组成:包晶相图、共晶相图和共析相图;2.相图中有五个单相区:液相L、⾼温铁素体δ、铁素体α、奥⽒体γ、渗碳体Fe3C;3.相图中有三条⽔平线:HJB⽔平线(1495℃):包晶线,发⽣包晶反应,反应产物为奥⽒体。
第4讲铁碳合⾦基本组织及铁碳合⾦相图分析第三章铁碳合⾦第⼀节基本组织⼀、铁碳合⾦的基本组织1、铁素体(F)铁素体是碳溶解在α-Fe中形成的间隙固溶体。
由于α-Fe晶粒的间隙⼩,溶解碳量极微,其最⼤溶碳量只有0.0218%(727℃)所以是⼏乎不含碳的纯铁。
=180~230Mpa性能:σbHB=50~80δ=30~50%φ=70~80%ak=156~196J·cm-2显微镜下观察,铁素体呈灰⾊并有明显⼤⼩不⼀的颗粒形状。
Array C)2、渗碳体(Fe3渗碳体是铁与碳形成的稳定化合物。
含碳量为6.69%性能:HB=800,硬度很⾼,脆性极⼤,是钢中的强化相。
显微镜下观察,渗碳体呈银⽩⾊光泽。
渗碳体在⼀定条件下可以分解出⽯墨,3、奥⽒体(A)奥⽒体是碳溶解在γ-Fe中形成的间隙固溶体。
γ-Fe的溶碳能⼒较⾼,最⼤为2.11%(1148℃)。
由于γ-Fe⼀般存在于727~1394℃之间,所以奥⽒体也只出现在⾼温区域内。
显微镜观察,奥⽒体呈现外形不规则的颗粒状结构,并有明显的界限。
性能:δ=40~50%,具有良好的塑性和低的变形抗⼒。
是绝⼤多数钢种在⾼温进⾏压⼒加⼯所需的组织。
4、珠光体(P)珠光体是铁素体和渗碳体组成的共析体。
珠光体的平均含碳量为0.77%,在727℃以下温度范围内存在。
显微镜观察,珠光体呈层⽚状特征,表⾯具有珍珠光泽,因此得名。
=750Mpa性能:σbHB=160~180较⾼δ=20~25%φ=30~40%适中5、莱⽒体(Ld)莱⽒体是由奥⽒体和渗碳体组成的共晶体。
铁碳合⾦中含碳量为4.3%的液体冷却到1148℃时发⽣共晶转变,⽣成⾼温莱⽒体。
合⾦继续冷却到727℃时,其中的奥⽒体转变为珠光体,故室温时由珠光体和渗碳体组成,叫低温莱⽒体。
统称莱⽒体。
第⼆节铁碳合⾦相图分析各主要线的意义:相图中的线是把具有相同转变性质的各个成分合⾦的开始点和终了点,分别⽤光滑曲线连接起来得到的,代表了铁碳合⾦内部组织发⽣转变的界限。
铁碳相图和铁炭合金钢与铸铁是现代工业中应用最广泛的合金,其基本组成主要是铁和碳两大元素,若了解钢和铁时,首先必须知道简单的铁碳二元合金的组织与性能。
铁与碳可以形成Fe3C,Fe2C,FeC等多种稳定化合物,但含碳量大于5%的铁碳合金在工业上没有应用价值,所以在研究铁碳合金时,仅讨论Fe-Fe3C部分。
下面我们要讲的铁碳相图,实际上也就是Fe-Fe3C状态图。
碳在铁碳合金中以两种方式存在,即渗碳体(Fe3C)或石墨。
本章仅分析Fe-Fe3C相图。
1. 铁碳相图和铁碳合金a.纯铁:纯铁溶点为1538 ℃,温度变化时会发生同素异构变化。
在912℃以下为体心立方,称α铁(α-Fe);912 ℃--1394℃之间为面心立方体,称为γ铁(γ-Fe);在1394 ℃--1538 ℃(熔点)之间为体心立方被称为δ铁(δ -Fe)。
b.铁的固溶体:碳溶解于α铁或δ铁中形成的固溶体称为铁素体,用α或δ表示。
碳在铁素体中最大溶解度为0.0218%。
碳溶解于γ铁中形成的固溶体称为奥氏体,用γ表示。
碳在奥氏体中的最大溶解度为2.11%。
c.渗碳体(Fe3C) :渗碳体具有复杂的斜方结构,它的硬度很高,塑性几乎为零,属脆硬相。
渗碳体在钢和铸铁中可呈片状、球状、网状、板状。
它是钢中主要的强化相。
它的量、形态、分布都对钢的性能影晌很大,这一点非常重要,请大家务必注意!2 2.铁碳合金的平衡凝固:通常以含碳量的多少来区分钢和铸铁。
含碳量在0.0218-2.11%的铁碳合金称为钢,含碳量大于2.11%的铁碳合金称为铸铁。
含碳量小于0.0218%的铁碳合金则为工业纯铁。
下面让我们对照着铁碳相图,分析与我们有关的几条线,a.共析钢(0.77%C,线3) 合金在1-2点温度发生晶体转变L-γ,结晶出奥氏体。
到2点温度结晶完成。
2-3点为单相奥聂氏体。
在3点温度(727 ℃)发生共析转变,由γ奥氏体转变成为珠光体αp+Fe3C,一般用P表示。
钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。
因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。
Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。
所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。
由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。
化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。
因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图5.6-1)。
Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。
这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。
【说明】图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。
铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。
纯铁的同素异晶转变如下:由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。
碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。
工业纯铁的显微组织见图5.6-2。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。
铁碳相图以及铁碳合金Post By:2009-12-6 16:33:51钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。
因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。
Fe和C能够形成FeC, Fe2C 和FeC等多种稳定化合物。
所以,Fe-C相图可以划分成Fe-Fe3C,3Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。
由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。
,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。
因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。
Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。
这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。
图1 铁碳双重相图【说明】图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。
铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。
纯铁的同素异晶转变如下:由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。
碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。
工业纯铁的显微组织见图2。
图2 工业纯铁的显微组织图3 奥氏体的显微组织铁的固溶体碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。
铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。
铁素体的显微组织与工业纯铁相同(图2)碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。
具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。
奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。
奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。
图4 碳在γ-Fe晶格中的位置图5 渗碳体的晶格渗碳体(Fe3C)渗碳体是铁和碳形成的化合物,含碳量为6.67%(有些书上为6.69%),具有复杂的晶体结构(图5),熔点为1227℃。
渗碳体硬度极高(HB800),塑性几乎等于0,是硬脆相。
在一定条件下,渗碳体可以分解而形成石墨状的自由碳:Fe3C→3Fe + C(石墨)。
这一过程对于铸铁和石墨钢具有重要意义。
图6 Fe-Fe3C相图单相区——5个相图中有5个基本的相,相应的有5个相区:液相区(L)——ABCD以上区域δ固溶体区——AHNA奥氏体区(γ)——NJESGN铁素体区(α)——GPQ(Fe3C)——DFK直线以左渗碳体区两相区——7个7个两相区分别存在于两个相应的单相区之间:L+δ——AHJBALγ——BJECBL——DCFDδ+γ——HNJHγ+α——GPSGγ+ FeC——ESKFCE3α+ FeC——PQLKSP+ Fe3C+3三相区——3个包晶线——水平线HJB(Lδ+γ)共晶线——水平线ECF(Lγ+Fe3C)共析线——水平线PSK(γ+α+ Fe3C)++相图中一些主要特性点的温度、成分及其意义列于表1。
表1 Fe-Fe3C相图中的特性点符号T /℃ C % 说明A1538 0 纯铁的熔点B1495 0.53 包晶转变时液相成分C1148 4.30 共晶点D1227 6.67 渗碳体的熔点E1148 2.11 碳在γ-Fe中的最大溶解度F1148 6.67 渗碳体的成分G912 0 纯铁α?γ转变温度H1495 0.09 碳在δ-Fe中的最大溶解度J1495 0.17 包晶点K727 6.67 渗碳体的成分N1394 0 纯铁γ?δ转变温度P727 0.0218 碳在α-Fe中的最大溶解度S727 0.77 共析点Q600 0.0057 600?C碳在α-Fe中的溶解度200 7×10-7200?C碳在α-Fe中的溶解度支持(1)中立(0)反对(0)单帖管理| 引用| 回复快乐每一天小大2楼个性首页| 博客| 信息| 搜索| 邮箱| 主页| UC加好友发短信等级:新手上路帖子:87积分:909 威望:0 精华:0 注册:2009-10-30 10:36:36Post By:2009-12-6 16:34:16Fe-Fe3C相图包含三个恒温转变:包晶、共晶、共析。
包晶转变发生在1495℃(水平线HJB),反应式为:式中L0.53——含碳量为0.53%的液相;δ0.09——含碳量为0.09%的δ固溶体;γ0.17——含碳量为0.17%的γ固溶体,即奥氏体,是包晶转变的产物。
含碳量在0.09~0.53%之间的合金冷却到1495℃时,均要发生包晶反应,形成奥氏体。
共晶转变发生在1148℃(水平线ECF),反应式为:共晶转变的产物是奥氏体与渗碳体的机械混合物,称为莱氏体L d表示。
凡是含碳量大于2.11%的铁碳合金冷却到1148℃时,都会发生共晶反应,形成莱氏体。
,用符号共析转变发生727℃(水平线PSK),反应式为:共析转变的产物是铁素体与渗碳体的机械混合物,称为珠光体,用字母P表示。
含碳量大于0.0218%的铁碳合金,冷却至72 7℃时,其中的奥氏体必将发生共析转变,形成珠光体。
Fe-Fe3C相图中的ES、PQ、GS三条特性线也是非常重要的,它们的含义简述如下:ES线是碳在奥氏体中的溶解度曲线。
奥氏体的最大溶碳量是在1148℃时,可以溶解2.11%的碳。
而在727℃时,溶碳量仅为0. 77%,因此含碳量大于0.77%的合金,从1148℃冷到727℃的过程中,将自奥氏体中析出渗碳体,这种渗碳体称为二次渗碳体(Fe3 C II)。
PQ线是碳在铁素体中的溶解度曲线。
727℃时铁素体中溶解的碳最多(0.0218%),而在200℃仅可以溶解7×10-7%C。
所以铁碳合金由727℃冷却到室温的过程中,铁素体中会有渗碳体析出,这种渗碳体称为三次渗碳体(Fe3C III)。
由于三次渗碳体沿铁素体晶界析出,因此对于工业纯铁和低碳钢影响较大;但是对于含碳量较高的铁碳合金,三次渗碳体(含量太少)可以忽略不计。
GS线是冷却过程中,奥氏体向铁素体转变的开始线;或者说是加热过程中,铁素体向奥氏体转变的终了线(具有同素异晶转变的纯金属,其固溶体也具有同素异晶转变,但其转变温度有变化)。
根据铁碳合金的含碳量及组织的不同,可以分为纯铁、钢和白口铁三类。
图7 Fe-Fe3C合金分类1.纯铁——含碳量<0.0218%,显微组织为铁素体。
2.钢——含碳量0.0218%~2.11%,特点是高温组织为单相奥氏体,具有良好的塑性,因而适于锻造。
根据室温组织的不同,钢又可以分为:亚共析钢(Hypo-eutectoidsteel):含碳量0.0218%~0.77%,具有铁素体α+珠光体P的组织,且含碳量越高(接近0.77%),珠光体的相对量越多,铁素体量越少。
共析钢(Eutectoid):含碳0.77%,组织是全部珠光体P。
过共析钢(Hyper-eutectoid):含碳量0.77%~2.11%,组织是珠光体P+渗碳体Fe3C。
3.白口铁——含碳量2.11%~6.69%,特点是液态结晶时都有共晶转变,因而具有良好的铸造性能。
但是即使在高温也是脆性材料,不能锻造。
根据室温组织不同,白口铁又分为:亚共晶白口铁(Hypo-eutecticwhiteiron):含碳2.11%~4.30%,组织是珠光体P+渗碳体Fe3C+莱氏体L d'。
共晶白口铁(Eutecticwhiteiron):含碳4.30%,组织是莱氏体L d'。
过共晶白口铁(Hyper-eutecticwhiteiron):含碳4.3%~6.69%,组织是渗碳体Fe3C+莱氏体L d'。
工业纯铁在缓慢冷却过程中发生的组织转变主要是同素异晶转变和Fe3C III的析出。
在冷却过程中合金的组织转变情况见动画演示。
室温下工业纯铁的组织为铁素体以及分布在晶界处极少量的三次渗碳体(Fe3C III)。
工业纯铁实际室温组织的照片见图2。
工业纯铁冷却过程中的组织转变工业纯铁冷却过程中的组织转变支持(1)中立(0)反对(0)单帖管理| 引用| 回复快乐每一天小大3楼个性首页| 博客| 信息| 搜索| 邮箱| 主页| UC加好友发短信等级:新手上路帖子:87积分:909威望:0精华:0Post By:2009-12-6 16:34:53共析钢冷却过程中的组织转变图8 共析钢的室温组织(P)共析钢只有一种组织(忽略Fe3CIII),即珠光体P,珠光体由α和Fe3C两个相组成。
应用杠杆定律可以计算出α和Fe3C两个相的相对量。
注册:2009-10-30 10:36:36例题计算珠光体中α和Fe3C两个相的相对量。
解:应选择α+Fe3C二相区,共析温度(727℃)或QFe3C=1-Qα=1-88.75%=11.25%含碳0.45%的亚共析钢是应用十分广泛的一种钢,通常称为45号钢。
45钢在液态到室温的冷却过程中将发生以下转变:匀晶转变L0.45→L0.53+δ,包晶转变L0.53+δ→γ0.45,同素异晶转变γ0.45→α+γ0.77,共析转变γ0.77→(α+Fe3C)。
转变过程见动画演示。
室温下45钢的组织为:铁素体α+珠光体P(α+Fe3C)。
45钢的实际室温组织照片见图9。
所有亚共析钢的室温组织都是由铁素体和珠光体组成,区别仅在于相对量的差别:含碳量越高(越接近0.77%C),珠光体的量越多、铁素体的量越少。
图10和图11分别是20钢(0.20%C)和60钢(0.60%C)的组织照片,可以明显看出铁素体与珠光体的相对量随含碳量的变化。
应用杠杆定律可以准确计算相对量的多少。
45钢冷却过程中的组织转变图9 45钢的室温组织图10 20钢的室温组织图11 60钢的室温组织例题应用杠杆定律计算45钢中铁素体α和珠光体P的相对量。
解:应选择α+γ二相区,共析温度或QP=1-Qα=1-42.77%=57.23%同样可以计算出20钢:Qα=76.18%,QP=23.82%;60钢:Qα=22.72%,QP=77.28%。