实验二 离散信道及其容量
- 格式:pdf
- 大小:131.81 KB
- 文档页数:4
实验二 离散信道及其容量一、[实验目的]1、理解离散信道容量的内涵;2、掌握求二元对称信道(BSC )互信息量和容量的设计方法;3、掌握二元扩展信道的设计方法并会求其平均互信息量。
二、[实验环境]windows XP,MATLAB 7三、[实验原理]若某信道输入的是N 维序列x ,其概率分布为q(x ),输出是N 维序列y ,则平均互信息量记为I(X ;Y ),该信道的信道容量C 定义为()max (X;Y)q x C I =。
四、[实验内容]1、给定BSC 信道,信源概率空间为信道矩阵 0.990.010.010.99P ⎡⎤=⎢⎥⎣⎦求该信道的I(X;Y)和容量,画出I(X;Y)和ω、C 和p 的关系曲线。
2 、编写一M 脚本文件t03.m ,实现如下功能:在任意输入一信道矩阵P 后,能够判断是否离散对称信道,若是,求出信道容量C 。
3、已知X=(0,1,2);Y=(0,1,2,3),信源概率空间和信道矩阵分别为求: 平均互信息量;4、 对题(1)求其二次扩展信道的平均互信息I(X;Y)。
五、[实验过程] XP 0 10.6 0.4= XPx 0 1 2 0.3 0.5 0.2= 0.1 0.3 0 0.6 0.3 0.5 0.2 0 0.1 0.7 0.1 0.1P=每个实验项目包括:1)设计思路2)实验中出现的问题及解决方法;1)设计思路1、信道容量( )max (X; Y)q xC = I,因此要求给定信道的信道容量,只要知道该信道的最大互信息量,即求信道容量就是求信道互信息量的过程。
程序代码:clear all,clc;w=0.6;w1=1-w;p=0.01;XP01= 0.6 0.4p1=1-p;save data1 p p1;I_XY=(w*p1+w1*p)*log2(1/(w*p1+w1*p))+(w*p+w1*p1)*log2(1/(w*p+w1*p1))- ...(p*log2(1/p)+p1*log2(1/p1));C=1-(p*log2(1/p)+p1*log2(1/p1));fprintf('互信息量:%6.3f\n信道容量:%6.3f',I_XY,C);p=eps:0.001:1-eps;p1=1-p;C=1-(p.*log2(1./p)+p1.*log2(1./p1));subplot(1,2,1),plot(p,C),xlabel('p'),ylabel('C');load data1;w=eps:0.001:1-eps;w1=1-w;I_XY=(w.*p1+w1.*p).*log2(1./(w.*p1+w1.*p))+(w.*p+w1.*p1).*log2(1./(w.*p+w1.*p1))- . ..(p.*log2(1./p)+p1.*log2(1./p1));subplot(1,2,2),plot(w,I_XY)xlabel('w'),ylabel('I_XY');实验结果:互信息量:0.891信道容量:0.919I(X;Y)和ω、C和p的关系曲线图:0 0.5 10.10.20.30.40.50.60.70.80.91pC0 0.5 10.10.20.30.40.50.60.70.80.91wI X Y2、离散对称信道:当离散准对称信道划分的子集只有一个时,信道关于输入和输出对称。
一、实验目的1.掌握离散信道的信道容量的计算方法;2.理解不同类型信道的不同特点与不同的计算方法;二、实验内容1.进一步熟悉一般离散信道的信道容量计算方法;2.进一步复习巩信道性质与实际应用;3.学习如何将复杂的公式转化为程序。
三、实验仪器、设备1、计算机-系统最低配置256M内存、P4 CPU;2、MATLAB编程软件。
四、实现原理信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。
本实验利用信道容量的算法,使用计算机完成信道容量的计算。
实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。
其所有分量P (i)均不为0。
按照如下方法进行操作:具体方法:1、计算q(j)=ijipyxip),(*)(,pyx(i,j)为信道转移概率2、计算a(i)先算中间变量d(i)=∑jjqjipyxjipyx)(/),(log(*),(然后,a(i)=exp(d(i))3、计算中间变量U=∑iip ia)(*)(4、计算IL=log2(u)5、计算IU=log2(max(a(i))6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。
①重新计算p(i)=p(i)*a(i)/U②计算q(j),方法同1③计算a(i),方法同2④计算中间变量U=∑iip ia)(*)(⑤计算IL=log2(u)⑥计算IU=log2(max(a(i))⑦计次变量n=n+1返回6判断循环条件是否满足。
五、实验步骤1、计算非对称信道的信道容量运行程序待程序运行完毕,记录迭代次数n和信道容量计算结果C。
2、计算对称信道的信道容量运行程序待程序运行完毕,记录迭代次数n和信道容量计算结果C。
信道容量的计算方法信道容量的计算方法:1、对于离散无记忆信道,香农公式是计算信道容量的重要方法。
香农公式为C = W log₂(1 + S/N),其中C表示信道容量,W表示信道带宽,S表示信号功率,N表示噪声功率。
2、在计算信道容量时,先确定信道带宽W的值。
例如,在一个无线通信系统中,经过测量或者根据通信标准规定,信道带宽可能是20MHz。
3、接着确定信号功率S。
信号功率可以通过功率测量仪器得到,比如在一个发射机输出端测量到的功率为10W。
4、然后确定噪声功率N。
噪声功率的确定需要考虑多种因素,如热噪声、干扰噪声等。
热噪声功率可以根据公式N₀= kT₀B计算,其中k是玻尔兹曼常数,T₀是绝对温度,B是等效噪声带宽。
在常温下,假设T₀= 290K,若等效噪声带宽与信道带宽相同为20MHz,可算出热噪声功率,再加上其他干扰噪声功率得到总的噪声功率N。
5、将确定好的W、S、N的值代入香农公式计算信道容量C。
6、对于离散有记忆信道,计算信道容量会更复杂。
需要考虑信道的记忆特性,通常采用马尔可夫链来描述信道状态的转移概率。
7、构建马尔可夫链的状态转移矩阵,矩阵中的元素表示从一个状态转移到另一个状态的概率。
8、通过求解马尔可夫链的稳态分布,结合输入符号的概率分布,利用信息论中的互信息公式来计算信道容量。
9、在多输入多输出(MIMO) 系统中,信道容量的计算又有不同。
需要考虑多个发射天线和多个接收天线之间的信道矩阵H。
10、利用矩阵H的特征值等信息,根据MIMO信道容量公式C = log₂det(I + ρHH*)计算信道容量,其中ρ是信噪比,I是单位矩阵,H*是H的共轭转置矩阵。
实验二 离散信道容量一、实验目的1. 掌握离散信道容量的计算。
2. 理解离散信道容量的物理意义。
3. 练习应用matlab 软件进行二元对称离散信道容量的函数曲线的绘制,并从曲线上理解其物理意义。
二、实验原理信道是传送信息的载体—信号所通过的通道。
信息是抽象的,而信道则是具体的。
比如二人对话,二人间的空气就是信道;打电话,电话线就是信道;看电视,听收音机,收、发间的空间就是信道。
研究信道的目的:在通信系统中研究信道,主要是为了描述、度量、分析不同类型信道,计算其容量,即极限传输能力,并分析其特性。
二元对称信道BSC (Binary Symmetric Channel )二进制离散信道模型有一个允许输入值的集合X={0,1}和可能输出值的集合Y={0,1},以及一组表示输入和输出关系的条件概率(转移概率)组成。
如果信道噪声和其他干扰导致传输的二进序列发生统计独立的差错,且条件概率对称,即(0/1)(1/0)(1/1)(0/0)1p Y X p Y X p p Y X p Y X p ======⎧⎨======-⎩这种对称的二进制输入、二进制输出信道称做二元对称信道(或二进制对称信道,简称BSC 信道),如下图所示:信道容量公式:{()}max p x C I(X,Y)=三、实验内容BSC信道是DMC信道对称信道的特例,对于转移概率为P(0/1)=P(1/0)=p,P(0/0)=P(1/01)=1-p,求出其信道容量公式,并在matlab上绘制信道容量C与p 的曲线。
根据曲线说明其物理意义。
四、实验要求1.提前预习实验,认真阅读实验原理以及相应的参考书。
2.认真高效的完成实验,实验中服从实验室管理人员以及实验指导老师的管理。
3.认真填写实验报告。
实验二离散信道及其容量
一、[实验目的]
1、理解离散信道容量的内涵;
2、掌握求二元对称信道(BSC)互信息量和容量的设计方法;
3、掌握二元扩展信道的设计方法并会求其平均互信息量。
二、[实验环境]
windows XP,MATLAB 7
三、[实验原理]
若某信道输入的是N 维序列x ,其概率分布为q(x ),输出是N 维序列y ,则平均互信息量记为I(X ;Y ),该信道的信道容量C 定义为()
max (X;Y)q x C I =。
四、[实验内容]
1、给定BSC 信道,信源概率空间为
信道矩阵0.990.010.010.99P ⎡⎤=⎢⎥⎣⎦
求该信道的I(X;Y)和容量,画出I(X;Y)和ω、C 和p 的关系曲线。
2、编写一M 脚本文件t03.m,实现如下功能:
在任意输入一信道矩阵P 后,能够判断是否离散输出对称信道。
3、对题1求其二次扩展信道的平均互信息I(X;Y)。
五、[实验过程]
每个实验项目包括:
1)设计思路
1、信道容量
()max (X;Y)q x C I =,因此要求给定信道的信道容量,只要知道该信道的最大互信息量,即求信道容量就是求信道互信息量的过程。
程序代码:
clear all,clc;
w=0.6;
w1=1-w;
p=0.01;X
P 0
10.60.4
=
p1=1-p;
save data1p p1;
I_XY=(w*p1+w1*p)*log2(1/(w*p1+w1*p))+(w*p+w1*p1)*log2(1/(w*p+w1*p1))-...
(p*log2(1/p)+p1*log2(1/p1));
C=1-(p*log2(1/p)+p1*log2(1/p1));
fprintf('互信息量:%6.3f\n信道容量:%6.3f',I_XY,C);
p=eps:0.001:1-eps;
p1=1-p;
C=1-(p.*log2(1./p)+p1.*log2(1./p1));
subplot(1,2,1),plot(p,C),xlabel('p'),ylabel('C');
load data1;
w=eps:0.001:1-eps;
w1=1-w;
I_XY=(w.*p1+w1.*p).*log2(1./(w.*p1+w1.*p))+(w.*p+w1.*p1).*log2(1./(w.*p+w1.*p1))-.. .(p.*log2(1./p)+p1.*log2(1./p1));
subplot(1,2,2),plot(w,I_XY)
xlabel('w'),ylabel('I_XY');
实验结果:
互信息量:0.891
信道容量:0.919
I(X;Y)和ω、C和p的关系曲线图:
C
X
2、离散对称信道:当离散准对称信道划分的子集只有一个时,信道关于输入和输出对称。
离散准对称信道:若一个离散无记忆信道的信道矩阵中,按照信道的输出集Y 可以将信道划分成n个子集,每个子矩阵中的每一行都是其他行同一组元素的不同排列。
实验代码:
clc;clear;
P=input('输入信道转移概率矩阵:');
[r,c]=size(P);
if sum(P,2)-1~=zeros(1,r)';
error('输入的信道矩阵不合法!');%矩阵行和一定要为1
end
l=1;
Sum=0;
for j=2:c
for i=1:r%i是行变量
for k=1:r
if P(k,j)==P(i,1)
Sum=Sum+1;
break;
end
end
end
end
if Sum==r*(c-1)
fprintf('是离散输出对称信道!\n',j);
else fprintf('不是对称信道!');
end
实验结果:
输入信道转移概率矩阵:[0.010.99;0.990.01]
是离散输出对称信道!
输入信道转移概率矩阵:[0.40.6;0.30.7]
不是对称信道!
3、二次扩展信道的互信息量I(X;Y)=H(Y)-H(Y|X).
实验代码:
clc,clear;
p=0.01;
P_X1=[0.6,0.4];
p1=1-p;
X2=[0,0;0,1;1,0;1,1];%二次扩展输入符号阵
Y2=X2;%二次扩展输出符号
P_X2=[P_X1(1)^2,P_X1(1)*P_X1(2),P_X1(2)*P_X1(1),P_X1(2)^2];
%求二次扩展后信道矩阵N
N=zeros(4);
for i=1:4
for j=1:4
l=length(find(xor(X2(i,:),Y2(j,:))==0));%比较得正确传递元素个数
N(i,j)=p1^l*p^(2-l);
end
end
%下面求I
P_Y2=P_X2*N;
P_XY2=[P_X2(1)*N(1,:);P_X2(2)*N(2,:);P_X2(3)*N(3,:);P_X2(4)*N(4,:)];%联合分布
H_Y2=sum(-P_Y2.*log2(P_Y2));
H_Y_X2=sum(sum(-P_XY2.*log2(N)));
I_XY2=H_Y2-H_Y_X2;
fprintf('2次扩展信道的平均互信息为:%5.3f',I_XY2);
实验结果:
2次扩展信道的平均互信息为:1.783
2)实验中出现的问题及解决方法;
1、信道容量与互信息量有关,而互信息量又与信源熵相关,所以要求得信道容量就必须知道信道传递概率,然后根据公式一步一步计算。
2、对于判断离散对称信道,不需要弄清楚的是它的概念,根据定义来判断。
3、对于扩展信道,分有记忆的和无记忆的,在不确定的情况下计算扩展信源的熵,我们要根据定义来计算。
六、[实验总结]
通过本次实验,我对于信道的分类,各种信道的特点有了一定的认识和了解。
实验中涉及的主要是二元对称信道,而它的最佳分布是输入和输出均对称。
实验中最主要的部分还是关于信道容量的计算,此次实验,让我们验证了课本上的定理,也让我们更好地理解和掌握了课堂上所学的知识。