2.2.4流体在固定床中的流动特性(精)
- 格式:doc
- 大小:46.50 KB
- 文档页数:1
化⼯设备习题复习与思考题1.转化率的定义是什么?2.什么是反应速率?写出均相系统反应速率表⽰⽅式。
3.什么是化学动⼒学⽅程?怎样理解“反应级数表明浓度对反应速率的敏感程度”,“活化能表明温度对反应速率的敏感程度”?4.什么是本征动⼒学和宏观动⼒学?两者有何区别与联系?5.试说明反应热与活化能的区别与联系。
6.试写出间歇反应系统中,恒温恒容0级、1级、2级不可逆反应的积分式。
7.何谓变容过程?膨胀因⼦的定义及其物理意义是什么?8.什么是复杂反应?复杂反应通常可分为哪⼏种类型?9.简述⽓固相催化反应的宏观过程。
10.根据双膜理论简述⽓液相反应的宏观过程。
11.解释下列参数的物理意义:膜内转化系数γ、增强系数β、反应相内部总利⽤率η。
12.为什么要建⽴理想流动模型?它与实际流动状况有哪些区别?在处理过程中作了哪些简化?13.理想转换与理想混合流动模型各有什么特征?14.何谓返混?形成返混的原因有哪些?返混对反应过程有什么影响?⼯程中如何降低返混的程度?计算题1.有⼀反应,在间歇反应器中进⾏,经过8min后,反应物转化掉80%,经过18min后转化掉90%,求表达此反应的动⼒学⽅程式。
(n=2)解题思路2.在间歇反应器中进⾏等温⼆级反应A→B,反应速率⽅程式为:(-r A)=0.01c A2mol/(L·s),当c A0分别为1、5、10mol/L时,求反应⾄c A=0.01mol/L所需的反应时间。
(9900s、9980s、9990s)解题思路3.等温下在间歇反应器中进⾏⼀级不可逆液相分解反应A→B+C,在5min内有50%的A分解,要达到分解率为75%,问需多少时间?若反应为⼆级,则需多少时间?(n=1时,τ=10min;n=2时,τ=15min)解题思路4.973K和294.3×103Pa恒压下发⽣反应C4H10→2C2H4+H2。
反应开始时,系统中含C4H10为116kg,当反应完成50%时,丁烷分压以235.4×103Pa/s的速率发⽣变化,试求下列项次的变化速率:(1)⼄烯分压;(2)H2的摩尔数;(3)丁烷的摩尔分率。
固体流态化的流动特性实验一、实验目的1.通过实验观察固定床向流化床转变的过程,及聚式流化床和散式流化床流动特性的差异。
2.测定流化曲线和临界流化速度。
3.验证固定床压降和流化床临界流化速度的计算公式。
4.初步掌握流化床流动特性的实验研究方法,加深对流体经固体颗粒层的流动规律和固体流态化原理的理解。
二、实验原理在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类,近年来,流化床设备得到越来越广泛的应用。
固体流态化过程按其特性可分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统密相流化床属于散式流化床。
当流体流经固定床内固体颗粒之间的空隙时,随着流速的增大,流体与固体颗粒之间所产生的阻力也随之增大,床层的压强降则不断升高。
为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。
一种较为常用的公式可以仿照流体流经空管时的压降公式(Moody 公式)列出。
即:22u d H p p m m ρλ⋅⋅=∆(4-1)式中H m ——固定床层的高度,m ;d p ——固体颗粒的直径,m ; u 0——流体的空管速度,m /s ; ρ——流体的密度,kg/m 3; λm ——固定床的摩擦系数。
由固定床向流化床转变时的临界速度u mf ,也可由实验直接测定。
实验测定不同流速下的床层压降,再将实验数据标绘在双对数坐标上,由作图法即可求得临界流化速度,如图4-1所示。
为计算临界流化速度,我们可采用下面这种半理论半经验的公式mms pmf d u εεμρρ-⨯-⨯=1)(15032(4-2) 式中μ——流体的黏度,Pa /s ;d p 一一平均粒径,m ; ρs ——填料密度,kg/m 3; εm ——空隙率。
固定床反应器定义:气体流经固定不动的催化剂床层进行催化反应的装置。
特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器.应用:主要用于气固相催化反应。
基本形式:轴向绝热式、径向绝热式、列管式。
固定床反应器缺点:床层温度分布不均匀;床层导热性较差;对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间.流化床反应器(沸腾床反应器)定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。
应用:应用广泛,催化或非催化的气—固、液-固和气-液—固反应。
原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。
结构:壳体、气体分布装置、换热装置、气-固分离装置、内构件以及催化剂加入和卸出装置等组成。
优点:传热面积大、传热系数高、传热效果好。
进料、出料、废渣排放用气流输送,易于实现自动化生产。
缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。
固定床:一、固定床反应器的优缺点凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛.气固相固定床反应器的优点较多,主要表现在以下几个方面:1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。
2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性.3、催化剂不易磨损,可以较长时间连续使用。
4、适宜于高温高压条件下操作。
由于固体催化剂在床层中静止不动,相应地产生一些缺点:1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。
2016年6月 The Chinese Journal of Process Engineering June 2016收稿日期:2015−12−28,修回日期:2016−02−16基金项目:国家重点基础研究发展规划(973)基金资助项目(编号:2012CB215000)作者简介:黄亚航(1991−),男,湖北省武汉市人,硕士研究生,化工过程机械专业;刘梦溪,通讯联系人,E-mail: mengxiliu@.气固流化床中颗粒聚团的流动特性黄亚航, 刘梦溪, 胡 娟[中国石油大学(北京)重质油国家重点实验室,北京 102249]摘 要:在一套流化床冷模实验装置中研究了A 类颗粒在鼓泡床和湍流床内的微观两相流动结构,测量了床层内不同轴、径向位置的瞬时固含率脉动信号,通过MATLAB 软件进行解耦并统计分析求解出稠密相与稀疏相的平均固含率,以此为基础拟合了瞬时固含率信号的概率密度曲线,最后从信号中提取出颗粒聚团的有关信息. 结果表明,瞬时固含率为0.05∼0.72,乳化相中颗粒聚团平均固含率为0.552∼0.562. 颗粒聚团的体积分率和出现频率随表观气速增加而降低,分别为0.01∼0.5和0.02∼1.6 Hz ,持续时间小于0.12 s. 关键词:颗粒聚团;固含率;体积分率;频率;持续时间中图分类号:TQ051.11 文献标识码:A 文章编号:1009−606X(2016)03−0374−061 前 言气固流化床反应器由于传热和传质效率高、可流化的固体颗粒尺寸分布范围广、结构简单等优点被广泛应用于石油、化工等行业[1]. 流化床内气体和固体粒子的微观流动结构对流化床的性能有显著影响,但由于两相流动的多流域、非线性的复杂特性,目前还难以深入认识固体颗粒的动态行为和流动结构.目前,对于气固流化床内微观流动结构的研究大多局限于循环流化床[2,3]等表观气速较高的流化床,而对鼓泡床和湍动床的研究较少. 经典两相流模型[4]将气固流化床的复杂流动简化为由恒定固含率的乳化相和几乎不含固相颗粒的气泡的稀疏相构成. 但实验结果[5]表明,乳化相的固含率随时间波动,因此这种假设与实验并不完全相符.乳化相中固体浓度的波动可能是由悬浮颗粒、气泡空穴或尾涡、颗粒聚团引起的. Lettieri 等[6]在FCC 流化床中发现,基于单颗粒计算的终端速度与实验值相差很大,表明流化床中的部分颗粒可能以团聚物形式存在. Mostoufi 等[7]发现在相同条件下,乳化相中颗粒的平均速度低于单颗粒和孤立颗粒,示踪颗粒的运动并不像单颗粒那样为布朗运动,而是沿直线上下往复运动,表明有颗粒聚团存在[8]. Cocco 等[9]用高速摄像机拍摄到了临近气泡处的颗粒聚团. 颗粒聚团存在会导致乳化相局部固含率增加,如Sharma 等[10]发现在快速流化床中,颗粒聚团的固含率是乳化相固含率的2.4倍. 认为颗粒聚团会随其合并或在床中循环运动而变大. 乳化相中颗粒聚团的体积分率、平均固含率、频率和持续时间对流化床的性能起关键作用.本工作建立了一套气固流化床冷模实验装置,研究了流化床不同区域内的固含率信号,通过对信号进一步处理得到了颗粒聚团的体积分率、频率和持续时间的变化规律.2 实 验2.1 实验物料固体颗粒为主要用于重油催化裂化装置中的催化裂化催化剂(FCC),为A 类颗粒,平均粒径79 μm ,堆积密度958 kg/m 3,颗粒密度1598 kg/m 3,其粒度分布见表1. 气体介质为常温空气.表1 FCC 催化剂的粒度分布Table 1 Particle size distribution of FCCParticle diameter, d p (μm) <40 40∼50 50∼70 70∼90 90∼110110∼140140∼200 >200 V olume distribution (%)1.45 6.08 24.15 23.83 22.4514.837.170.042.2 实验装置及流程为保证加工精度及便于观察内部气固流动状态,实验装置筒体由有机玻璃材料(PMMA)制造,如图1所示,总高5460 mm ,床体直径300 mm ,壁厚7 mm ,高2900 mm. 底座、底锥和旋风分离器由碳钢制造.空气由鼓风机压缩后先进入气体缓冲罐,再经转子流量计定量输送到实验装置中,气体预分配由板式分布器完成. 为保证气体分配的均匀性,分布器下方设置一个气体预混腔,气体通过气体分布板进入流化床层后会携带部分颗粒到床层外. 为保证整个床层内颗粒质量和粒径分布不随时间变化,设置了两级PV 型旋风分离器回收被带出的较细FCC 颗粒. 为避免影响床内的气固流动,料腿出口设置在靠近床层表面的稀相段. 两级旋风分离器的总捕集效率大于99.99%. 旋风分离器未能捕集的剩余颗粒由布袋过滤器收集,定期返回床层中.(a) General view (b) Internal dimensions (mm)图1 实验装置示意图Fig.1 Schematic diagram of the experimental apparatus实验操作条件:流化床内表观气速为0.04∼0.55 m/s ,流化床环隙区底部设置一个板式气体分布器,开孔率为0.465%. 2.3 实验方法 2.3.1 测试方法床层轴向、径向固含率采用PV-6D 型颗粒速度测量仪(中国科学院过程工程研究所)测量,以两束平行的光导纤维为测量探头,每束光纤直径0.8 mm ,包含发射光线和接受的反射光两部分. 当颗粒通过探头时,照射在颗粒上的光线反射到接收端,经过A/D 转换器转换成电压信号传送到计算机. 颗粒顺光纤束排列方向运动时,同一颗粒(群)产生的反射信号是形状相似而时间上有一定延迟的两路信号(图2). 仪器不能直接测得床层中的固含率,只能得到与固含率对应的电压信号,故需对仪器进行标定,将电压值转换为固含率. 标定时,选择床层较稳定的一个截面,截面的平均床层浓度由上、下两个等距测压值计算得到. 床体半径R =143 mm ,沿截面径向r 取8个测量点,每个点取5个样本值. 沿截面积分求得平均电压V . 最终得到标定的瞬时固含率为0.62s 0.043e ,V ε= (1)其最大相对误差不超过5%,表明所得数据可信.光纤探头置于流化床不同轴向、径向位置,见图1(b). 光纤探针采样频率为5 kHz.图2 光纤测量示意图Fig.2 Schematic diagram of the measurementwith the optical fiber probe2.3.2 数据处理通过大量的试算,得到了能准确描述稀疏、稠密相固含率时间序列的概率密度分布函数,如图3所示. 根据实验数据拟合出稀疏相对应的概率密度函数为对数正态分布函数:2s ()).f ε⎤⎥⎦(2)图3 微观两相结构示意图Fig.3 Schematic diagram of microscale two-phase flow structure拟合的稠密相的概率密度函数为高斯分布函数:2s ().f ε⎤⎥⎥⎦(3) 反应器局部稀疏、稠密相共存,由局部质量衡算得s 1sb 1sd (1),f f εεε=+− (4)P r o b a b i l i t y d e n s i t yd i s t r i b u t i o n5101520250.00.20.40.60.8 Optical fiber signalT r a n s i t e n t s o l i d h o l d u p , εsTime,t (s)1. Air blower 2. Surge tank3. Rotary flowmeter4. Gas distributor5. Fluidized bed6. Bag filter 7, 8. Cyclone 9. Diplegssd s1sd sb ,f εεεε−=− (5)局部稀疏相的相分率为f l ,稠密相的相分率为1−f l .由式(2)∼(4)得描述局部瞬态固含率的概率密度分布函数为s 121())).f f f ε=+⎤⎥⎦(6)Bi 等[11]提出可通过固含率信号的偏斜度S (三阶中心距)和标准差σ分别求出颗粒稀相与密相的平均固含率[式(7), (8)],两种固含率的平均值εs,dm 可由式(9)求得.sb sd s ,2S σεε⎤=+⎦(7)sb sb s ,2S σεε⎤=−⎦(8)s,dm sb sd ()/2.εεε=+ (9)本研究将εs,dm 作为稀疏、稠密相的分界值. 在同一操作条件、同一空间位置,瞬时固含率<εs,dm 认为是稀疏相固含率,瞬时固含率≥εs,dm 则为稠密相固含率. 拟合不同位置的固含率概率密度曲线,相对误差在10%以内.实验中通过绘制床层压降曲线得到起始流化时的固含率为0.54. 但由图3可看出,有部分组分的固含率大于起始流化固含率,定义其为颗粒聚团.Liu 等[12]给出了密相流化床中颗粒聚团的判定标准:(1)固含率必须大于最小流化状态下的固含率;(2)颗粒聚团引起的局部固含率变化幅度必须大于乳化相固含率的随机波动幅度;(3)在一个特征长度小于预期聚团尺寸但又比单颗粒尺寸大数个数量级的采样空间内,能测量到固体分率增加.聚团相的体积分率可通过对固含率概率密度曲线积分得到:s,dm1ag s s ()d .f f εεε=∫(10)颗粒聚团频率F ag 可由下式计算:F ag =n /t T . (11)本研究使用MATLAB R2013a GUI 界面编写信号处理程序,采用Liu 等[12]提出的颗粒聚团判定标准对聚团进行识别. 2.3.3 流态化实验实验前先将PV-6D 型颗粒速度测量仪预热5 min ,校准其空床与满床时的电压. 装入FCC 催化剂至850 mm ,启动风机,根据转子流量计示数调节阀门的开度,调节进气量使床层表观气速为0.1∼0.5 m/s. 待气速稳定后,采集床内固含率信号,单次时长为26 s. 采集的数据实时传递到计算机供后续分析.3 结果与分析3.1 瞬态固含率信号的特征图4为操作气速u g =0.3 m/s 、静床高h =850 mm 时,分布器影响区、过渡区和顶部区内不同径向位置的固含率. 可看出,气固流化床不同区域各径向位置的瞬时固含率均随时间变化,波动范围为0.05∼0.72. 低固含率部分代表稀疏相,高固含率部分代表稠密相. 随径向位置越来越靠近边壁,固含率波动强度越来越弱,表明流动逐渐由稠密相主导;而在近中心处,固含率波动强度较强,表明流动由稀疏相和稠密相共同作用.图4 瞬态固含率信号Fig.4 Transient solid holdup signals3.2 固含率信号概率密度分布Cui 等[13]发现瞬态固含率信号的概率密度分布呈双峰分布. 为定量研究不同操作条件下反应器各流动区域稀疏、稠密相出现的概率及在不同轴、径向位置的比例,5101520250.00.20.40.60.00.20.40.60.00.20.40.60.8Time, t (s)T r a n s i e n t s o l i d h o l d u p , εs(a) Distributor affect region, z /h =0.14r /R =0.839r /R =0.420εs =0.365εs =0.303εs =0.330r /R =05101520250.00.20.40.60.00.20.40.60.00.20.40.60.8r /R =0.839εs =0.384(b) Transition region, z /h =0.38Time, t (s)r /R =0.420εs =0.364r /R =0εs =0.2815101520250.00.20.40.60.00.20.40.60.00.20.40.6εs =0.322εs =0.360εs =0.300r /R =0r /R =0.420r /R =0.839(c) Top region, z /h =0.85Time, t (s)对固含率的概率密度分布进行分析,如图5所示. 从图5(a), 5(b)可看出,固含率概率密度曲线在床体中心附近呈双峰分布,每个峰所占比例沿径向位置逐渐变化. 稀疏相的概率密度峰对应的面积从中心到边壁逐渐减小并于边壁处消失,呈单峰分布,如图5(c)所示;乳化相的概率密度峰对应的面积从中心到边壁逐渐增大,表明近壁区域流动结构由稠密相主导;除导流筒边壁和反应器边壁处,稀疏、乳化两相结构共同存在,只是各相所占比例沿径向位置不同. 此时,流动结构由稀疏相和稠密相共同作用.图5 概率密度分布Fig.5 Probability density distribution3.3 聚团相平均固含率颗粒聚团的平均固含率是指乳化相中固含率超过起始流化固含率部分(聚团物)的固含率,反应了聚团物的密集程度. 图6为不同气速下、不同径向位置处颗粒聚团的平均固含率. 如图所示,颗粒聚团平均固含率波动范围为0.552∼0.562,表明表观气速和径向位置对颗粒聚团固含率影响很小,这与Bai 等[14]的研究结果相同. 随表观气速增加,相同径向位置的固含率略有增加,这是由于表观气速增加导致气泡合并和破碎程度加剧,气泡内颗粒释放形成聚团. 在相同气速下,随径向向外壁扩展,聚团的固含率有逐渐降低的趋势,在边壁处由于边壁效应导致颗粒流动速度减缓,气泡数减少,聚团形成速率增加,其平均固含率略有增加.图6 颗粒聚团平均固含率沿径向的分布Fig.6 Radial distributions of average solid holdupof particle agglomerates3.4 聚团相体积分率聚团相的体积分率f ag 反映了两相结构对流动的影响,其变化范围为0.01∼0.5,如图7所示. 随气速增加,流化床床层形态由鼓泡床变为湍动床,相同位置聚团相的体积分率逐渐降低. 随径向位置越来越靠近边壁,不同气速下聚团相的体积分数均呈先降低后升高的趋势. 这是由于流化床中心气泡合并和破碎程度剧烈,气泡内或周围颗粒易形成聚团,而在边壁处由于边壁效应,气泡破碎时其周围颗粒受到气泡的张力增强,颗粒被挤压而更易形成聚团. 在分布器影响区,气泡运动以合并为主且分布均匀,颗粒聚团体积分率较低且径向分布均匀.图7 颗粒聚团体积分率的径向分布Fig.7 Radial distributions of volume fractionof particle agglomerates通过关联颗粒聚团的相分率f ag 与时均固含率s ε得0.00.10.20.30.40.50.60.7Transient solid holdup, εsP r o b a b i l i t y d e n s i t y d i s t r i bu t i o n0.00.10.20.30.40.50.60.7Transient solid holdup, εs0.00.10.20.30.40.50.60.7Transient solid holdup, εs0.00.20.40.60.8 1.00.5520.5560.560A v e r a g e s o l i d h o l d u p o f p a r t i c l ea g g l o m e r a t e s , εa gRadial position, r /R0.00.10.20.30.40.50.60.70.80.9 1.00.00.20.40.00.20.40.00.20.40.6Radial position, r /RV o l u m e f r a c t i o n o fp a r t i c l e a g g l o m e r a t e s , f a gag s 0.630.05.f ε=− (12)通过大量实验数据验证关联曲线,结果如图8所示,其相对误差小于12%.图8 颗粒聚团体积分率实验值与估计值对比Fig.8 Comparison of particle agglomerates volume fractionbetween experimental data and prediction3.5 颗粒聚团产生频率与持续时间F ag 反映了颗粒聚团的生成频率. 随操作条件和径向位置改变,颗粒聚团产生频率变化,变化范围为0.02∼1.6 Hz ,如图9所示. 流化床内颗粒聚团不断合并、破碎,操作条件变化会影响聚团合并和破碎的速率. 总体来看,随气速增加,颗粒聚团的产生频率逐渐降低,这是由于气速增加使流化床中颗粒形成环−核结构,在中心处有大量气泡破碎,颗粒受到气泡的张力易产生聚团,且颗粒聚团的产生频率趋于稳定. 在边壁处聚团产生频率急剧下降,这是由于边壁效应导致边壁处气泡较少,因此聚团数减少. 但从图7可看出边壁处颗粒聚团的体积分率增加,表明边壁处颗粒聚团尺寸变大,Liu 等[12]在环流反应器的研究中也有类似发现.图9 颗粒聚团频率沿径向的分布Fig.9 Radial distribution of frequency of particle agglomerates通过关联颗粒聚团产生频率F ag 与时均固含率s ε得2ag s s 19.67.03 1.19.F εε=−++ (13)通过大量实验数据验证关联曲线,结果如图10所示,其相对误差小于10%.图10 颗粒聚团频率实验值与估计值对比Fig.10 Comparison of particle agglomerates frequencybetween experimental data and prediction颗粒聚团持续时间τag 取决于颗粒聚团的大小和运动速度,其变化范围为0.005∼0.12 s ,如图11所示. 随表观气速增加,颗粒聚团持续时间减小,这是由于表观气速增加使气泡破碎加剧,更多气泡进入乳化相破碎聚团,使颗粒聚团数量和尺寸减少. 边壁处由于边壁效应使颗粒聚团运动速率降低,颗粒聚团的持续时间增加,进一步证实了颗粒聚团尺寸增大. 顶部区域颗粒聚团的持续时间长于底部区域,Cocco 等[9]认为是颗粒聚团在上升过程中不断合并变大所致. 在分布器影响区和过渡区,颗粒聚团持续时间随表观气速增加变化较小,且沿径向分布均匀,表明颗粒聚团在这两个区域尺寸较均匀.图11 颗粒聚团持续时间沿径向的分布Fig.11 Radial distributions of duration time of particle agglomerates4 结 论在气固流化床冷模实验装置中,采用光纤探针测量了不同气速下流化床不同轴、径向位置的固含率信号.0.250.300.350.400.100.150.20V o l u m e f r a c t i o n o f p a r t i c l e a g g l o m e r a t e s , f a gLocal time-averaged solid holdup, εs0.00.10.20.30.40.50.60.70.80.9 1.00.00.51.00120.00.51.01.5Radial position, r /RF r e q u e n c y o f p a r t i c l ea g g l o m e r a t e s , F a g (H z )0.200.250.300.350.400.45F r e q u e n c y o f p a r t i c l e a g g l o m e r a t e s , F a g (H z )Local time-averaged solid holdup, εs0.00.10.20.30.40.50.60.70.80.9 1.00.000.040.000.040.000.040.080.12Radial position, r /RD u r i n g t i m e o fp a r t i c l e a g g l o m e r a t e s , τa g(s )通过对信号进行分析,考察了流化床中聚团相的体积分率和产生频率,得到以下结论:(1)流化床内FCC固含率时间序列信号的概率密度曲线在床层中心附近呈双峰分布,其中,稀疏相固含率的概率密度分布呈对数正态分布;稠密相固含率的概率密度分布近似呈高斯分布.(2)表观气速和径向位置对颗粒聚团固含率影响很小,可视为定值.(3)颗粒聚团的体积分率随表观气速增加呈先降低后升高的趋势,变化范围为0.01∼0.5.(4)颗粒聚团的产生频率变化范围为0.02∼1.6 Hz,并随表观气速增加而降低. 持续时间变化范围为0.005∼0.12 s,边壁处颗粒聚团持续时间略增加,颗粒聚团尺寸变大.符号表:d 两根光纤探头的间距 (mm)d p 颗粒粒度(μm)f1稀疏相相分率f ag聚团相的体积分率 (%)F ag颗粒聚团频率 (Hz)h 静床高度 (mm)n颗粒聚团数r 径向位置 (mm)R 床体半径 (mm)r/R 无量纲径向位置S 固含率信号的斜度t 时间序列 (s)t1 气泡到达下探头的时刻 (s)t2 气泡到达上探头的时刻 (s)t T 采样时间 (s)u g表观气速 (m/s)V 光纤探针瞬时电压 (V)z 轴向高度 (mm)εag 颗粒聚团平均固含率εs 瞬时固含率sε平均固含率sbε稀疏相平均固含率sdε稠密相平均固含率εs,dm稀疏、稠密相的分界值sbμ稀疏相固含率的数学期望sdμ稠密相固含率的数学期望sbσ稀疏相固含率的标准偏差sdσ稠密相固含率的标准偏差τag 颗粒聚团的持续时间参考文献:[1] 郭慕孙,李洪钟. 流态化手册 [M]. 北京:化学工业出版社, 2008.897−898.[2] Wei F, Jin Y, Yu Z Q. The Visualization of Macro Structure ofGas−Solids Suspension in High Density CFB [A]. Avidan A A.Proceedings of Circulating Fluidized Bed Technology IV [C]. New York: American Institute of Chemical Engineers (AIChE), 1994.588−593.[3] Horio M, Kuroki H. Three-dimensional Flow Visualization ofDilutely Dispersed Solids in Bubbling and Circulating Fluidized Beds [J]. Chem. Eng. Sci., 1994, 49(15): 2413−2421.[4] Toomey R D, Johnstone H F. Gas Fluidization of Solid Particles [J].Chem. Eng. Process., 1952, 48(1): 220−226.[5] Cui H, Mostoufi N, Chaouki J. Gas and Solid between DynamicBubble and Emulsion in Gas-fluidized Beds [J]. Powder Technol., 2001, 120(1/2): 12−20.[6] Lettieri P, Newton D, Yates J G. Homogeneous Bed Expansion ofFCC Catalysts, Influence of Temperature on the Parameters of the Richardson−Zaki Equation [J]. Powder Technol., 2002, 123(1): 221−231.[7] Mostoufi N, Chaouki J. On the Axial Movement of Solids inGas−Solid Fluidized Beds [J]. Transactions of the Institution of Chemical Engineers, 2000, 78(6): 911−920.[8] Mostoufi N, Chaouki J. Flow Structure of the Solids in Gas−SolidFluidized Beds [J]. Chem. Eng. Sci., 2004, 59(20): 4217−4227. [9] Cocco R, Shaffer F, Hays R, et al. Particle Clusters in and aboveFluidized Bed [J]. Powder Technol., 2010, 203(1): 3−11.[10] Sharma A K, Matsen J M, Tuzla K. A Correlation for Solid Fractionin Clusters in Fast-fluidized Beds [A]. Kwauk M, Li J H, Yang W C.Proceedings of the 5th International Conference on Fluidization [C].Beijing: Tsinghua University Press, 2001. 301.[11] Bi H T, Su P C. Local Phase Holdups in Gas−Solids Fluidizationand Transport [J]. AIChE J., 2001, 47(9): 2025−2031.[12] Liu M X, Shen Z Y, Yang L J. Microscale Two-phase FlowStructure in a Modified Gas−Solid Fluidized Bed [J]. Ind. Eng.Chem. Res., 2014, 53(34): 13475−13487.[13] Cui H, Mostoufi N, Chaouki J. Characterization of DynamicGas−Solid Distribution in Fluidized Beds [J]. Chem. Eng. J., 2000, 79(2): 133−143.[14] Bai D, Issangya Y S, Grace J R. Characteristics of Gas SolidsFluidized Beds in Different Flow Regimes [J]. Ind. Eng. Chem.Res., 1999, 38(3): 803−811.Flow Characteristic of Particle Agglomerates in a Gas−Solid Fluidized BedHUANG Ya-hang, LIU Meng-xi, HU Juan[State Key Laboratory of Heavy Oil, China University of Petroleum (Beijing), Beijing 102249, China]Abstract: Transient solid hold-up signals were registered in a cold fluidized bed and statistically analyzed. Particle agglomerates in the emulsion phase were identified from signals and the agglomerate properties were investigated. The volume fraction of the transient solid holdup signals varied from 0.05 to 0.72. Mean solid holdup of particle agglomerates in the emulsion fluctuated in the range of 0.552∼0.562, barely influenced by switch of operation pattern. The volume fraction of the particle agglomerates decreased first and then increased with increasing superficial gas velocity, varying over a range of 0.01∼0.5 with flow regimes. Agglomerate frequency varied over the range of 0.02∼1.6 Hz and the duration time was less than 0.12 s in most cases.Key words: particle agglomerates; solid holdup; volume fraction; frequency; duration time。
第二章循环流化床锅炉流体动力特性循环流化床气-固两相流体动力特性是CFB锅炉性能设计、炉内传热研究及锅炉运行调试的基础。
循环流化床的流体动力特性不仅取决于流化风速、固体颗粒循环流率、气固物性,而且受设备的结构尺寸,包括床径、床高、进出口结构以及运行参数(如温度、压力)的影响,因此在锅炉设计和运行调试前有必要对CFB锅炉的流体动力学有所熟悉和研究。
2.1 气固流态化形式流态化用来描述固体颗粒与流体接触的一种运行形态,是一种使微粒固体通过与气体接触而转变为类似流体状态的操作模式。
气固流态化大致可分为固定床、鼓泡床、湍流床、快速床到气力输送几种形式,见图2-1。
图2-1 流态化过渡形式提高鼓泡床的运行风速,床层流动就转到湍流流化床流型,此时密相床层和悬浮段间的界面变得不很明显,颗粒的向上夹带量明显增加,如再进一步增加风速将会形成快速流态化状态。
由于流态化转变是一个相当复杂的过程,不仅与装置本身有关,而且在很大程度上取决于运行工况的组织、流化颗粒物性等因素。
即使对同一流化床装置,在所有运行工况及颗粒物性稳定的情况下,床层的不同区域亦会呈现出不同的流动型态。
如传统的鼓泡流化床虽属低速流态化范畴,当燃用宽筛分煤粒时,呈现出底部布风板以上的密相鼓泡区和悬浮段的稀相气力输送区域。
燃煤循环流化床虽属高速流态化范畴,但由于底部床料的加速效应和大颗粒从底部循环回送,因而仍然存在着底部的密相区和二次风口以上的相对稀相区,并且在布风板和二次风口之间的区域基本上处于鼓泡流化床和湍流流化床状态,而在二次风口以上才逐步过渡到快速流化床状态。
快速流化床是流态化的一种形式,循环流化床锅炉所具有的许多优点,例如燃料适应性广、NO x排放量低、燃烧效率高、脱硫时石灰石利用率高和给料点较少等,其原因均是由于气固处于快速流态化运动状态。
习惯上人们总是用风速来判别流化状态。
当流化风速超过临界流化风速后,整个床层由固定床过渡到鼓泡床,再继续提高风速就过渡到湍流床和快速循环流化床。
催化裂化装置技术问答第一章第一章催化裂化流态化和催化剂系统1.什么叫固定床、移动床和流化床固体粒子处于堆紧状态,颗粒静止不动的床层叫做固定床。
床层的压降随流体速度的增加而增加。
流体和固体颗粒同时进入反应器。
它们互相接触,一面进行反应,一面颗粒移动。
这种反应床层叫做移动床。
床层颗粒之间脱离接触,颗粒悬浮在流体中,往各个方向运动的床层叫做流化床。
床层高度和空隙率随流速增大而增大,但床层压降基本不随流速而变。
2.什么叫散式流化床固体颗粒脱离接触,但颗粒均匀分布,颗粒间充满流体,无颗粒与流体的集聚状态,此时已具有一些流体特性。
这种反应床层叫做散式流化床。
3.什么叫鼓泡床随着气速增长,固体颗粒脱离接触,但流化介质气体出现集聚相——称为气泡。
此时由于气泡在床层表面处破裂,将部分颗粒带到表面稀相空问,出现床层表面下的密相区与床层表面上稀相空问的稀相区,此时稀相区内含颗粒量较少。
4.什么叫湍动床气速增大到一定限度时,由于气泡不稳定性而使气泡分裂产生更多小气泡,床层内循环加剧,气泡分布较前为均匀,床层由气泡引起的压力波动减小,表面夹带颗粒量大增。
床层表面界面变得模糊不清,但床层密度与固体循环量无关。
在稀相空间的稀相区内由于颗粒浓度增大,在细粉颗粒较多时出现固体颗粒聚集现象也称絮团。
工业上流化床再生器属此种。
5.什么叫快速床气速再增大使密相床层要靠固体循环量来维持,若无固体循环量,密相床层就全被气体带走。
气体夹带固体达到饱和夹带量,此时已达到快速床。
在快速床阶段密相出现大量絮团的颗粒聚集体,密相床层密度与循环量有密切关系。
催化裂化装置中的烧焦罐操作就属于快速床。
6.什么叫输送床靠循环量也无法维持床层,已达到气力输送状态,称为输送床。
提升管反应器就属于输送床流化。
7.催化裂化装置的流态化系统可以分为哪几种(1)在高速流化床中,床层的底部由于催化剂被加速,滑落系数增大,催化剂的密度高于上部。
在床层的中部,催化剂的密度基本上不随高度变化。
第六章 固定床反应器1.凡是流体通过不动的固体物料所形成的床层而进行反应的装置都称作_______。
(固定床反应器)2.固定床中催化剂不易磨损是一大优点,但更主要的是床层内流体的流动接近于_______,因此与返混式的反应器相比,可用较少量的催化剂和较小的反应器容积来获得较大的生产能力。
(平推流)3.固定床中催化剂不易磨损是一大优点,但更主要的是床层内流体的流动接近于平推流,因此与返混式的反应器相比,可用_______的催化剂和_______的反应器容积来获得较大的生产能力。
(较少量、较小)4.目前描述固定床反应器的数学模型可分为_______和_______的两大类。
(拟均相、非均相)5.描述固定床反应器的拟均相模型忽略了粒子与流体之间_______与_______的差别。
(温度、浓度)6.描述固定床反应器的数学模型,忽略了粒子与流体之间温度与浓度的差别的模型称之为_______。
(拟均相模型)7.描述固定床反应器的数学模型,考虑了粒子与流体之间温度与浓度的差别的模型称之为_______。
(非均相模型)8.描述固定床反应器的拟均相模型,根据流动模式与温差的情况它又可分为平推流与有轴向返混的_______模型,和同时考虑径向混合和径向温差的_______模型。
(一维、二维)9.固定床中颗粒的体积相当直径定义为具有相同体积P V 的球粒子直径,表达式V d =_______。
(3/1)/6(πP V )10.固定床中颗粒的面积相当直径是以外表面P a 相同的球形粒子的直径,表达式a d =_______。
(π/P a ) 11.固定床中颗粒的比表面相当直径是以相同的比表面V S 的球形粒子直径来表示,表达式S d =_______。
(V S /6) 12.对于非球形粒子,其外表面积P a 必大于同体积球形粒子的外表面积S a ,故可定义颗粒的形状系数=S ϕ_______。
(P Sa a /) 13.颗粒的形状系数S ϕ对于球体而言,=S ϕ_______,对于其他形状的颗粒S ϕ_______。
固定床:当气体以较小的速度流过固定床时,流动气体的上升阻力不致使颗粒的运动状态发生变化,床高维持不变;床层压降随流速对数增大而增大。
流化床:固体颗粒可以像水等液体一样在设备内有明显的界面,即使设备倾斜,界面仍会保持水平;床层压降不随流速变化(基本不变)。
输送床:固体颗粒在设备内无明显界面;床层压力随流速增大而减小。
流化床和沸腾床可能只是叫法上不同。
流化床,也就是沸腾床,接触面大,传热传质效率高,时空产率高,但返混严重。
需要注意的是不能堵塞气体分布器,堵了很麻烦的。
固定床和移动床比较适合气-气、气-液和液-液反应,床层本身作为[wiki]催化剂[/wiki],优点是返混小,固相带出少,分离简单。
流化床的床型是设计中很重要的,与反应体系的匹配要求比较高。
此外,操作中的气速、带出量、与配套的旋风等分离设备设计比较严格。
流化床的传热和破汽泡、沟流措施也是研究比较多的。
固定床反应器是一种被广泛采用的多相催化反应器,反应器内填充有固定不动的固体颗粒,可以是固体催化剂也可以是固体反应物.例如管式固定床反应器,管内装催化剂,管内装催化剂,反应物料自上而下通过床层,管间为载热体与管内反应物进行换热,以维持所需的温度条件.此外,固定床反应器也可用于气固及液固非催化反应.沸腾床是流化床的一种,固体在流化床反应器内流动,流体和固体颗粒所构成的床层犹如沸腾的液体. 沸腾床反应器下部设有分布板,板上放固体颗粒,流体自分布板下送入,当流体速度达到一定数值后,固体颗粒开始松动,再增大流速就进入流化状态.反应器内一般设有挡板,换热器,及流体与固体分离装置等内部部件.移动床与固定床相似,不同的是固体颗粒自顶部连续加入,由底部卸出.沸腾床因为固体处于运动状态,反应或传热效果好,但动力消耗大,而且在煤调湿中粉尘携带量大.固定床:固定床反应器又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。
固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。
2.2.4流体在固定床中的流动特性
(一)流体特性
流体在颗粒的空隙中流动很复杂, ∴ 用简单的扩散模型进行模拟。
流动由两部分组成:液体以平均流速沿轴向作理想置换流动;
液体的径向和轴向的混合扩散:分子扩散(层流时)和涡流扩散(湍流时)
根据不同的混合和扩散程度,将两部分迭加。
(二)气体的分布
问题:①分布不均→气流分布不均→物料不同→各处不同→沟流、短路。
②较大气流进入反应器之初,带有相当大的动能,分股冲入反应器。
使气体通过床层均匀分布的方法:①使催化剂床层各部位阻力相同,催化剂大小均一,装填注意保证
各部位数量分布;②消除气流初动能和均匀引导:气流入口处设附加导流装置,如在气流入口处装设:分
布头,扩散锥或填入环形、栅板形、球形等惰性填料,或在气流入口处设环形进料管或多口螺旋形进料装
置等。
(三)流体流过固定床的压降(摩擦阻力,局部阻力)
利用在空圆管流动压降公式,合理修正:
a
ftPudlf220
0
~l
管长
~td
管内径
~0u
流体平均流速
在固定床中: ~/l气体在固定床中的流动途径LfLL/
~u
气体在孔道中的真正平均流速代入上式/Ouu
~d
固定床当量直径Sedd132
2
13220
udLff
f
S
L
整理得:
3
2
01LdufSf
m
实验测定:emRff BRfepm1180 fSepGdR
0.4~8.1B
光滑~粗糙