培训系列之8质谱原理与真空检漏
- 格式:ppt
- 大小:4.52 MB
- 文档页数:70
真空泄漏检测方法真空泄漏检测方法引言真空技术在许多应用领域扮演着重要角色,如航天、电子设备制造和化学工程等。
确保真空系统的安全和可靠运行对于这些领域至关重要。
而真空泄漏则是真空系统中常见的问题,因此采用适当的检测方法非常关键。
方法一:气泡检漏法气泡检漏法是一种常用的真空泄漏检测方法,主要用于大型真空系统或外部表面不易检测的装置。
具体步骤如下:1.将试件浸入具有良好润湿性的水槽中。
2.在试件表面均匀涂抹一层薄薄的肥皂水或其他可形成气泡的液体。
3.通过真空泵抽取系统中的气体,观察涂层表面是否冒泡。
4.如果在某些部位冒泡,说明该部位存在泄漏。
气泡检漏法的优点是操作简单,不需要专门的设备,但其缺点是不适用于高真空系统。
方法二:氦质谱检漏法氦质谱检漏法是一种高灵敏度的真空泄漏检测方法,适用于高真空和超高真空系统。
具体步骤如下:1.将氦气注入待检测系统。
2.使用气质谱仪检测系统中是否存在氦气泄漏。
3.如果氦气在某些部位检测到,则该部位存在泄漏。
氦质谱检漏法的优点是能够检测极小的泄漏量,缺点是设备价格较高,操作技术要求较高。
方法三:静态漏率检漏法静态漏率检漏法是一种常用的真空泄漏检测方法,适用于大型真空系统。
具体步骤如下:1.关闭真空系统的所有阀门,记录系统的初始压力。
2.在一定时间内观察系统的压力变化,计算泄漏速率。
3.如果泄漏速率超过设定的阈值,则说明系统存在泄漏。
静态漏率检漏法的优点是能够定量评估泄漏问题,缺点是需要较长的检测时间。
方法四:红外检漏法红外检漏法是一种适用于可见光透明材料的真空泄漏检测方法,如玻璃或有机材料。
具体步骤如下:1.使用红外摄像机或红外热像仪对待检测系统进行拍摄。
2.通过红外辐射检测系统中是否存在泄漏点。
3.如果出现辐射异常的区域,则可能存在泄漏。
红外检漏法的优点是无需接触待检测系统,可实时监测泄漏情况,缺点是需要专门的设备。
结论根据需求和实际情况,可以选择适合的真空泄漏检测方法。
第四部分小结参加工作以来,就与氦质谱检漏仪密切相关,以前是学薄膜沉积的,在学专业课的时候学了一些有关质谱知识。
三年来,逐渐了解国内外各种HLD。
我觉得其原理大致相同,无非都是靠磁分析器偏转,有 90 度偏转的,如VARIAN,(最近推出的 VS 系统是 135 度偏转)有 180 度偏转的,如ALCATEL, LEYBOLD, INFICON,但 ALCATEL 的是纯 180 度偏转,而后两者是 180 双方向聚焦的,在磁钢上略有差别,后两者是 X,Y 双方向聚焦。
其实在HLD 的质谱室上,国内制造水平不必欧美差,只是在原材料及表面处理工艺上逊于欧美,所以国内的 HLD 发展缓慢。
另外由于国内制造的小型分子泵质量不敢恭维,国内各厂家都是通过购买进口分子泵来组装检漏仪产品。
如:合肥的皖仪等厂家。
分子泵开不同的口,可以得到不同的压缩比,所以国产 HLD 的指标受分子泵因素影响较大。
曾有一位做 HLD 的前辈说过, HLD 的发展很大成度上依赖于分子泵的发展。
再有就是自动化程度上,这方面比国外差太远。
INFICON 的液晶屏菜单设计的很不错,简洁清楚,什么画指标等都可以在仪器上显示,而 ALCATEL 就没有。
真空室检漏的原理和方法
真空室检漏的原理是通过检测真空室内的气体流量或压力变化,来确定是否存在漏气现象。
如果真空室存在漏气,那么气体将从漏气处流入真空室,导致真空室内压力升高或降低,或者导致气体流量异常。
真空室检漏的方法有以下几种:
1. 压差法:将真空室密封后,测量其初始压力和经过一段时间后的压力,如果压力差超过了一定范围,则说明存在漏气。
2. 气泡法:在真空室内充入一定量的水或其他液体,然后密封真空室并抽真空,观察液体中是否出现气泡,如果有气泡出现则说明存在漏气。
3. 灵敏度法:利用高灵敏度的气体检测器检测真空室内的气体浓度,如果气体浓度超过了一定范围,则说明存在漏气。
4. 声波法:利用声波检测器检测真空室周围是否存在异常的声波信号,如果存在异常信号则说明存在漏气。
以上是真空室检漏的原理和几种常见方法,不同的方法适用于不同的应用场景和检测对象,需要根据实际情况选择适合的检漏方法。
真空检漏[简介]: 1.概漏的基本概念真空检漏就是检测真空系统的漏气部位及其大小的过程。
漏气也叫实漏,是气体通过系统上的漏孔或间隙从高压侧流到低压侧的现象。
虚漏,是相对实漏而言的一种物理现象。
这种现象是由于材料放气、解吸、凝结气体的再蒸发、气体通过器壁的渗透及系统内死空间中气体的流出等原因引起真空系统中气体压力升高的现象。
二、检漏仪器用于检漏的仪器有氦质谱检漏仪、卤素检漏仪、高频火花检漏器、气敏半导体检漏仪及用于质谱分析的各种质谱计。
这里主要介绍氦质谱检漏仪、卤素检漏仪、高频火花检漏器的工作原理、结构及国产检漏仪器的技术性能。
1.氦质谱检漏仪氮质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。
是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。
氦质谱检漏仪是磁偏转型的质谱分析计。
单级磁偏转型仪器灵敏度为lO-9~10-12Pam3/s,广泛地用于各种真空系统及零部件的检漏。
双级串联磁偏转型仪器与单级磁偏转型仪器相比较,本底噪声显著减小.其灵敏度可达10-14~10-15Pam3/s,适用于超高真空系统、零部件及元器件的检漏。
逆流氦质谱检漏仪改变了常规型仪器的结构布局,被检件置于检漏仪主抽泵的前级部位,因此具有可在高压力下检漏、不用液氮及质谱室污染小等特点.适用于大漏率、真空卫生较差的真空系统的检漏,其灵敏度可达10-12Pam3/s。
(1工作原理与结构氦质谱检漏仪由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。
①单级磁偏转型氦质谱检漏仪现以HZJ—l型仪器为例.介绍单级磁偏转型氦质谱检漏仪,其结构如图2所示。
在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;第一级放大静电计管和冷阴极电离规。
质谱室的工作原理如图3所示。
在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。
质谱基本原理质谱是一种用于分析化合物结构和确定化合物组成的重要技术,它在生物医药、环境保护、食品安全等领域有着广泛的应用。
质谱的基本原理包括样品的离子化、质谱仪的质量分析和信号检测三个方面。
首先,样品需要经过离子化处理,通常采用电离源将样品分子转化为离子。
电离源常用的有电喷雾电离源(ESI)和化学电离源(CI)。
在电喷雾电离源中,样品通过高压气体雾化成微小液滴,然后通过高电压喷射出来,形成带电离子。
而在化学电离源中,样品分子与化学试剂发生化学反应,生成离子。
这样处理后的样品就可以进入质谱仪进行分析了。
其次,质谱仪的质量分析是质谱技术的核心部分。
质谱仪通常由离子源、质量分析器和检测器组成。
在离子源中,样品离子被加速形成能量较高的离子束,然后进入质量分析器。
质量分析器根据离子的质荷比对其进行分离和测量,最常用的质量分析器包括飞行时间质谱仪(TOF)、四极杆质谱仪和离子阱质谱仪。
不同的质谱仪有着不同的工作原理和适用范围,但都可以实现对样品离子的分析和检测。
最后,质谱仪通过检测器对质谱信号进行检测和记录。
检测器通常采用光电倍增管(PMT)或者光电二极管(PD)等器件,将离子信号转化为电信号进行放大和处理,最终形成质谱图谱。
质谱图谱可以通过质谱数据库进行比对和分析,从而确定样品的成分和结构。
总的来说,质谱技术的基本原理包括样品的离子化、质谱仪的质量分析和信号检测三个方面。
通过这些基本原理,质谱技术可以实现对样品的高灵敏度、高分辨率的分析,为化学、生物和环境领域的研究提供重要的技术支持。
真空检漏原理
真空检漏是指在一定的真空度下,通过检测被测物体的气密性能,以确定其是
否存在漏气现象的一种检测方法。
在工程领域中,真空检漏被广泛应用于航空航天、汽车制造、船舶制造、电子设备、医疗器械等行业。
下面将介绍真空检漏的原理和常见的检测方法。
首先,我们来了解一下真空检漏的原理。
真空检漏的原理是利用被测物体内部
的气体与外部的真空系统之间的气体流动来检测被测物体的漏气情况。
在真空系统中,被测物体内部的气体会通过漏洞或裂缝逸出到外部环境中,这种气体流动会导致真空系统内部的气压发生变化。
通过检测气压的变化,就可以确定被测物体是否存在漏气现象。
其次,我们来介绍一些常见的真空检漏方法。
真空检漏方法主要包括质谱检漏法、氦质谱检漏法、氦充入法和泡沫检漏法等。
其中,质谱检漏法是利用质谱仪对被测物体进行检测,通过检测气体分子的质量来确定漏气点的位置。
氦质谱检漏法是在被测物体内充入氦气,然后利用质谱仪检测氦气的流动情况,以确定漏气点的位置。
氦充入法是将被测物体充入氦气,然后利用氦气检测仪对漏气进行检测。
泡沫检漏法是将被测物体表面涂覆一层泡沫,通过观察泡沫的气泡情况来确定漏气点的位置。
总的来说,真空检漏是一种非常重要的检测方法,它可以帮助我们及时发现被
测物体的漏气问题,从而保障产品的质量和安全性。
在实际应用中,我们需要根据被测物体的特点和检测要求选择合适的检漏方法,并严格按照操作规程进行检测操作,以确保检测结果的准确性和可靠性。
希望本文可以帮助大家更好地了解真空检漏的原理和方法,为工程实践提供一定的参考价值。