第四章 表面活性剂的润湿功能
- 格式:ppt
- 大小:453.00 KB
- 文档页数:40
表面活性剂得润湿性能一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚得毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。
表面活性剂具有渗透作用或润湿作用所谓润湿就是指一种流体被另一种流体从固体表面或固液界面所取代得过程。
润湿过程往往涉及三相,其中至少两相为流体。
1.润湿过程润湿作用就是一个过程。
润湿过程主要分为三类:沾湿、浸湿与铺展。
产生得条件不同。
其能否进行与进行得程度可根据此过程热力学函数变化判断。
在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。
(1)沾湿主要指液-气界面与固-气界面上得气体被液体取代得过程,在此过程中消失得固-气界面得大小与其后形成得固-液界面得大小就是相等得。
如喷洒农药,农药附着于植物得枝叶上。
沾湿附着发生条件:△G A=γSL-γSG-γLG<0W A=γSG-γSL+γLG≥0 (沾湿)式中:γSG、γSL与γLG分别为气-固、液-固与气-液界面得表面张力(2)浸湿浸湿就是指固体浸入液体得过程,原有得固气界面空气被固液取代。
如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△G i=γSL-γSG≤0W i=γSG-γSL≥0 (W i:浸湿功)(3)铺展液体取代固体表面上得气体,固-气界面被固-液界面取代得同时液体表面能够扩展得现象。
铺展发生条件为:△G S=γSL+γLG-γSG≤0S=γSG-γSL-γLG≥0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿与浸湿现象必然能够发生。
从润湿方程可以瞧出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。
2.接触角与润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处得夹角。
接触角与固-液,固-气与液-气表面张力得关系可表示为:γSG-γSL=γLG COS 杨氏方程COS=(γSG-γSL)/γLG加入表面活性剂,γLG↓γSL↓ COS↑↓>90°不润湿<90°润湿越小润湿越好=0°或不存在→铺展将杨氏方程代入W A W i SW A =γLG (1+ COS )≥0 ≤180° W i =γLG COS ≥0 ≤90° S =γLG ( COS-1) ≥0 ≤0° 纤维特性=γSL +γLG COS 前进接触角 由于液体表面曲率,液体在毛细管中提升力大小为2r γLG COS 。
表面活性剂的润湿作用作者:xhh指导教师:作者单位:学科专业:2010年11月摘要表面活性剂是指在溶剂中加入很少量即能显著降低溶剂表面张力,改变体系界面状态的物质。
表面活性剂可以产生润湿或反润湿,乳化或破乳,分散或凝集,起泡或消泡,增溶等一系列作用。
素有"工业味精"之美称,广泛应用于洗涤剂、纺织、皮革、造纸、塑料、橡胶、农药、冶金、矿业、医药、建筑、化妆品等工业。
它是精细化工最重要的产品之一。
表面活性剂能够显著降低体系的表面或表面张力,当浓度超过临界胶束浓度时,在溶液内部形成胶束,从而产生日常生活中的多种作用,其中破乳与乳化作用就是其各种重要作用之一。
表面活性剂的发展十分迅速,其应用领域很广,如食品、制药、纺织、金属加工、石油、建筑等行业。
关键字:表面活性剂、润湿功能、作用原理、影响因素、应用实例目录前言 (4)一、润湿过程 (4)二、表面活性剂的润湿作用 (5)1.在固体表面发生定向吸附 (5)2.提高液体的润湿能力 (5)三、润湿剂 (6)四、表面活性剂在润湿方面的应用 (6)1.矿物的泡沫浮选 (6)(1)定义 (6)(2)浮选法原理 (6)(3)浮选过程 (7)2.金属的防锈与缓蚀 (8)3.织物的防水防油处理 (8)(1)防水处理 (8)(2)防油处理 (8)参考文献: (10)前言润湿广泛存在于自然界的一种现象,最为普通的润湿是固体表面的气体被液体所取代,或是固-液界面上的一种液体被另一种液体取代。
例如:洗涤.印染.润滑.农药喷洒等;还有一些场合往往不希望润湿发生,例如:防水.防油.防锈等。
润湿:是指一种流体被另一种流体从固体表面或固-液界面所取代的过程。
即润湿过程往往涉及三相,其中至少两相为流体。
润湿是一种十分普遍的现象,常见的润湿过程是固体表面的气体被液体取代,或是固-液界面上的一种液体被另一种液体所取代。
例如洗涤、印染、润滑、原油开采等润湿是前提。
但有些场合又要防止润湿,如防水、防油等。
表面活性剂的功能
凡是能吸附在溶液的表面上,较低浓度就能极高的降低表面张力的能力和效率的物质称为表面活性剂。
表面活性剂的分子结构可分为两部分,一部分是亲水基团,另一部分是疏水基团。
表面活性剂的性质主要由亲水基团决定,而亲水基团的结构变化多端,所以总体上可分为两大类:离子型表面活性剂和非离子型表面活性剂。
表面活性剂的功能主要有五类:润湿作用、乳化作用、悬浮分散作用、增溶作用、发泡作用。
1.润湿作用。
所谓润湿就是当固体与液体接触时,原来的固-气和液-气表面消失而形成新的固-液界面的现象。
表面活性剂以极性基团朝向固体,非极性基团朝向气、液体吸附于固体表面,形成定向排列的吸附层,使自由能较高的固体表面被碳氢链覆盖而转化为低能表面,达到改变润湿性能的目的。
2.乳化作用。
乳化作用是指两种不相混溶的液体中的一种以极小的粒子(粒径1-10微米)均匀地分散到另一种液体中形成乳状液的作用。
乳化过程中,表面活性剂可起两种主要作用,一是降低两种液体间界面张力的稳定作用;二是保护作用。
3.悬浮分散作用。
把固体微粒均匀、稳定地分散到液体介质中,形成悬浮体的作用叫做分散作用。
表面活性剂在固体颗粒表面的吸附,能够增加固体微粒重新聚积的能障,降低粒子聚积的倾向,提高分散体系的稳定性。
4.增溶作用。
增溶作用指表面活性剂有增加难溶性或不溶性物质在水中的溶解度的作用。
5.发泡作用。
气体分散在液体中的状态称为气泡。
向含有表面活性剂的水溶液中充气或施以搅拌,可形成被溶液包围的气泡。
表面活性剂的润湿功能1.请画出润湿剂的分子结构示意图,并解释这种结构有何特点?分子结构特点:良好的润湿剂其疏水链应具有侧链的分子结构,且亲水基应位于中部,或者是碳氢链为较短的直链,亲水基位于末端。
2.用防水剂处理过的纤维为什么能防水?织物防水原理:将纤维织物用防水剂进行处理,可使处理后的纤维不表面变为疏水性,防水织物由于表面的疏水性使织物与水之间的接触角θ>90°,在纤维与纤维间形成的“毛细管”中的液面成凸液面,凸液面的表面张力的合力产生的附加压力△P的方向指向液体内部因此有阻止水通过毛细管渗透下来的作用。
3.简述矿物泡沫浮选的原理。
矿物浮选是借气泡浮力来浮游矿石实现矿石和脉石的分离方法。
捕集剂以亲水基吸附于矿粉晶体表面晶格缺陷处或带有相反电荷处作定向排列,疏水基进入水相。
接触角会变大,矿粉有力图从水中逃逸出去的趋势。
一方面当水中加入发泡剂,在通空气时,就会产生气泡。
发泡剂的两亲分子就会在气—液界面作定向排列,将疏水基伸向气泡内而亲水的极性头留在水中。
单分子膜使气泡稳定。
吸附了捕集剂的矿粉由于表面的疏水性,于是就会向气,液界面迁移,与气泡发生“锁合”效应,由起泡剂吸附在气—液界面上形成的单分子膜和捕集剂吸附在固—液界面上的单分子膜可以互相穿透形成的固—液—气三相的稳定接触并将矿粉粘附在气泡上。
这样在浮选过程中气泡就可以依靠浮力把矿粉带到水面上,达到选矿的目的。
4.简述有机缓蚀剂的缓蚀作用。
有机缓蚀剂通常是由电负性较大的O、N、S和P等原子为中心的极性基和C 原于组成的非极性基(如烷基)所构成。
一般,极性基团吸附于金属表面,改变了双电层的结构,提高金属离子化过程的活化能;而非极性基团远离金属表面作定向排布,形成一层疏水的薄膜,成为腐蚀反应有关物质扩散的屏障,这样就使腐蚀反应受到抑制,特别是在腐蚀性强的酸性介质中的缓蚀作用。
5.阳离子表面活性剂水溶液为什么能作选择性堵水剂?在岩石孔隙壁与水接触时往往由于吸附水中的负离子或因自身的解离而使其岩石孔隙壁带负电荷,因此带正电荷的阳离子表面活性剂就很容易以带正电荷的离子头通过静电引力吸附于岩石孔隙壁带负电荷的部位。
表面活性剂的润湿性能一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。
表面活性剂具有渗透作用或润湿作用所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。
润湿过程往往涉及三相,其中至少两相为流体。
1.润湿过程润湿作用是一个过程。
润湿过程主要分为三类:沾湿、浸湿和铺展。
产生的条件不同。
其能否进行和进行的程度可根据此过程热力学函数变化判断。
在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。
(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。
如喷洒农药,农药附着于植物的枝叶上。
沾湿附着发生条件:△G A=γSL-γSG-γLG<0W A=γSG-γSL+γLG≥0 (沾湿)式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。
如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△G i=γSL-γSG≤0W i=γSG-γSL≥0 (W i:浸湿功)(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。
铺展发生条件为:△G S=γSL+γLG-γSG≤0S=γSG-γSL-γLG≥0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。
从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。
2.接触角和润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。
接触角与固-液,固-气和液-气表面张力的关系可表示为:γSG-γSL=γLG COSθ杨氏方程COSθ=(γSG-γSL)/γLG加入表面活性剂,γLG↓γSL↓COSθ↑θ↓θ>90°不润湿θ<90°润湿θ越小润湿越好θ=0°或不存在→铺展将杨氏方程代入W A W i SW A =γLG (1+ COS θ)≥0 θ≤180°W i =γLG COS θ ≥0 θ≤90°S =γLG ( COS θ-1) ≥0 θ≤0°纤维特性γSL +γLG COS θ θ前进接触角由于液体表面曲率,液体在毛细管中提升力大小为2πr γLG COS θ。
表面活性剂的润湿性能一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。
表面活性剂具有渗透作用或润湿作用所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。
润湿过程往往涉及三相,其中至少两相为流体。
1.润湿过程润湿作用是一个过程。
润湿过程主要分为三类:沾湿、浸湿和铺展。
产生的条件不同。
其能否进行和进行的程度可根据此过程热力学函数变化判断。
在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。
(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。
如喷洒农药,农药附着于植物的枝叶上。
沾湿附着发生条件:△G A=γSL-γSG-γLG<0W A=γSG-γSL+γLG≥0 (沾湿)式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。
如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△G i=γSL-γSG≤0W i=γSG-γSL≥0 (W i:浸湿功)(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。
铺展发生条件为:△G S=γSL+γLG-γSG≤0S=γSG-γSL-γLG≥0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。
从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。
2.接触角和润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。
接触角与固-液,固-气和液-气表面张力的关系可表示为:γSG-γSL=γLG COSθ杨氏方程COSθ=(γSG-γSL)/γLG加入表面活性剂,γLG↓γSL↓ COSθ↑θ↓θ>90°不润湿θ<90°润湿θ越小润湿越好θ=0°或不存在→铺展将杨氏方程代入W A W i SW A =γLG (1+ COS θ)≥0 θ≤180° W i =γLG COS θ ≥0 θ≤90° S =γLG ( COS θ-1) ≥0 θ≤0° 纤维特性=γSL +γLG COS θ θ前进接触角 由于液体表面曲率,液体在毛细管中提升力大小为2πr γLG COS θ。
表面活性剂的主要功能(一)润湿作用当固体与液体接触时,原来的固/气、液/气界面消失而形成了新的固/液界面,这一过程称为润湿。
如纺织纤维是一种多孔性物质,有着巨大的表面,当溶液沿着纤维铺展时,会进入纤维间的空隙,并将空气驱赶出去,把原来的空气/纤维界面变成液体/纤维界面,就是一个典型的润湿过程;而溶液同时会进入纤维内部,这一过程则称为渗透。
帮助润湿和渗透作用发生的表面活性剂称为润湿剂和渗透剂。
把不同液体滴在同一固体表面,可以看到两种不同的现象。
一种是液滴很快在固体表面铺展开形成液∕固新界面,这种情况叫润湿,如图(a)和图(b)所示。
把气∕液界面通过液体与固∕液界面之间的夹角称为接触角,可以看出在润湿的情况下接触角小于90°。
另一种情况是液体不在固体表面上铺展,而是在固体表面缩成一液珠,如把水滴加到固体石蜡表面所形成的现象,这种情况叫不润湿,如图(c)和图(d)所示,此时的接触角大于90°。
通常可通过液体在固体表面受力达到平衡时所形成的接触角的大小来判断润湿或不润湿。
当在水滴中加入表面活性剂时,由于表面活性剂具有降低气∕液界面张力和液/固界面张力的作用,会改变上述受力关系,导致水滴可以在石蜡表面铺展,由不润湿变为润湿。
(二)乳化作用乳化作用是指两种互不相溶液的液体(如油和水),其中一种液体以极小的粒子(粒径为10-8~10-5m)均匀地分散到另一种液体中形成乳状液的作用。
把油滴分散到水中称为水包油型乳状液(O/W),水滴分散到油中则称为油包水型乳状液体(W/O)。
把能帮助乳化作用的表面活性剂称为乳化剂。
作乳化剂使用的表面活性剂有稳定和保护两种作用。
(1)稳定作用乳化剂有降低两种液体间界面张力而使混合体系达到稳定的作用。
因为当油(或水)在水(或油)中分散成许多微小粒子时,扩大了它们之间的接触面积,导致体系能位增加而处于不稳定状态。
当加入乳化剂时,乳化剂分子的亲油基吸附在油滴微粒表面而亲水基伸入水中,并在油滴表面定向排列形成一层亲水性分子膜,使油∕水界面张力降低,降低了体系的能位并且减少了油滴间吸引力,防止油滴聚集后重新分为两层。
表面活性剂的润湿性能一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。
表面活性剂具有渗透作用或润湿作用所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。
润湿过程往往涉及三相,其中至少两相为流体。
1.润湿过程润湿作用是一个过程。
润湿过程主要分为三类:沾湿、浸湿和铺展。
产生的条件不同。
其能否进行和进行的程度可根据此过程热力学函数变化判断。
在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。
(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。
如喷洒农药,农药附着于植物的枝叶上。
沾湿附着发生条件:△G A=γSL-γSG-γLG<0W A=γSG-γSL+γLG≥0 (沾湿)式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。
如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△G i=γSL-γSG≤0W i=γSG-γSL≥0 (W i:浸湿功)(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。
铺展发生条件为:△G S=γSL+γLG-γSG≤0S=γSG-γSL-γLG≥0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。
从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越γLG COS θ γSG θ S γSL 有利。
2. 接触角和润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。
接触角与固-液,固-气和液-气表面张力的关系可表示为: γSG -γSL =γLG COS θ 杨氏方程 COS θ=(γSG -γSL )/γLG加入表面活性剂,γLG ↓ γSL ↓ COS θ↑ θ↓θ>90°不润湿 θ<90°润湿 θ越小润湿越好 θ=0°或不存在→铺展将杨氏方程代入W A W i SW A =γLG (1+ COS θ)≥0 θ≤180° W i =γLG COS θ ≥0 θ≤90° S =γLG ( COS θ-1) ≥0 θ≤0° 纤维特性2r γSG =γSL +γLG COS θ θ前进接触角由于液体表面曲率,液体在毛细管中提升力大小 L 为2πr γLG COS θ。
固体表面上的原子或分子的价键力是未饱和的,与内部原子或分子比较有多余的能量。
所以,固体表面与液体接触时,其表面能往往会减小。
通常,暴露在空气中的固体表面积总是吸附气体的,当它与液体接触时,气体如被推斥而离开表面,则固体与液体直接接触,这种现象称为润湿。
一、润湿过程在清洁的玻璃板上滴一滴水,水在玻璃表面上立即铺展开来;而在石蜡上滴一滴水,水则不能铺展而保持滴状,如图1所示。
从水面与固体面的接触点沿水面引切线,切线与固体面之间的夹角θ称为接触角。
水与玻璃的接触角接近于零,而与石蜡的接触角约为1100。
接触角小的固体易为液体润湿,反之,接触角大的固体则不易被液体润湿。
因此,接触角的大小可作为润湿的直观尺度。
又如,在玻璃板上滴一滴酒精,酒精滴也会在玻璃板上铺展开来,其接触角为零,铺展情形与水的情况没有什么差异。
当固体物质不是玻璃时,其润湿情况有显著不同。
因此,在研究润湿时,接触角是一个重要判据。
为对润湿尺度给以更严格的规定,下面讨论润湿过程。
图1.接触角润湿即固体表面吸附的气体为液体所取代的现象,这就是说发生润湿时,固一气界面消失,形成新的固-液界面。
在这种过程中能量(自由能)必发生变化,自由能变量的大小可作为润湿作用的尺度。
固一气界面消失,新的固-液界面产生有多种方式,所以润湿的类型也相应有多种。
图2为三种类型润湿。
图2(a)为铺展润湿,水、酒精等在玻璃表面上铺展即为这种铺展润湿。
发生这种润湿时能量变化由式一决定:(式一)式中y s——固体的表面张力;Y L——液体的表面张力;Y SL——固体和液体的界面张力;W S——铺展功,亦称做铺展系数。
W S的物理意义从图可以清楚地看出:在固体表面上铺展的液体膜,在逆过程中减少单位面积所需的能量。
经过这种过程后,固体产生lcm2的新表面,同时消失1cm2液体表面和lcm2固-液界面,所以从式一由表面张力和界面张力立即算出W s。
在发生这种润湿的过程中,释放出的能量和W s相等,W s≥0时发生润湿。