通俗的说,就是在已经知道过程“现在”的条 件下,其“将来”不依赖于“过去”。
2019/3/7
知识管理与数据分析实验室
7
马尔科夫链
• 时间和状态都离散的马尔科夫过程称为马尔科夫 链 • 记作{Xn = X(n), n = 0,1,2,…} – 在时间集T1 = {0,1,2,…}上对离散状态的过程相 继观察的结果 • 链的状态空间记做I = {a1, a2,…}, ai∈R. • 条件概率Pij ( m ,m+n)=P{Xm+n = aj|Xm = ai} 为马氏 链在时刻m处于状态ai条件下,在时刻m+n转移到 状态aj的转移概率。
16
内容框架
1 隐马尔科夫模型的由来
2 隐马尔科夫模型的基本理论及实例
3 隐马尔科夫模型的三个基本算法
4 隐马尔科夫模型的应用
2019/3/7
知识管理与数据分析实验室
17
向前算法及向后算法
向前算法及向后算法主要解决评估问题,即用来 计算给定一个观测值序列O以及一个模型λ时,由 模型λ产生出观测值序列O的概率 。
13
HMM中状态与观测的对应关系示意图
2019/3/7
知识管理与数据分析实验室
14
HMM的基本要素
• 用模型五元组 =( N, M, π ,A,B)用来描述 HMM,或简写为 =(π ,A,B)
2019/3/7
知识管理与数据分析实验室
15
HMM可解决的问题
评估问题 解码问题 学习问题
给定观测序列 O=O1O2O3…Ot 和模型参数 λ=(A,B,π),怎样 有效计算某一观 测序列的概率。 此问题主要用向 前向后算法。
2
隐马尔可夫模型(HMM)的由来