应用光学》第2章课后答案
- 格式:ppt
- 大小:1.21 MB
- 文档页数:39
应⽤光学习题集答案习题第⼀章1、游泳者在⽔中向上仰望,能否感觉整个⽔⾯都是明亮的?(不能,只能感觉到⼀个明亮的圆,圆的⼤⼩与游泳都所在的⽔深有关,设⽔深H ,则明亮圆半径HtgIc R =)2、有时看到窗户玻璃上映射的太阳光特别耀眼,这是否是由于窗玻璃表⾯发⽣了全反射现象?答:是。
3、⼀束在空⽓中波长为nm 3.589=λ的钠黄光从空⽓射⼊⽔中时,它的波长将变为多少?在⽔中观察这束光时其颜⾊会改变吗?答:'λλ=n ,nm 442'=λ不变 4、⼀⾼度为m 7.1的⼈⽴于路灯边(设灯为点光源)m 5.1远处,路灯⾼度为m 5,求⼈的影⼦长度。
答:设影⼦长x ,有:57.15.1=+x x ∴x=0.773m 5、为什么⾦钢⽯⽐磨成相同形状的玻璃仿制品显得更加光彩夺⽬?答:由于⾦钢⽯折射率⼤,所以其临界⾓⼩,⼊射到其中的光线⼤部分都能产⽣全反射。
6、为什么⽇出或⽇落时太阳看起来稍微有些发扁?(300例P1)答:⽇出或⽇落时,太阳位于地平线附近,来⾃太阳顶部、中部和底部的光线射向地球⼤⽓层的⼊射⾓依次增⼤(如图)。
同时,⼤⽓层密度不均匀,折射率⽔接近地⾯⽽逐渐增⼤。
当光线穿过⼤⽓层射向地⾯时,由于n 逐渐增⼤,使其折射⾓逐渐减⼩,光线的传播路径就发⽣了弯曲。
我们沿着光线去看,看到的发光点位置会⽐其实际位置⾼。
另⼀⽅⾯,折射光线的弯曲程度还与⼊射⾓有关。
⼊射⾓越⼤的光线,弯曲越厉害,视觉位置就被抬得越⾼,因为从太阳上部到下部发出的光线,⼊射⾓依次增⼤,下部的视觉位置就依次⽐上部抬⾼的更多。
第⼆章1、如图2-65所⽰,请采⽤作图法求解物体AB的像,设物像位于同⼀种介质空间。
图2-652、如图2-66所⽰,'MM 为⼀薄透镜的光轴,B 为物点,'B 为像点,试采⽤作图法求解薄透镜的主点及焦点的位置。
BM B 'M ′ B M M ′B ' ●●●●(a) (b)图2-663、如图2-67所⽰,已知物、像的⼤⼩及位置,试利⽤图解法求解出焦点的位置,设物、像位于同⼀种介质空间。
2.1 单色平面光照射到一个圆孔上,将其波面分成半波带,求第k 各带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,0r k R hk λ=。
第一半波带半径067.011045001100=⨯⨯⨯==-r k R hk λcm 。
2.2平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像摄像机光圈那样改变大小.问:(1)小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4 m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此光的波长为500nm 。
解:(1)由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,k k r k R hk 414.14105000100=⨯⨯⨯==-λmm 。
K 为奇数时,P 点光强为极大值; K 为偶数时,P 点光强为极小值。
(2)P 点最亮时,由p 点的振幅)(211k k a a a +=,所以当k=1时,k a 为最大所以2828.021==h R d cm 。
2.3 波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5 mm 和1 mm 的透光圆环,接收点P 离光阑1 m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02Rr R k hk +=λ,圆环内径对应的半波带数1)1111(105000)105.0()11(10230211=+⨯⨯=+=--R r R k h λ圆环外径对应的半波带数4)1111(105000)101()11(10230212=+⨯⨯=+=--R r R k h λ 由题意可知,实际仅露出3各半波带,即142)(21a a a a k ≈+=,而1121)(21a a a a ≈+=∞∞所以光强之比4220==∞a a I I k。
应用光学课后习题答案应用光学课后习题答案光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象。
应用光学是将光学原理应用于实际问题的学科,广泛应用于光学仪器、光学通信、光学材料等领域。
在学习应用光学的过程中,习题是巩固知识、提高应用能力的重要途径。
下面是一些应用光学课后习题的答案,希望对大家的学习有所帮助。
1. 一束入射光线从空气射向玻璃,入射角为30°,玻璃的折射率为1.5。
求折射光线的入射角和折射角。
解答:根据折射定律,入射角和折射角之间满足的关系是:n₁sinθ₁ =n₂sinθ₂,其中n₁和n₂分别为两种介质的折射率,θ₁和θ₂分别为入射角和折射角。
已知n₁ = 1(空气的折射率),θ₁ = 30°,n₂ = 1.5(玻璃的折射率),代入折射定律得:1sin30° = 1.5sinθ₂,解得θ₂ ≈ 19.47°。
所以,折射光线的入射角为30°,折射角为19.47°。
2. 一束光线从空气射入水中,入射角为60°,水的折射率为1.33。
求折射光线的入射角和折射角。
解答:同样利用折射定律,已知n₁ = 1(空气的折射率),θ₁ = 60°,n₂ = 1.33(水的折射率),代入折射定律得:1sin60° = 1.33sinθ₂,解得θ₂ ≈ 45.05°。
所以,折射光线的入射角为60°,折射角为45.05°。
3. 一束光线从玻璃射入空气,入射角为45°,玻璃的折射率为1.5。
求折射光线的入射角和折射角。
解答:同样利用折射定律,已知n₁ = 1.5(玻璃的折射率),θ₁ = 45°,n₂ = 1(空气的折射率),代入折射定律得:1.5sin45° = 1sinθ₂,解得θ₂ ≈ 30°。
所以,折射光线的入射角为45°,折射角为30°。
第二章思考题部分暂时略去1、(1)根据物像等光程性,物点像点P 、P ’的光程是相等,于是光线1,2的共轭光线1’,2’一定相交。
(2)根据物像等光程性,物点像点P 、P ’的光程是相等,于是光线1,2的共轭光线1’,2’一定相交。
相等,因为平行光线会聚于焦面同一点是等光程线。
(3)不相等,1,2不是成像光线。
2、(1)球面的半径大于椭球在M 点的曲率半径,这时光线QMQ ’的光程是极小值。
(2)球面的半径大等于椭球在M 点的曲率半径,这时光线QMQ ’的光程是恒定值。
(3)球面的半径小于椭球在M 点的曲率半径,这时光线QMQ ’的光程是极大值。
3、实际上左手还是在左边,右手还是在右边,只不过是对镜外人来讲,似乎是左右颠倒。
左右的区分必须按照同一个标准。
之所以认为“左右颠倒”,是采用不同标准的结果,因为人的左右标准与像中人的左右标准不同,刚好相反。
4、将物体放在凸透镜的焦面上,透镜后放一块与光轴垂直的平面反射镜,最后像成像在物体位置,一样大,倒立,实像;平面镜的位置对像没有任何影响;自聚焦法测量焦距的步骤是:在光轴上放上物体,移动物体,直到物像位置满足上述的关系,这时物距就是焦距。
5、若要用于凹透镜焦距测量,需要改变光路,在凹透镜前面增加一个凸透镜,前后调整凹透镜的位置,使经过凸透镜的像处于凹透镜的焦点上,这是再经过平面镜反射回来的光成一个清晰的像。
6、(1)透镜稍微沿横向平移,像也与光轴同向移动。
(2)将光轴稍微转动,像位置保持不变。
7、(1)镜作横向平移,像点保持不变;(2)镜筒轴线转过角度,这时相当于入射平行光线与光轴有一个夹角,像点在偏离光轴的焦面上。
8、透镜下半部遮住,入射光强减半,像的亮度减半。
9、相等于三个密接透镜,透镜组的焦距倒数是三个密接透镜焦距倒数之和。
10、非望远系统只有一对主面;若超过一对主面,就是望远系统。
11、是的。
部分习题解答与思路4、解:依据凹面镜成像公式,得,21'1rs s -=+ (1)。
物理光学与应⽤光学习题解第⼆章概要第⼆章习题2-1. 如图所⽰,两相⼲平⾏光夹⾓为α,在垂直于⾓平分线的⽅位上放置⼀观察屏,试证明屏上的⼲涉亮条纹间的宽度为: 2 sin2αλ=l 。
2-2. 如图所⽰,两相⼲平⾯光波的传播⽅向与⼲涉场法线的夹⾓分别为0θ和R θ,试求⼲涉场上的⼲涉条纹间距。
2-3. 在杨⽒实验装置中,两⼩孔的间距为0.5mm ,光屏离⼩孔的距离为50cm 。
当以折射率为1.60的透明薄⽚贴住⼩孔S2时,发现屏上的条纹移动了1cm ,试确定该薄⽚的厚度。
2-4. 在双缝实验中,缝间距为0.45mm ,观察屏离缝115cm ,现⽤读数显微镜测得10个条纹(准确地说是11个亮纹或暗纹)之间的距离为15mm ,试求所⽤波长。
⽤⽩光实验时,⼲涉条纹有什么变化?2-5. ⼀波长为0.55m µ的绿光⼊射到间距为0.2mm 的双缝上,求离双缝2m 远处的观察屏上⼲涉条纹的间距。
若双缝距离增加到2mm ,条纹间距⼜是多少?2-6. 波长为0.40m µ~0.76m µ的可见光正⼊射在⼀块厚度为1.2×10-6 m 、折射率为1.5的薄玻璃⽚上,试问从玻璃⽚反射的光中哪些波长的光最强?2-7. 题图绘出了测量铝箔厚度D 的⼲涉装置结构。
两块薄玻璃板尺⼨为75mm ×25mm 。
在钠黄光(λ=0.5893m µ)照明下,从劈尖开始数出60个条纹(准确地说是从劈尖开始数出61个明条纹或暗条纹),相应的距离是30mm ,试求铝箔的厚度D = ?若改⽤绿光照明,从劈尖开始数出100个条纹,其间距离为46.6 mm ,试求这绿光的波长。
2-8. 如图所⽰的尖劈形薄膜,右端厚度h 为0.005cm ,折射率n = 1.5,波长为0.707m µ的光以30°⾓⼊射到上表2-1题⽤图2-2题⽤图2-7题⽤图2-8题⽤图⾯,求在这个⾯上产⽣的条纹数。
王⽂⽣——应⽤光学习题集答案第⼀章1、游泳者在⽔中向上仰望,能否感觉整个⽔⾯都是明亮的?(不能,只能感觉到⼀个明亮的圆,圆的⼤⼩与游泳都所在的⽔深有关,设⽔深H,则明亮圆半径R Htglc)2、有时看到窗户玻璃上映射的太阳光特别耀眼,这是否是由于窗玻璃表⾯发⽣了全反射现象?答:是。
3、⼀束在空⽓中波长为589.3nm的钠黄光从空⽓射⼊⽔中时,它的波长将变为多少?在⽔中观察这束光时其颜⾊会改变吗?答:n —;,' 442nm 不变4、⼀⾼度为1.7m的⼈⽴于路灯边(设灯为点光源)1.5m远处,路灯⾼度为答:设影⼦长x,有:x 17x=0.773mx 1.5 55、为什么⾦钢⽯⽐磨成相同形状的玻璃仿制品显得更加光彩夺⽬?答:由于⾦钢⽯折射率⼤,所以其临界⾓⼩,⼊射到其中的光线⼤部分都能产⽣全反射。
6为什么⽇出或⽇落时太阳看起来稍微有些发扁?(300例P1)答:⽇出或⽇落时,太阳位于地平线附近,来⾃太阳顶部、中部和底部的光线射向地球⼤⽓层的⼊射⾓依次增⼤(如图)。
同时,⼤⽓层密度不均匀,折射率⽔接近地⾯⽽逐渐增⼤。
当光线穿过⼤⽓层射向地⾯时,由于n逐渐增⼤,使其折射⾓逐渐减⼩,光线的传播路径就发⽣了弯曲。
我们沿着光线去看,看到的发光点位置会⽐其实际位置⾼。
另⼀⽅⾯,折射光线的弯曲程度还与⼊射⾓有关。
⼊射⾓越⼤的光线,弯曲越厉害,视觉位置就被抬得越⾼,因为从太阳上部到下部发出的光线,⼊射⾓依次增⼤,下部的视觉位置就依次⽐上部抬⾼的更多。
第⼆章1、如图2-65所⽰,请采⽤作图法求解物体AB的像,设物像位于同⼀种介质空间。
图2-652、如图2-66所⽰,MM '为⼀薄透镜的光轴,B为物点,B'为像点,试采⽤作图法求解薄透镜的主点及焦点的位置。
B'(a)(b)图 2 -663、如图2-67所⽰,已知物、像的⼤⼩及位置,试利⽤图解法求解出焦点的位置,设物、像位于同⼀种介质空间。
图2 -674、已知⼀对共轭点B, B'的位置和系统像⽅焦点F'的位置,如图2-68所⽰,假定物像空间介质的折射率相同,试⽤作图法求出该系统的物、像⽅主平⾯的位置及其物⽅焦点位置。
总复习第一章 几何光学的基本定律 返回内容提要有关光传播路径的定律是本章的主要问题。
折射定律(光学不变量)及其矢量形式反射定律(是折射定律当时的特殊情况)费马原理(极端光程定律),由费马原理导出折射定律和反射定律(实、虚)物空间、像空间概念 完善成像条件(等光程条件)及特例第二章 球面与球面系统 返回内容提要球面系统仅对细小平面以细光束成完善像基本公式:阿贝不变量放大率及其关系:拉氏不变量反射球面的有关公式由可得。
第三章 平面与平面系统返回内容提要平面镜成镜像夹角为 α 的双平面镜的二次像特征 平行平板引起的轴向位移反射棱镜的展开,结构常数,棱镜转像系统折射棱镜的最小偏角,光楔与双光楔关键问题:坐标系判断,奇次反射成像像,偶次反射成一致像,并考虑屋脊的作用。
第四章 理想光学系统返回内容提要主点、主平面,焦点、焦平面,节点、节平面的概念高斯公式与牛顿公式:当时化为,并有三种放大率,,拉氏不变量,,厚透镜:看成两光组组合。
++组合:间隔小时为正光焦度,增大后可变成望远镜,间隔更大时为负光焦度。
--组合:总是负光焦度 +-组合:可得到长焦距短工作距离、短焦距长工作距离系统,其中负弯月形透镜可在间隔增大时变 成望远镜,间隔更大时为正光焦度。
第五章 光学系统中的光束限制 返回内容提要本部分应与典型光学系统部分相结合进行复习。
孔阑,入瞳,出瞳;视阑,入窗,出窗;孔径角、视场角及其作用 拦光,渐晕,渐晕光阑 系统可能存在二个渐晕光阑,一个拦下光线,一个拦上光线 对准平面,景像平面,远景平面,近景平面,景深 物方(像方)远心光路——物方(像方)主光线平行于光轴第六章 光能及其计算 返回内容提要本章重点在于光能有关概念、单位和像面照度计算。
辐射能通量,光通量,光谱光视效率,发光效率 发光强度,光照度,光出射度,光亮度的概念、单位及其关系 光束经反射、折射后亮度的变化,经光学系统的光能损失, 通过光学系统的光通量,像面照度总之,第七章 典型光学系统 返回内容提要本章需要熟练掌握各类典型光学系统的成像原理、放大倍率、光束限制、分辨本领以及显微镜与照明 系统、望远镜与转像系统的光瞳匹配关系,光学系统的外形尺寸计算。
第二章作业参考题解1. P.53习题2-2;解:依题意作图如图。
mm r 50=,n=1.5 ,n '=1 1)对球心处气泡,mm l 50'=,据rnn l n l n -=-''' 将数值代入解得 mm l 50=;2)对球心与前表面间的一半处气泡,mm l 25'=,据rn n l n l n -=-''',将数值代入得 505.115.1251-=-l ,解得:mm l 30=2. P.54习题2-6(c),(d),(f );3. 用作图法求下列各图中物体AB 的像A ′B ′4. P.54习题2-7l 1 l 2rAH H ′F ′ (c ) A ′ F FH H ′ (d )F ′AA ′F 1 (f )F 2′AA ′ F 1′F 2B F AH H ′ F ′ (a )A ′B ′ A ' B 'H H ′ (b )FF ′ ABFA 'B ' H H ′ F ′ABA 'B 'H ′ H (a )F F ′ A B5. P.55习题2-10 解: 据题意有2111-=-=x f β (1) 122-=-=x f β (2) 10012+=x x (3) 联立(1)(2)(3)式解得 )(100mm f -=; 或据 ''f x -=β 和题目条件可以解得 )(100'mm f = (说明:本题也可以用高斯公式求解) 6. P.55习题2-13解:由于两透镜密接,故d = 0 , 所求 ''x f f x L ++--= ,或 'l l L +-=把透镜看成光组,则此为双光组组合问题。
可由∆-='''21f f f 和∆=21f f f 计算组合后系统的焦距:)(31005010050100'''21mm f f f =+⨯-=∆-= ,)(310050100)50(10021mm f f f -=---⨯-=∆= 又 (法一)101''-=-=-=x f f x β, 所以 )(310'101'mm f x =-= ,)(3100010mm f x -== )(3.403312103103100310031000''mm x f f x L ≈=+++=++--=又 (法二)101'-==l l β, 所以 '10l l -= ,代入高斯公式得 1003'1011=--'l l 解得 )(311031001011'mm l =⨯=, )(31100'10mm l l -=-=所以 )(3.40331210311031100'mm l l L ≈=+=+-=7. P.55习题2-18解:据题意透镜为同心透镜,而r 1=50mm ,d =10 mm ,故有 r 2= r 1-d = 40 mm ,所以,由dn r r n dr l H )1()(121-+--=得)(50163.5163.1550010)15163.1()5040(5163.15010mm l H =+--=⨯-+-⨯-=dn r r n dr l H )1()('122-+--=得)(40163.5163.1540010)15163.1()5040(5163.14010'mm l H =+--=⨯-+-⨯-=10)15163.1()5040(5163.1)15163.1(40505163.1)1()()1('221221⨯-+-⨯-⨯⨯=-=-+--=f d n r r n n r nr f)(37168.587163.56.3032665656.2828656.76.3032mm -=-=+-=绿叶对根的情意——学会与父母沟通【教学对象】初中二年级【教学时间】一节课,40分钟 【教学理念分析】人际交往和沟通是个体社会和人格发展成熟的重要标志。
第二章习题2-1. 如图所示,两相干平行光夹角为α,在垂直于角平分线的方位上放置一观察屏,试证明屏上的干涉亮条纹间的宽度为: 2sin2αλ=l 。
2-2. 如图所示,两相干平面光波的传播方向与干涉场法线的 夹角分别为0θ和R θ,试求干涉场上的干涉条纹间距。
2-3. 在杨氏实验装置中,两小孔的间距为0.5mm ,光屏离小孔的距离为50cm 。
当以折射率为1.60的透明薄片贴住小孔S2时,发现屏上的条纹移动了1cm ,试确定该薄片的厚度。
2-4. 在双缝实验中,缝间距为0.45mm ,观察屏离缝115cm ,现用读数显微镜测得10个条纹(准确地说是11个亮纹或暗纹)之间的距离为15mm ,试求所用波长。
用白光实验时,干涉条纹有什么变化?2-5. 一波长为0.55m μ的绿光入射到间距为0.2mm 的双缝上,求离双缝2m 远处的观察屏上干涉条纹的间距。
若双缝距离增加到2mm ,条纹间距又是多少?2-6. 波长为0.40m μ~0.76m μ的可见光正入射在一块厚度为1.2×10-6 m 、折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强?2-7. 题图绘出了测量铝箔厚度D 的干涉装置结构。
两块薄玻璃板尺寸为75mm ×25mm 。
在钠黄光(λ=0.5893m μ)照明下,从劈尖开始数出60个条纹(准确地说是从劈尖开始数出61个明条纹或暗条纹),相应的距离是30mm ,试求铝箔的厚度D = ?若改用绿光照明,从劈尖开始数出100个条纹,其间距离为46.6 mm ,试求这绿光的波长。
2-8. 如图所示的尖劈形薄膜,右端厚度h 为0.005cm ,折射率n = 1.5,波长为0.707m μ的光以30°角入射到上表2-1题用图2-2题用图2-7题用图2-8题用图面,求在这个面上产生的条纹数。
若以两块玻璃片形成的空气尖劈代替,产生多少条条纹?2-9. 利用牛顿环干涉条纹可以测定凹曲面的曲率半径,结构如图所示。
第二章作业:1、一个玻璃球直径为400mm,玻璃折射率为1.5。
球中有两个小气泡,一个在球心,一个在1/2半径处。
沿两气泡连线方向,在球的两侧观察这两个气泡,它们应在什么位置?如在水中观察(水的折射率为1.33)时,它们又应在什么位置?答案:空气中:80mm、200mm;400mm、200mm水中:93.99mm、200mm;320.48mm、200mm3、一个玻璃球直径为60mm,玻璃折射率为1.5,一束平行光射到玻璃球上,其汇聚点在何处?答案:l'=15mm4、一玻璃棒(n=1.5),长500mm,两端面为凸的半球面,半径分别为r1=50mm, r2= -100mm,两球心位于玻璃棒的中心轴线上。
一箭头高y=1mm,垂直位于左端球面顶点之前200mm处,垂直于玻璃棒轴线。
试画出结构简图,并求a)箭头经玻璃棒成像在什么位置(l2')?b)整个玻璃棒的垂轴放大率为多少?答案:l2'= -400mm、-3第三章作业:1、已知一个透镜把物体放大-3⨯,当透镜向物体移近18mm时,物体将被放大-4⨯,试求透镜的焦距。
答案:216mm2、一个薄透镜对某一物体成实像,放大率为-1⨯。
以另一薄透镜紧贴此薄透镜,则见像向透镜方向移动了20mm,放大率为原来的3/4,求两薄透镜的焦距。
答案:40mm、240mm3、一束平行光入射到平凸透镜上,汇聚于透镜后480mm处。
如在此透镜凸面上镀反射膜,则平行光汇聚于透镜前80mm处,求透镜折射率和凸面曲率半径。
答案:1.5、-240mm5、一块厚透镜,n=1.6,r1=120mm,r2=-320mm,d=30mm,试求该透镜的焦距及基点位置。
如果物距l1= -5m,像在何处?如果平行光入射时,使透镜绕一和光轴垂直的轴转动,而要求像点位置不变,问该轴安装在何处?答案:f'=149.27mm、l F'=135.28mm、l F= -144.02mm、l H'= -13.99mm、l H=5.25mm l2'=139.87mm像方节点,即像方主点6、由两薄透镜组成的对无穷远物成像的短焦距物镜,已知其焦距为35mm,筒长T=65mm,后工作距为50mm,求系统结构。
10.一个双凸透镜,两面的曲率半径为r1=15cm, r2=10cm, 透镜玻璃的折射系数n=1.5,透镜厚度d=3cm, 透镜置于空气中,求透镜的主焦点及主平面的位置。
11.凸透镜焦距为10厘米,凹透镜焦距为4厘米,两个透镜相距12厘米,已知物在凸透镜左方20厘米处,计算像的位置和横向放大率。
12.空气中双凹厚透镜的两个凹面半径r1和r2分别为-8厘米和7厘米,沿主轴的厚度为2厘米,玻璃折射率n为1.5。
求焦点和主平面的位置。
13.已知两透镜的像方焦距分别为5厘米和10厘米,两镜光学间隔为10厘米,物离透镜为15厘米,用复合光组法求最后的像的位置。
14.一焦距为20厘米的薄透镜与一焦距为20厘米的薄凹透镜相距6厘米,求(1)复合光组焦点及主平面的位置。
(2)若物放在凸透镜前30厘米处,求像的位置和放大率。