1.3尺规作图作一个角等于已知角课件
- 格式:ppt
- 大小:1.49 MB
- 文档页数:10
2023《用尺规作角》课件•课程简介•尺规作角的基本概念•尺规作角的基本方法•尺规作角的实际应用•总结与回顾•本章重点难点•学习建议和拓展阅读目录01课程简介尺规作图是数学几何中的基本技能之一,也是初中数学的重要知识点。
通过学习用尺规作角,学生可以进一步理解角的概念和性质,为后续学习几何打下基础。
课程背景课程目标理解作图的原理和几何证明的方法。
掌握用尺规作角的方法和步骤。
激发学生对数学几何的兴趣和热情。
培养学生对几何图形的观察和推理能力。
02尺规作角的基本概念尺规作角是指使用无刻度的直尺和圆规进行图形绘制的一种方法。
尺规作角是一种精确的几何作图方法,可以用来构造各种几何图形,如线段、角、平行线等。
尺规作角的定义尺规作角的基本规则包括:以给定的两点为端点,使用直尺连接两点;以给定的点为圆心,使用圆规画弧与另一圆心相交;使用直尺连接两个交点。
在使用尺规作角时,必须按照基本规则进行作图,不能随意绘制,以确保所得图形符合几何原理和规律。
尺规作角的基本规则03尺规作角的基本方法总结词准确、直观、简单。
详细描述通过使用直尺和圆规,可以轻松地作出已知角的角平分线。
首先,将已知角用圆规划分为两个相等的部分,然后使用直尺将两个相等部分的角连接起来,得到的就是已知角的角平分线。
作已知角的角平分线总结词快速、准确、易于理解。
详细描述首先,使用圆规量取已知角的大小,然后使用直尺将量取的长度标记下来。
接下来,将标记的点作为圆心,以相同的半径画出一个弧线,这个弧线会与已知角的两边相交于两点。
最后,连接这两点与已知角的顶点,即可得到已知角的补角。
操作简单、准确、实用性强。
总结词首先,使用圆规量取已知角的大小,然后使用直尺将量取的长度标记下来。
接下来,将标记的点作为圆心,以相同的半径画出一个弧线,这个弧线会与已知角的两边相交于两点。
然后,分别连接这两点与已知角的顶点,即可得到两个等长的线段。
最后,将两条等长的线段分别作为半径,以已知角的顶点为圆心画弧线,这两个弧线相交于一点,这个点就是已知角的余角的顶点。
§1。
3尺规作图(作一个角等于已知角)预习目标:1、掌握尺规作图的基本技能,能完成两种基本作图.2、对于尺规作图,会写出已知、求作和作法3、会利用基本作图完成已知两边及夹角、两角及夹边和三边作三角形预习重点:熟练掌握两种基本作图预习难点:利用基本作图作三角形预习新知任务一:自学课本p18-19 完成下列问题:1、尺规作图是指:任务二:尺规作图:(1)已知∠AOB,作一个角∠AOB(2)、已知:三条线段a、b、c,作⊿ABC,使BC=a,AB=b,AC=b。
任务三:1、已知:线段a、b、∠α求作⊿ABC,使BC=a,AB=b,∠B=α.2、已知:线段a、∠α,∠β求作⊿ABC,使BC=a,∠B=α,∠C=β预习检测1.用尺规作图,不能作出惟一三角形的()A。
已知两角和夹边; B。
已知两边和其中一边的对角C.已知两边和夹角;D.已知两角和其中一角的对边2。
下列画图语言表述正确的是( )A。
延长线段AB至点C,使AB=BC;B.以点O为圆心作弧C。
以点O为圆心,以AC长为半径画弧;D。
在射线OA上截取OB=a,BC=b,则有OC=a+b3、如图3点C在∠AOB的边OB上,用尺规作出了CN∥OA,作图痕迹中,弧FG是( )A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.如图,已知∠ABC边BC上有一点P,过P作平行于AB的直线。
A.PCB。