华东师大初中数学八年级上册勾股定理基础知识讲解精选
- 格式:doc
- 大小:124.87 KB
- 文档页数:5
【同步教育信息】一. 本周教学内容: 勾股定理[教学目标]1. 了解勾股定理的证明,掌握勾股定理的内容,初步会用它进行有关的计算和证明。
2. 通过勾股定理的应用,培养方程的思想和逻辑推理能力。
3. 了解勾股定理的证明,培养学生的爱国情怀。
二. 重点、难点: 勾股定理的应用。
三. 教学过程设计: (一)勾股定理的证明 发现勾股定理的是毕达哥拉斯(约公元前580~公元前500年),他是一个哲学家,也是一个著名的数学家。
我国西周开国时期的商高(公元前1120年)就发现了这个定理。
因而,西方的发现比我国要迟好几百年。
由于古书中记有“勾广三,股修四,径隅五”,因此我国把这个定理简称为勾股定理。
我国古代数学家利用割补、拼接图形计算面积的思路提供了很多种证明方法。
(二)勾股定理:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a b c 222+=。
勾股定理的应用方法:(1)在Rt △ABC 中,∵∠C =90°,∴AB AC BC 222=+又∵AB >0,∴AB AC BC =+22(2)在Rt △ABC 中,∵∠C =90°,∴AC AB BC 222=- 又∵AC >0,∴AC AB BC =-22【典型例题】例1. (1)在Rt △ABC 中,∠C =90°,a =6,b =8,求c 。
(2)在Rt △ABC 中,∠C =90°,a =40,c =41,求b 。
解:(1)在Rt △ABC 中,∵∠C =90°,∴c a b 222=+ 又∵c >0,∴c a b =+=+=22226810 (2)在Rt △ABC 中,∵∠C =90°,∴b c a 222=- 又∵b >0,∴b c a =-=-=222241409例2. 已知直角三角形的两边长AB cm BC cm ==68,,求第三边的长。
解:(1)若AB 、BC 均为直角边AC AB BC =+=+=22226810(2)若BC 为斜边AC BC AB =-=-=-==22228664362827例3. (1)在等腰Rt △ABC 中,∠C =90°,AC :BC :AB =___________; (2)如图所示,∠ACB =90°,∠A =30°,则BC :AC :AB =___________;若AB =8,则AC =___________;又若CD ⊥AB ,则CD =___________。
勾股定理知识点总结及常见题型勾股定理是解直角三角形的一个有力且重要的工具,新课程标准对勾股定理及其逆定理的要求是“掌握”和“应用”,并使用定理解决一些简单的实际问题.勾股定理是每年河南中考必考内容,不单独命题考查,常以综合题的形式展开考查. 在不同版本的初中数学教材中,勾股定理及其逆定理的内容单独成章,全章共分为3节:勾股定理的探索及内容、勾股定理的逆定理和勾股定理的应用.熟练掌握掌握本章内容是每一个学生必须完成的任务. 下面就本章的内容进行知识点梳理和常见题型总结.知识点一 勾股定理的内容直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为b a ,,斜边为c ,那么有:222c b a =+.注意:1. 勾股定理揭示了直角三角形三边之间的数量关系.2. 勾股定理仅用于直角三角形的求解,不能直接用于其它非直角三角形的求解.3. 根据勾股定理,已知直角三角形的两边长,可以求出第三条边的长度.4. 注意上面的公式中“c ”不一定是斜边,所以在用勾股定理解直角三角形时,要注意分类讨论.5. 公式的变形:222222,,a c b b c a b a c -=-=+=.6. 勾股定理的使用对象是直角三角形,所以在应用勾股定理时要先在过程里面说明三角形是直角三角形,还要弄清楚直角边和斜边.若不确定斜边,则要展开分类讨论.例1. 在△ABC 中,已知︒=∠90C ,10,6==c a ,求b . 解:在△ABC 中,∵︒=∠90C ∴△ABC 是直角三角形 ∵10,6==c a∴由勾股定理得:86102222=-=-=a c b .注意: ∵︒=∠90C ,所以C ∠的对边c 就是斜边.习题1. 求下列直角三角形中未知边的长度.图(1)x86图(2)y135习题2. 已知直角三角形的两边长分别为3和4,求第三条边的长度.(提醒:长度为4的边,可能是直角三角形的直角边长,也可能是直角三角形的斜边长,所以本题要分两种情况进行讨论)习题3. 如图(3)所示,求等腰三角形ABC 的面积.图(3)655BA知识点二 勾股定理的证明勾股定理是一个非常重要的定理,它的证明方法很多,但初中阶段最常见的证明方法是拼图法:用几个相同的直角三角板拼成一个几何图形,根据图形之间的面积关系列出等式,从而证明勾股定理.证明一: 如图(4),用4个相同的直角三角板拼成一个边长为c 的大正方形和一个边长为()a b -的小正方形,则有:图(4)abc()22214c a b ab =-+⨯ 展开等式并整理可得:222c b a =+.证明二: 如图(5),用4个相同的直角三角板拼成一个边长为()b a +的大正方形和一个边长为c 的小正方形,则有:图(5)bc ba()22214b a c ab +=+⨯ 展开等式并整理可得:222c b a =+.证明三: 如图(6),用两个相同的直角三角板可以拼成一个上底为a ,下底为b ,高为()b a +的直角梯形,则有:图(6)bc ba()222121212b a c ab +=+⨯ 展开等式并整理可得:222c b a =+.重要结论 与勾股定理有关的面积结论(1)如图(7)所示,以直角三角形的三边为边长,向外作三个正方形,则三个正方形的面积关系为:213S S S +=.图(7)图(8)图(9)(2)如图(8)所示,以直角三角形的三条边为直径向外作三个半圆,则三个半圆的面积关系为:213S S S +=.(3)如图(9)所示,以直角三角形的三条边为斜边长(或直角边长),向外作三个等腰直角三角形,则这三个等腰直角三角形的面积关系为:213S S S +=. (4)如图下页(10)所示,以直角三角形的三条边为边长向外作三个等边三角形,则这三个等边三角形的面积关系为:213S S S +=.图(10)重要结论 在长方体中,能放进木棒的最大长度如图(11)所示,已知长方体的长、宽、高分别为c b a ,,,则长方体中能放进木棒的最大长度为222c b a ++.图(11)c ba D C BA事实上,在Rt △ABC 中,由勾股定理得:2222b a BC AB AC +=+=在Rt △ACD 中,由勾股定理得:22222c b a CD AC AD ++=+=.显然,AD 的长度即为长方体中能放进木棒的最大长度.知识点三 勾股定理的逆定理如果三角形的三边长c b a ,,满足222c b a =+,那么这个三角形是直角三角形.以上便是勾股定理的逆定理,可以用来判断已知三边长度的三角形是否为直角三角形.在应用勾股定理的逆定理时,同学们要注意: (1)已知的条件:某三角形三条边的长度.(2)满足的条件:最长边的平方=最小边的平方+中间边的平方. (3)得到的结论:这个三角形是直角三角形,并且最长边的对角是直角. (4)如果不满足(2),则这个三角形不是直角三角形.勾股定理的逆定理是判断一个三角形是否为直角三角形的一种重要的方法,因此也叫作直角三角形的判定定理,使用方法是: (1)首先确定最长边,不妨设最长边为c ; (2)分别计算处2c 和22b a +:①若222c b a =+,则三角形是直角三角形; ②若222c b a ≠+,则三角形不是直角三角形.勾股数 满足222c b a =+的三个正整数,称为勾股数.常见的勾股数如3 , 4 , 5 ; 6 , 8 ,10 ; 5 , 12 , 13 ; 8 , 15 , 17 ; 7 , 24 , 25. 例2. 如图(12)所示,在四边形ABCD 中,3,2,2,1,====⊥AD CD BC AB BC AB ,求四边形ABCD 的面积.图(12)DCBA分析:勾股定理用于求直角三角形的边长,勾股定理的逆定理用于判断一个三角形是否为直角三角形,题目经常对两个定理同时考查.图形当中如果没有直角三角形,则需要添加辅助线构造直角三角形. 解:连结AC ,∵BC AB ⊥ ∴△ABC 是直角三角形 由勾股定理得:5212222=+=+=BC AB AC∵()93,94525222222===+=+=+AD CD AC∴222AD CD AC =+ ∴△ACD 为直角三角形 ∴5125212121+=⨯⨯+⨯⨯=+=∆∆ACD ABC ABCD S S S 四边形.例3. 若三角形三边长分别为c b a ,,,且满足()44222b a c b a -=-,试判断这个三角形的形状.解:()44222b a c b a -=-()()()()()()()()0222222=---+-++=-+b a c b a b a b a b a b a c b a b a ∵c b a ,,为三角形的三边长 ∴0=-b a 或0222=--b a c ∴b a =或222b a c +=∴这个三角形为等腰三角形或直角三角形.习题4. 如图(13)所示,在△ABC 中,若17,8,6,10====AC AD BC AB ,求△ABC 的面积.图(13)D CBA习题5. 如图(14)所示,在△ABC 中,CD 是AB 边上的高,9,15,20===DB BC AC . (1)求CD 的长;(2)△ABC 是直角三角形吗?为什么?图(14)DCBA知识点四 勾股定理的应用主要有两方面的应用:(1)已知直角三角形的两边长,求第三条边的长;(2)已知一边长,另两条边的长度之间存在着一定的数量关系,通过设未知数利用勾股定理列方程来求解直角三角形. 本章主要问题有:1. 折叠问题习题6. 如图(15)所示,长方形纸片ABCD ,沿折痕AE 折叠边AD ,使点D 落在BC 边上的点F 处,已知24,8==∆ABF S AB ,求EC 的长.图(15)F EDCBA2. 网格问题习题7. 如图(16)所示,设正方形网格的每个小正方形的边长为1,格点△ABC 中,AB 、BC 、AC 三边的长分别为31015、、. (1)请在正方形网格中画出格点△ABC ; (2)格点△ABC 的面积为_________.图(16)3. 判断三角形形状问题习题8. 已知△ABC 的三边c b a ,,满足c b a c b a 262410338222++=+++,求 △ABC 的面积.4. 梯子问题习题9. 一架云梯长25 m,如图(17)那样斜靠在一面墙上,云梯底端离墙7 m. (1)这架云梯的顶端距地面有多高?(2)如果云梯的顶端下滑了4 m,那么它的底部在水平方向也滑动了4 m 吗?图(17)5. 航海问题习题10. 如图(18)所示,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南航行,已知他们离开港口一个半小时后分别到达B 、A 两点,且知AB =30海里,问乙船每小时航行多少海里?图(18)6. 最值问题习题11. 如图(19)所示,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PC PE 的最小值是_________.图(19)PE DCBA。
勾股定理及直角三角形的判定知识要点分析1、勾股定理如果直角三角形两直角边分别为a、b,斜边为c,那么一定有a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的验证勾股定理的证明方法很多,其中大多数是利用面积拼补的方法证明的。
我们也可将勾股定理理解为:以两条直角边分别为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积。
因此,证明勾股定理的关键是想办法把以两条直角边分别为边长的两个正方形作等面积变形,使它能拼成以斜边为边长的正方形。
另外,用拼图的方法,并利用两种方法表示同一个图形的面积也常用来验证勾股定理。
3、如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形,此结论是勾股定理的逆定理(它与勾股定理的条件和结论正好相反)。
其作用是利用边的数量关系判定直角三角形,运用时必须在已知三角形三条边长的情况下。
我们还可以理解为:如果三角形两条短边的平方和等于最长边的平方,那么这个三角形是直角三角形,并且两条短边是直角边,最长边是斜边。
4、勾股数满足条件a2+b2=c2的三个正整数a、b、c称为勾股数。
友情提示:(1)3,4,5是勾股数,又是三个连续正整数,并不是所有三个连续正整数都是勾股数;(2)每组勾股数的相同倍数也是勾股数。
【典型例题】考点一:勾股定理例1:在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若c=34,a:b=8:15,则a=________,b=_________.例2:已知三角形的两边长分别是3、4,如果这个三角形是直角三角形,求第三边的长。
解:考点二:勾股定理的验证例3:如图所示,图(1)是用硬纸板做成的两个直角三角形,两直角边的长分别是a和b,斜边长为c,图(2)是以c为直角边的等腰三角形。
请你开动脑筋,将它们拼成一个能证明勾股定理的图形。
八年级数学上册勾股定理知识点
八年级数学上册的勾股定理主要包括以下几个知识点:
1. 勾股定理的基本原理:勾股定理指出,在直角三角形中,直角边的平方之和等于斜
边的平方。
即a^2+b^2=c^2(其中a、b为直角边,c为斜边)。
2. 判断直角三角形:可以通过勾股定理判断一个三角形是否为直角三角形。
如果一个
三角形的边长满足勾股定理的条件,那么就可以说明它是一个直角三角形。
3. 求解直角三角形的边长:已知一个直角三角形的两个边长,可以利用勾股定理求解
第三个边长。
例如,若已知两直角边的长度为a和b,则斜边的长度c =√(a^2+b^2)。
4. 勾股定理的应用:勾股定理广泛应用于几何推理和问题解决中。
例如,可以利用勾
股定理计算倾斜的直线的斜率、判断是否存在直角、计算三角形的面积等。
5. 勾股定理的推导和证明:在学习勾股定理时,通常也会涉及到对定理的推导和证明。
可以利用几何图形或代数方法进行推导和证明,加深对勾股定理的理解。
以上是八年级数学上册勾股定理的主要知识点。
通过学习这些知识点,可以掌握并应
用勾股定理解决直角三角形相关的问题。
勾股定理(基础)
【学习目标】
1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.
2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.
3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.
【要点梳理】
【高清课堂勾股定理知识要点】
要点一、勾股定理
直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为
222cca??b ba,.
,斜边长为,那么要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.
(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.
(3)理解勾股定理的一些变式:
2??2222222aa??cc?bb?ab??abc2?,, .要点二、勾股定理的证明.
1)所示的正方形方法一:将四个全等的直角三角形拼成如图
(.
)中,所以图(1
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
,所以)中.
图(2
.
)所示,将两个直角三角形拼成直角梯形3方法三:如图(.
,所以.
要点三、勾股定理的作用已知直角三角形的任意两条边长,求第三边;1. 用于解决带有平方关系的证明问题;2.的线段3. .利用勾股定理,作出长为【典型例题】类型一、勾
股定理的直接应用ac b.、∠C的对边分别为、、、∠1、在△ABC中,∠C=90°,∠AB ac b;12=5,,求(1)若=ca b. 24=26,,求(2)若=222c?a?b【思路点拨】利用勾股定理来求未知边长.【答案与解析】222cb?a?a b=5,解:(1)因为△ABC中,∠C=90°,,,=1222222169??144?c?ab?5?12?25c.=.所以所以13222cb?a?c b,=,24==(2)因为△ABC 中,∠C90°,26,22222100?676?576?a?c?b26?24?a=所以10.所以.关键是先弄清楚所求边是直角边还是已知直角三角形的两边长,求第三边长,【总结升华】斜边,再决定用勾股原式还是变式.举一反三:ca b、、∠BC的对边分别为、.°,∠【变式1】在△ABC中,∠C=90A、∠ac b,求=3;)已知(1,=2ca3:5c?:ab,,求=32.(2)已知、【答案】c b,,3=90 解:
(1)∵∠C=°,2=22225??2?c?b3?a∴;
kc3k5?a?,.2()设b,90=°,32=C ∵∠222c?ab?∴.222)(3?32?k)k(5.即.
k=8.解得a?3k?3?8?24c?5k?5?8?40.∴,【变式2】分析探索题:细心观察如图,认真分析各式,然后解答问题.
22;=,SOA= ()+1=2 1222;(=)+1=3,SOA= 2322…=,OA=(S )+1=434(1)请用含有n(n为正整数)的等式S=___________;n(2)推算出OA=______________.102222(3)求出 S+S+S+…+S的值.10123
)+1=n+1
(1【答案】解:(n是正整数)Sn=;
;故答案是:2(2)∵OA=1,122()+1=2OA=,222()+1=3=, OA322()+1=4, =OA42
∴OA=,1=,OA 2=,…OA 3=;∴OA 10故答案是:;
2222 +S+…+S+S(3)S102132222(()()+…+(=)++)
=(1+2+3+ (10)
=.
2222即:S+S+S+…+S .=10321.
类型二、勾股定理的证明
N,⊥AB,垂足为=90°,AM是中线,MNRt2、如图所示,在△ABC中,∠C222AC?AN?BN试说
明.
【答案与解析】
222222MB?BN?MNAN?MN?AM,,⊥AB,所以解:因为MN2222BM?BN?AMAN?所以. MB.MC 因为AM是中线,所以=222ACMC??AM中,,°,所以在Rt△AMC90又因为∠C=
222AC?BNAN?.所以若利用勾股定理进行转化.【总结升华】证明带有平方的问题,主要思想是找到直角三角形,没有直角三角形,常常通过作垂线构造直角三角形,再用勾股定理证明.
n类型三、利用勾股定理作长度为的线段.
、作长为的线段3、、的等腰直角三角形,斜边长就等于,直角边为1【思路点拨】由勾股定理得,直角边为,类似地可作.
的直角三角形斜边长就是和1【答案与解析】作法:如图所示
(1)作直角边为1(单位长度)的等腰直角△ACB,使AB为斜边;
,斜边为;1的 Rt)作以(2AB为一条直角边,另一直角边为
、、、,这样斜边(3)顺次这样做下去,最后做到直角三角形
.
、、、的长度就是
【总结升华】(1)以上作法根据勾股定理均可证明是正确的;(2)取单位长度时可自定,一mcm 等,我们作图时只要取定一个长为单位即可11. 、般习惯用国际标准的单位,如类型四、利用
勾股定理解决实际问题
4.(2016春?淄博期中)有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就
比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.
【思路点拨】根据题中所给的条件可知,竹竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高.
【答案与解析】
解:设门高为x尺,则竹竿长为(x+1)尺,
根据勾股定理可得:
22222x+4=(x+1),即x+16=x+2x+1,
解得:x=7.5,
竹竿高=7.5+1=8.5(尺)
答:门高7.5尺,竹竿高8.5尺.
【总结升华】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.
举一反三:
mm处,则旗杆折处断裂,旗杆顶部落在离底部【变式】如图所示,一旗杆在离地面512断前有
多高?
【答案】
mm,12 ,AC=C90°,BC=5=解:因为旗杆是垂直于地面的,所以∠
22222169AC?5?12?AB?BC?.∴13?AB?169m ( .∴)m )+ BC+AB=513=
18(.∴m∴旗杆折断前的高度为18.【高清课堂勾股定理例3】BAC重合,点ABAD5、如图,长方形纸片ABCD中,已知=8,折叠纸片使边与对角线的长为()AB3EFAEF 落在点处,折痕为,且=,则6
.5 D.4 C.3 B.A.
【答案】D;
【解析】
xx, AF=解:设AB=,则∵△ABE折叠后的图形为△AFE,
∴△ABE≌△AFE.BE=EF,
EC=BC-BE=8-3=5,
在Rt△EFC中,
由勾股定理解得FC=4,
2??224?x8??x6x?.
,解得中,ABCRt在△【总结升华】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解.。