9.6椭圆
- 格式:ppt
- 大小:1.18 MB
- 文档页数:29
椭圆的定义与性质椭圆是在平面上的一个几何图形,它的形状类似于一个椭圆形的椭圆。
椭圆由两个焦点和一条连接这两个焦点的线段组成。
椭圆的定义可以通过以下方式来描述:给定两个不重合的点F1和F2,以及一个正常数a,椭圆是平面上到这两个点F1和F2的距离之和等于2a的所有点P的集合。
椭圆有许多有趣的性质。
首先,椭圆是一个闭合图形,它的形状在两个焦点F1和F2之间变化。
其次,椭圆的中点O是焦点F1和F2之间的中点,并且椭圆的长轴是连接这两个焦点的线段。
长轴的长度为2a,其中a为椭圆的半长径。
椭圆的短轴是与长轴垂直且通过中点O的线段,其长度为2b,其中b为椭圆的半短径。
椭圆的长轴和短轴之间的关系可以通过以下公式表示:长轴的长度的平方等于短轴的长度的平方加上焦距的长度的平方。
椭圆的形状也可以由离心率来描述。
离心率是一个衡量椭圆形状的参数,表示焦点之间的距离与半长径之间的比值。
离心率小于1的椭圆形状更加圆形,而离心率等于1的椭圆是一个特殊的圆,离心率大于1的椭圆形状更加扁平。
除了这些基本的定义和性质之外,椭圆还有许多其他的性质。
例如,椭圆上的任意一点到焦点F1和F2的距离之和等于2a,这被称为椭圆的焦点性质。
椭圆还具有对称性,即关于长轴和短轴都有对称性。
椭圆还可以通过旋转的方式来得到新的椭圆,这被称为椭圆的旋转性质。
总结起来,椭圆是平面上的一个几何图形,由两个焦点和一条连接这两个焦点的线段组成。
椭圆具有闭合性、中点、长轴和短轴、离心率等基本性质。
此外,椭圆还有焦点性质、对称性和旋转性质等其他有趣的性质。
通过研究椭圆的定义和性质,我们可以更深入地理解和应用椭圆在数学和物理等领域中的重要性。
椭圆定义及标准方程椭圆是平面上的一个几何图形,具有许多独特的性质和特点。
在数学和几何学中,椭圆是一个重要的概念,它在许多领域都有着广泛的应用。
本文将介绍椭圆的定义及其标准方程,帮助读者更好地理解和掌握这一概念。
首先,让我们来了解一下椭圆的定义。
椭圆可以被定义为平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个定点F1和F2被称为焦点,常数2a被称为椭圆的主轴长度。
椭圆还有一个重要的参数e,被定义为焦距与主轴长度之比,即e=c/a,其中c为焦距。
当e小于1时,椭圆是一个闭合曲线,当e等于1时,椭圆是一个半开曲线,当e大于1时,椭圆是一个开曲线。
接下来,我们来看一下椭圆的标准方程。
椭圆的标准方程可以表示为x^2/a^2 + y^2/b^2 = 1,其中a和b分别为椭圆的半长轴和半短轴的长度。
根据椭圆的定义,我们可以得出椭圆的标准方程的几何意义,在椭圆上任意一点P(x, y),到两个焦点的距离之和等于常数2a。
根据勾股定理,我们可以得出x^2/a^2 + y^2/b^2 = 1这一标准方程。
除了标准方程外,椭圆还有其他一些常见的方程形式,如参数方程和极坐标方程。
参数方程可以表示为x = acosθ,y = bsinθ,其中θ为参数,a和b同样为椭圆的半长轴和半短轴的长度。
极坐标方程可以表示为r = a(1ecosθ),其中r为极径,θ为极角,e为离心率。
在实际应用中,椭圆有着广泛的应用。
例如,在天文学中,行星的轨道往往是椭圆形的;在工程学中,椭圆的性质被广泛应用于光学、天线设计等领域;在艺术和建筑中,椭圆的形状被广泛运用于设计中。
因此,掌握椭圆的定义及其标准方程对于理解和应用这一概念都具有重要意义。
总之,椭圆是一个重要的几何图形,具有许多独特的性质和特点。
通过了解椭圆的定义及其标准方程,我们可以更好地理解和应用这一概念。
希望本文能够帮助读者对椭圆有一个更清晰的认识,并在相关领域的学习和工作中有所帮助。
椭圆的简单几何性质课件椭圆的简单几何性质椭圆,作为一种常见的几何形状,具有许多有趣的性质和特点。
在这篇文章中,我们将探讨椭圆的一些简单几何性质,帮助读者更好地理解和应用椭圆。
一、椭圆的定义和基本元素椭圆是指平面上到两个固定点F1和F2的距离之和等于常数2a的点的轨迹。
这两个固定点称为焦点,连接两个焦点的线段称为主轴,主轴的中点称为椭圆的中心。
椭圆的两个焦点与中心之间的距离称为焦距,记为c。
椭圆的长轴长度为2a,短轴长度为2b,其中a大于b。
二、椭圆的离心率和焦半径椭圆的离心率是一个重要的参数,用e表示。
离心率的定义是焦距与长轴长度的比值,即e=c/a。
离心率可以用来描述椭圆的扁平程度,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆趋近于直线。
与离心率相关的概念是焦半径。
焦半径是指从椭圆上的任意一点到两个焦点的距离之和,记为r。
根据焦半径的定义,我们可以得到一个重要的结论:椭圆上的任意一点到两个焦点的距离之和等于2a,即r=2a。
三、椭圆的方程和参数方程椭圆的方程是描述椭圆上的点的数学表达式。
椭圆的标准方程是(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h,k)是椭圆的中心坐标。
根据椭圆的定义,我们可以得到一个重要的性质:椭圆上的任意一点到中心的距离与椭圆的长轴、短轴长度之间存在一定的关系,即(x-h)^2/a^2+(y-k)^2/b^2=1。
除了标准方程,椭圆还可以用参数方程来表示。
参数方程是通过引入一个参数t,将椭圆上的点的坐标表示为x=a*cos(t)+h,y=b*sin(t)+k。
参数方程的优点是可以方便地描述椭圆上的点的运动和变化。
四、椭圆的性质和应用椭圆具有许多有趣的性质和应用。
首先,椭圆是一个闭合曲线,它的形状稳定且对称。
其次,椭圆上的点到两个焦点的距离之和是常数,这个性质可以应用于天文学中的行星轨道计算、卫星轨道设计等领域。
此外,椭圆还有许多与切线、法线、对称性等相关的性质。
椭圆的特性和性质总结
椭圆是平面解析几何中的一个重要图形,具有许多特性和性质。
本文将对椭圆的特性和性质进行总结。
1. 定义
椭圆是平面上到两个固定点(焦点)距离之和恒定的点的轨迹。
两个固定点之间的距离称为椭圆的主轴长度,焦点之间的距离为2a,主轴的中点称为椭圆的中心。
2. 方程
椭圆的标准方程为:$\frac{{x^2}}{{a^2}} + \frac{{y^2}}{{b^2}} = 1$,其中a为椭圆的半长轴长度,b为椭圆的半短轴长度。
椭圆
的离心率e定义为$e = \frac{{\sqrt{{a^2 - b^2}}}}{a}$。
3. 特性
- 椭圆是一个闭合曲线,不相交于平面上的任何其他点。
- 椭圆关于x轴和y轴对称。
- 椭圆的离心率决定了其形状,当离心率接近0时,椭圆趋近于圆形;当离心率接近1时,椭圆趋近于长方形。
- 椭圆的周长和面积可以通过特定的公式计算得出。
4. 性质
- 椭圆的焦点到椭圆上任意一点的距离之和等于2a。
- 椭圆的半长轴和半短轴之间的关系可以表示为$a^2 = b^2 +
c^2$,其中c为焦点到中心的距离。
- 椭圆的焦点到切线的距离等于切线与其法线之间的夹角的余切值乘以焦点到中心的距离。
- 椭圆的切线与法线的交点位于椭圆的焦点上。
- 椭圆的离心率e小于1,则椭圆上的任何一点到焦点的距离与到该焦点所引的切线的距离之和等于椭圆的半长轴长度。
以上是对椭圆的特性和性质进行的简要总结,椭圆在数学和物理学中具有广泛的应用,对于进一步研究和探索椭圆的性质具有重要意义。
§9.6椭圆考情考向分析椭圆的定义、标准方程、几何性质通常以填空题形式考查,直线与椭圆的位置关系主要出现在解答题中.1.椭圆的概念平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M|MF1+MF2=2a},F1F2=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1 (a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点顶点坐标A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距F1F2=2c离心率e=ca∈(0,1)a,b,c的关系a2=b2+c2知识拓展点P (x 0,y 0)和椭圆的位置关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) (5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ ) 题组二 教材改编2.[P37习题T4]椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.答案 4或8解析 当焦点在x 轴上时,10-m >m -2>0, 10-m -(m -2)=4,∴m =4. 当焦点在y 轴上时,m -2>10-m >0, m -2-(10-m )=4, ∴m =8. ∴m =4或8.3.[P37习题T5(3)]已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程为________________. 答案 x 236+y 232=1题组三 易错自纠4.若方程x 25-m +y 2m +3=1表示椭圆,则m 的取值范围是________.答案(-3,1)∪(1,5)解析 由方程表示椭圆知⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1.5.椭圆x 29+y 24+k =1的离心率为45,则k 的值为________.答案 -1925或21解析 若a 2=9,b 2=4+k ,则c =5-k ,由c a =45,即5-k 3=45,得k =-1925;若a 2=4+k ,b 2=9,则c =k -5,由c a =45,即k -54+k=45,解得k =21. 6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则椭圆C 的方程为________. 答案 x 23+y 22=1解析 ∵△AF 1B 的周长为43,∴4a =43, ∴a =3,∵离心率为33,∴c =1, ∴b =a 2-c 2=2,∴椭圆C 的方程为x 23+y 22=1.第1课时 椭圆及其性质题型一 椭圆的定义及应用1.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为________. 答案 4解析 椭圆方程变形为y 21+x 214=1,∴椭圆长轴长2a =2,∴△ABF 2的周长为4a =4.2.椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则PF 2=________. 答案 72解析 F 1(-3,0),∵PF 1⊥x 轴, ∴P ⎝⎛⎭⎫-3,±12,∴|PF 1→|=12, ∴|PF 2→|=4-12=72.3.已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则P A +PF 的最大值为________,最小值为________. 答案 6+2 6- 2解析 椭圆方程化为x 29+y 25=1,设F 1是椭圆的右焦点,则F 1(2,0), ∴AF 1=2,∴P A +PF =P A -PF 1+6,又-AF 1≤P A -PF 1≤AF 1(当P ,A ,F 1共线时等号成立), ∴P A +PF ≤6+2,P A +PF ≥6- 2. 思维升华 椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.题型二 椭圆的标准方程命题点1 利用定义法求椭圆的标准方程典例 (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________. 答案 x 264+y 248=1解析 设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)在△ABC 中,A (-4,0),B (4,0),△ABC 的周长是18,则顶点C 的轨迹方程是________________. 答案 x 225+y 29=1(y ≠0)解析 由AC +BC =18-8=10>8知,顶点C 的轨迹是以A ,B 为焦点的椭圆(A ,B ,C 不共线).设其方程为x 2a 2+y 2b 2=1(a >b >0),则a =5,c =4,从而b =3.由A ,B ,C 不共线知y ≠0.故顶点C 的轨迹方程是x 225+y 29=1(y ≠0).命题点2 利用待定系数法求椭圆方程典例 (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝⎛⎭⎫-32,52,(3,5),则椭圆方程为__________. 答案 y 210+x 26=1解析 设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ). 由⎩⎪⎨⎪⎧⎝⎛⎭⎫-322m +⎝⎛⎭⎫522n =1,3m +5n =1, 解得m =16,n =110.∴椭圆方程为y 210+x 26=1.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________________.答案 y 220+x 24=1解析 方法一 椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知2a = (3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.方法二 ∵所求椭圆与椭圆y 225+x 29=1的焦点相同,∴其焦点在y 轴上,且c 2=25-9=16. 设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).∵c 2=16,且c 2=a 2-b 2,故a 2-b 2=16.① 又点(3,-5)在所求椭圆上, ∴(-5)2a 2+(3)2b 2=1,即5a 2+3b2=1.② 由①②得b 2=4,a 2=20,∴所求椭圆的标准方程为y 220+x 24=1.思维升华 (1)求椭圆的标准方程多采用定义法和待定系数法.(2)利用定义法求椭圆方程,要注意条件2a >F 1F 2;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. 跟踪训练 设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若AF 1=3F 1B ,AF 2⊥x 轴,则椭圆E 的方程为_________. 答案 x 2+32y 2=1解析 设点B 的坐标为(x 0,y 0).∵x 2+y 2b2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵AF 1=3F 1B ,∴AF 1→=3F 1B →, ∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-531-b 2,y 0=-b 23. ∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b 23. 将B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y 2b 2=1,得b 2=23. ∴椭圆E 的方程为x 2+32y 2=1.题型三 椭圆的几何性质典例 (1)P 为椭圆x 216+y 215=1上任意一点,EF 为圆N :(x -1)2+y 2=4的任意一条直径,则PE →·PF →的取值范围是________. 答案 [5,21]解析 PE →·PF →=(PN →+NE →)·(PN →+NF →)=(PN →+NE →)·(PN →-NE →)=PN →2-NE →2=|PN →|2-4,因为a -c ≤|PN →|≤a +c ,即3≤|PN →|≤5,所以PE →·PF →的取值范围是[5,21].(2)(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝⎛⎭⎫-3a 2,b 2,C ⎝⎛⎭⎫3a 2,b 2,又F (c,0),则FB →=⎝⎛⎭⎫-3a 2-c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b 24=0,① 又因为b 2=a 2-c 2. 代入①式可化简为c 2a 2=23,则椭圆离心率为e =ca=23=63. 思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些范围问题时,经常用到x ,y 的范围,离心率的范围等不等关系.②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系.(2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,即可得离心率或离心率的范围.跟踪训练 (1) (2017·苏北四市一模)如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.答案5-12解析 因为F (c,0),B 2(0,b ),B 1(0,-b ),A (a,0),所以B 2F →=(c ,-b ),B 1A →=(a ,b ).因为B 2F ⊥AB 1,所以ac -b 2=0,即c 2+ac -a 2=0,故e 2+e -1=0,解得e =-1+52(负值舍去).(2)已知椭圆x 2a 2+y 2b 2=1(a >b >c >0,a 2=b 2+c 2)的左、右焦点分别为F 1,F 2,若以F 2为圆心,b -c 为半径作圆F 2,过椭圆上一点P 作此圆的切线,切点为T ,且PT 的最小值不小于32(a -c ),则椭圆的离心率e 的取值范围是__________. 答案 ⎣⎡⎭⎫35,22解析 因为PT =PF 22-(b -c )2(b >c ),而PF 2的最小值为a -c , 所以PT 的最小值为(a -c )2-(b -c )2.依题意,有(a -c )2-(b -c )2≥32(a -c ),所以(a -c )2≥4(b -c )2,所以a -c ≥2(b -c ), 所以a +c ≥2b ,所以(a +c )2≥4(a 2-c 2), 所以5c 2+2ac -3a 2≥0,所以5e 2+2e -3≥0.① 又b >c ,所以b 2>c 2,所以a 2-c 2>c 2,所以2e 2<1.② 联立①②,得35≤e <22.1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,OM=3,则P 点到椭圆左焦点的距离为________. 答案 4解析 由题意知OM =12PF 2=3,∴PF 2=6,∴PF 1=2a -PF 2=10-6=4.2.(2017·镇江模拟)已知椭圆x 2m +y 2n =1(m >n >0)的左、右焦点分别为F 1,F 2,P 是以椭圆短轴为直径的圆上任意一点,则PF 1→·PF 2→=________. 答案 2n -m解析 方法一 PF 1→·PF 2→=(PO →+OF 1→)·(PO →+OF 2→)=(PO →+OF 1→)·(PO →-OF 1→)=|PO →|2-|OF 1→|2=n -(m -n )=2n -m .方法二 设F 1(-c,0),F 2(c,0),P (x ,y ),则x 2+y 2=n ,PF 1→·PF 2→=(x +c )(x -c )+y 2=x 2+y 2-c 2=n -(m -n )=2n -m .3.(2013·江苏)在平面直角坐标系xOy 中,椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若d 2=6d 1,则椭圆C 的离心率为________. 答案33解析 如图,F (c,0),B (0,b ),则直线BF 的方程为x c +yb=1,即bx +cy -bc =0,d 1=bcb 2+c 2=bc a d 2=a 2c -c =b 2c , 由已知条件d 2=6d 1即b 2c =6bc a ,整理得6b 2+ab -6a 2=0 解得b a =26,∴e =c 2a 2= 1-b 2a 2=33. 4.设F 1,F 2分别为椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上,且|PF 1→+PF 2→|=23,则∠F 1PF 2=________. 答案 π2解析 因为PF 1→+PF 2→=2PO →,O 为坐标原点,|PF 1→+PF 2→|=23,所以PO =3,又OF 1=OF 2=3,所以P ,F 1,F 2在以点O 为圆心的圆上,且F 1F 2为直径,所以∠F 1PF 2=π2.5.设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则PF 1·PF 2的值为________. 答案 15解析 由椭圆方程x 216+y 212=1,可得c 2=4,所以F 1F 2=2c =4,而F 1F 2——→=PF 2→-PF 1→,所以|F 1F 2——→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2——→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2——→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义,得PF 1+PF 2=2a =8,(PF 1+PF 2)2=PF 21+PF 22+2PF 1·PF 2=64,所以34+2PF 1·PF 2=64,所以PF 1·PF 2=15. 6.2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a 1+c 1=a 2+c 2; ②a 1-c 1=a 2-c 2; ③c 1a 1<c 2a 2; ④c 1a 2>a 1c 2.其中正确式子的序号是________. 答案 ②④解析 观察图形可知a 1+c 1>a 2+c 2,即①式不正确;a 1-c 1=a 2-c 2=PF ,即②式正确;由a 1-c 1=a 2-c 2>0,c 1>c 2>0知,a 1-c 1c 1<a 2-c 2c 2,即a 1c 1<a 2c 2,从而c 1a 2>a 1c 2,c 1a 1>c 2a 2,即④式正确,③式不正确.7.焦距是8,离心率等于45的椭圆的标准方程为________________.答案 x 225+y 29=1或y 225+x 29=1解析 由题意知⎩⎪⎨⎪⎧2c =8,c a =45,解得⎩⎪⎨⎪⎧a =5,c =4,又b 2=a 2-c 2,∴b 2=9,当焦点在x 轴上时,椭圆方程为x 225+y 29=1,当焦点在y 轴上时,椭圆方程为y 225+x 29=1.8.已知F 1,F 2为椭圆x 225+y 216=1的左、右焦点,若M 为椭圆上一点,且△MF 1F 2的内切圆的周长等于3π,则满足条件的点M 有________个. 答案 2解析 由椭圆方程x 225+y 216=1可得a 2=25,b 2=16,∴a =5,b =4,c =3.由椭圆的定义可得MF 1+MF 2=2a =10,且F 1F 2=2c =6,∴△MF 1F 2的周长为MF 1+MF 2+F 1F 2=10+6=16. 设△MF 1F 2的内切圆的半径为r , 由题意可得2πr =3π,解得r =32.设M (x 0,y 0), 则12MF F S=12(MF 1+MF 2+F 1F 2)·r =12·F 1F 2·|y 0|, 即12×16×32=12×6·|y 0|,解得|y 0|=4. ∴y 0=±4,∴M (0,4)或(0,-4). 即满足条件的点M 有2个.9.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与椭圆C 2:y 2a 2+x 2b 2=1(a >b >0)相交于A ,B ,C ,D 四点,若椭圆C 1的一个焦点F (-2,0),且四边形ABCD 的面积为163,则椭圆C 1的离心率e 为________. 答案22解析 联立⎩⎨⎧x 2a 2+y 2b 2=1,y 2a 2+x2b 2=1,两式相减得x 2-y 2a 2=x 2-y 2b 2,又a ≠b ,所以x 2=y 2=a 2b 2a 2+b 2, 故四边形ABCD 为正方形,4a 2b 2a 2+b2=163,(*)又由题意知a 2=b 2+2,将其代入(*)式整理得3b 4-2b 2-8=0,所以b 2=2,则a 2=4, 所以椭圆C 的离心率e =22. 10.设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________. 答案733解析 由圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为 d = x 2+(y -1)2=-3y 2-2y +5=-3⎝⎛⎭⎫y +132+163, ∵-1≤y ≤1,∴当y =-13时,d 取最大值433,∴P ,Q 两点间的最大距离为d max +3=733. 11.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0). (1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.解 (1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),依题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4,所以椭圆的标准方程为x 225+y 216=1.(2)易知|y P |=4,又c =3, 所以12F PF S=12|y P |×2c =12×4×6=12. 12.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解 椭圆方程可化为x 2m +y 2mm +3=1,m >0.∵m -m m +3=m (m +2)m +3>0,∴m >mm +3,∴a 2=m ,b 2=mm +3,c =a 2-b 2=m (m +2)m +3. 由e =32,得m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1, ∴a =1,b =12,c =32.∴椭圆的长轴长和短轴长分别为2a =2和2b =1,焦点坐标为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0,四个顶点的坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12.13.已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为________. 答案3-1解析 ∵过F 1的直线MF 1是圆F 2的切线,∴∠F 1MF 2=90°,MF 2=c ,∵F 1F 2=2c ,∴MF 1=3c ,由椭圆定义可得MF 1+MF 2=c +3c =2a ,∴椭圆离心率e =21+3=3-1.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C =________.答案 3解析 在△ABC 中,由正弦定理得sin A +sin B sin C =CB +CAAB ,因为点C 在椭圆上,所以由椭圆定义知CA +CB =2a ,而AB =2c ,所以sin A +sin B sin C =2a 2c =1e=3.15.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是________. 答案 ⎣⎡⎭⎫22,1解析 从椭圆上长轴端点P ′向圆引两条切线P ′A ,P ′B , 则两切线形成的∠AP ′B 最小. 若椭圆C 1上存在点P ,所作圆C 2的两条切线互相垂直,则只需∠AP ′B ≤90°, 即α=∠AP ′O ≤45°, ∴sin α=b a ≤sin 45°=22.又b 2=a 2-c 2,∴a 2≤2c 2,∴e 2≥12,即e ≥22.又0<e <1,∴22≤e <1,即e ∈⎣⎡⎭⎫22,1. 16.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q两点,且PQ ⊥PF 1.(1)若PF 1=2+2,PF 2=2-2,求椭圆的标准方程; (2)若PQ =λPF 1,且34≤λ<43,试确定椭圆离心率e 的取值范围.解 (1)由椭圆的定义知,2a =PF 1+PF 2=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知得PF 1⊥PF 2, 因此2c =F 1F 2=PF 21+PF 22=(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1.故所求椭圆的标准方程为x 24+y 2=1.(2)如图,由PF 1⊥PQ , PQ =λPF 1,得QF 1=PF 21+PQ 2=1+λ2·PF 1.由椭圆的定义知PF 1+PF 2=2a , QF 1+QF 2=2a , 所以PF 1+PQ +QF 1=4a . 于是(1+λ+1+λ2)·PF 1=4a ,解得PF 1=4a1+λ+1+λ2,故PF 2=2a -PF 1=2a (λ+1+λ2-1)1+λ+1+λ2.由勾股定理得PF 21+PF 22=F 1F 22=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎣⎢⎢⎡⎦⎥⎥⎤2a (λ+1+λ2-1)1+λ+1+λ22=4c 2, 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43及1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13,进而12<e 2≤59,即22<e ≤53.。
椭圆的基本概念与性质椭圆是数学上的一个重要概念,它在几何学、天文学等领域有着广泛的应用。
本文将介绍椭圆的基本概念与性质,包括定义、方程、焦点、短轴、长轴等内容,以便读者对椭圆有更深入的了解。
1. 定义椭圆可以定义为平面上到两个固定点的距离之和等于常数的点的集合。
这两个固定点称为焦点,常数称为椭圆的离心率。
2. 方程椭圆的标准方程为(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴的长度。
当a=b时,椭圆退化为一个圆。
3. 焦点与离心率椭圆的焦点是椭圆上到两个焦点的距离之和等于椭圆的长轴长度。
椭圆的离心率是焦点与椭圆的长轴之比,通常用e表示。
当e=0时,椭圆退化为一个圆;当0<e<1时,椭圆的形状是扁平的;当e=1时,椭圆的形状是长条状。
4. 短轴与长轴椭圆的长轴是通过椭圆中心且垂直于短轴的直线段,长度为2a;短轴是通过椭圆中心且垂直于长轴的直线段,长度为2b。
长轴和短轴的长度决定了椭圆的形状。
5. 面积与周长椭圆的面积可以用公式πab来计算,其中π是圆周率。
椭圆的周长没有一个简单的数学公式,但可以用近似公式2π√((a²+b²)/2)来估算。
6. 焦点与直线关系对于一条过椭圆的焦点的直线,该直线与椭圆的两个交点到焦点的距离之和等于椭圆的长轴长度。
这个性质在椭圆的构造和证明中有着重要的应用。
7. 椭圆的投影当一个椭圆被一个平面所截,就会产生一个椭圆的投影。
椭圆的投影可以是一个椭圆、一个圆、一个椭圆的一部分或一个直线段,具体取决于投影平面与椭圆的相对位置。
8. 椭圆与锥面椭圆是一个椭圆锥的截面。
椭圆锥可以由一个两个焦点之间距离不变的点沿着一条直线轨迹旋转而生成,椭圆就是锥面与一个平面的交线。
总结:椭圆是一个重要的数学概念,具有许多独特的性质和应用。
通过了解椭圆的定义、方程、焦点、离心率,以及与直线、投影、锥面的关系,我们对椭圆的基本概念和性质有了更深入的了解。
椭圆的简单几何性质椭圆是一种重要的几何图形,它具有一些独特的性质和特征。
在本文档中,我们将介绍一些椭圆的简单几何性质,包括定义、方程、焦点与准线、长轴和短轴、离心率以及切线等内容。
1. 定义椭圆是平面上的一个闭合曲线,其定义如下:对于给定的两个点F₁ 和F₂ 以及一条固定长度的线段 2a(长轴),满足到椭圆上任意一点的两个焦点到该点的距离之和始终等于 2a(F₁P + F₂P = 2a,其中 P 为椭圆上任意一点)。
2. 方程一般来说,椭圆的方程可以表示为:(x - h)²/a² + (y - k)²/b² = 1其中 (h, k) 为椭圆的中心坐标,a 和 b 分别为长轴和短轴的长度。
3. 焦点与准线椭圆的焦点是定义椭圆的两个特殊点,记作F₁ 和F₂。
它们位于椭圆的长轴上,且到椭圆中心的距离为 c(c² = a² - b²,对于椭圆来说,c < a)。
准线是垂直于长轴且通过中心的直线,可表示为 x = h ± a/e,其中 e 为离心率。
4. 长轴和短轴椭圆的长轴为横坐标轴的长度,并且它是离心率 e 的倒数(2a = 1/e)。
短轴则为纵坐标轴的长度,且它与长轴的关系为 b² = a² - c²。
5. 离心率离心率 e 描述了椭圆形状的独特特征。
在数值上,离心率是一个小于 1 的正实数,可以通过以下公式计算:e = c / a离心率越接近0,椭圆形状越接近于圆形;离心率越接近1,椭圆形状越扁平。
6. 切线椭圆上任意一点的切线是与该点相切且仅与椭圆相交于此点的直线。
切线的斜率可通过直线与椭圆方程联立解得。
一般来说,椭圆有两条切线与其相切。
结论椭圆作为一种重要的几何图形,具有许多简单而重要的性质。
从定义到方程,再到焦点与准线、长轴和短轴、离心率以及切线,椭圆的性质非常丰富。
通过研究这些性质,我们可以更好地理解椭圆的形状和特征,为后续的几何学习奠定基础。
椭圆的基本概念与性质椭圆是一种常见的几何图形,具有许多独特的性质和应用。
本文将介绍椭圆的基本概念和性质,包括定义、标准方程、焦点、直径、离心率、轨道和应用等方面。
1.椭圆的定义椭圆可以定义为平面上到两个固定点(焦点)的距离之和等于常数的点的集合。
这两个固定点称为焦点,常数称为椭圆的离心率。
椭圆也可以视为一个平面上到定点的连线长度之和等于一定长度(主轴)的点的轨迹。
2.椭圆的标准方程以坐标原点为中心的椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b 分别表示椭圆的长短半轴。
可以看出,a表示椭圆离心率对应的焦距长度,b表示椭圆的短半轴长度。
3.焦点和直径椭圆的焦点是椭圆的一个重要属性,它是椭圆离心率定义的核心。
可以通过标准方程中的离心率公式e = c/a(c为焦点到原点的距离),求得焦点的坐标表达式为(c, 0)和(-c, 0)。
椭圆的直径是通过椭圆中心并且同时与椭圆上两个点相交的线段。
对于以坐标原点为中心的椭圆,直径的长度为2a。
4.椭圆的离心率椭圆的离心率是描述椭圆形状的重要指标。
离心率的取值范围为0到1,离心率为0时表示圆形,离心率为1时表示扁平的线段。
椭圆的离心率定义为离心焦距和长半径之比,即e = c/a。
5.椭圆的轨迹椭圆的轨迹是指通过一定规则的运动得到的点所形成的图形。
在天体力学中,行星绕太阳运动的轨迹就是椭圆。
椭圆的轨迹具有许多独特的性质,例如对称性、曲率等。
6.椭圆的应用椭圆在现实生活中有许多重要的应用。
例如,在通信中,为了提高信号传输的质量和距离,卫星轨道通常选择为椭圆轨道。
此外,椭圆也被广泛应用于地理测量、天体力学、光学设计等领域。
总结:椭圆作为几何图形中的重要一员,具有许多独特的概念和性质。
通过本文的介绍,我们了解到椭圆的定义、标准方程、焦点、直径、离心率、轨迹和应用。
对于几何学的学习和实际应用,理解和掌握椭圆的基本概念与性质至关重要。
9。
6双曲线必备知识预案自诊知识梳理1.双曲线的定义平面内与两个定点F1,F2的等于非零常数(小于|F1F2|)的点的轨迹叫作双曲线。
这两个定点叫作,两焦点间的距离叫作.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a〉0,c>0,且a,c为常数.(1)若a c,则点M的轨迹是双曲线;(2)若a c,则点M的轨迹是两条射线;(3)若a c,则点M不存在.2.标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b〉0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b>0)。
3。
双曲线的性质标准方程x2a2−y2b2=1(a〉0,b〉0)y2a2−x2b2=1(a〉0,b〉0)图形续表标准方程x2a2−y2b2=1(a>0,b〉0)y2a2−x2b2=1(a>0,b〉0)性质范围x≥a或x≤-a,y∈Ry≤—a或y≥a,x∈R 对称性对称轴:,对称中心:顶点A1,A2A1,A2渐近线y=±xxx y=±xxx离心率e=xx,e∈(1,+∞)a,b,c的关系c2=实虚轴线段A1A2叫作双曲线的实轴,它的长|A1A2|=;线段B1B2叫作双曲线的虚轴,它的长|B1B2|=;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长1.过双曲线x2a2−y2b2=1(a>0,b〉0)上一点M(x0,y0)的切线方程为x0xa2−y0yb2=1.2.双曲线x2a2−y2b2=1(a>0,b〉0)的左、右焦点分别为F1,F2,点P(x0,y0)为双曲线上任意一点,且不与点F1,F2共线,∠F1PF2=θ,则△F1PF2的面积为b2xxxθ2。
3。
若点P(x0,y0)在双曲线x2a2−y2b2=1(a〉0,b〉0)内,则被点P所平分的中点弦的方程为x0xa2−y0yb2=x02a2−y02b2。
椭圆的知识点公式总结1. 椭圆的基本概念椭圆的基本概念包括:焦点、长轴、短轴、焦距、离心率等。
焦点:椭圆的焦点是一个固定点F,对于任意点P,它到F1和F2(F1和F2称为焦点)的距离之和等于常数2a,即|PF1|+|PF2|=2a,其中a是椭圆的半长轴。
长轴:椭圆的长轴是通过焦点的直线段,且与椭圆的两个焦点在同一条直线上。
短轴:椭圆的短轴是垂直于长轴且通过中心点的直线段。
焦距:焦距是两个焦点之间的距离,通常表示为2ae,其中e为椭圆的离心率。
离心率:椭圆的离心率是一个无单位的常数,它用来衡量椭圆的偏心程度,通常表示为e,e的取值范围是0<e<1。
2. 椭圆的方程椭圆的标准方程通常有两种形式:一般方程和参数方程。
一般方程:椭圆的一般方程为:(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是长轴和短轴的长度。
参数方程:椭圆的参数方程为:x = h + acos(t),y = k + bsin(t),其中t为参数。
3. 椭圆的性质椭圆具有多种性质,包括形状、对称性、焦点、离心率、焦距等。
形状:椭圆是一个闭合曲线,它不断地向两个焦点靠近但永远到不了的轨迹。
对称性:椭圆具有对称性,关于长轴和短轴都有对称中心。
焦点:椭圆的焦点是曲线的重要特征点,对于任意点P到两个焦点的距离之和等于椭圆的长轴长度。
离心率:椭圆的离心率e决定了椭圆的偏心程度,当e=0时,椭圆退化为一个圆。
焦距:椭圆的焦距是两个焦点之间的距离,通常表示为2ae。
4. 椭圆的参数椭圆的参数包括:半长轴a、半短轴b、焦距2ae和离心率e等。
半长轴:椭圆的半长轴是椭圆中心点到椭圆上最远点之间的距离。
半短轴:椭圆的半短轴是椭圆中心点到椭圆上最近点之间的距离。
焦距:椭圆的焦距是两个焦点之间的距离,通常表示为2ae。
离心率:椭圆的离心率e决定了椭圆的偏心程度,当e=0时,椭圆退化为一个圆。
椭圆定义及标准方程椭圆是几何中常见的一种图形,它既可以是水平的,也可以是垂直的。
一般来说,它是一种扁圆形,但在特殊情况下也可以成为类似圆形的形状,这也是它与圆形最大的不同之处。
椭圆的定义可以描述为:椭圆是一系列的点,满足以下公式的集合:$$frac{x^2}{a^2}+frac{y^2}{b^2}=1$$其中$a$和$b$是椭圆长轴和短轴的长度,且$a>b$。
根据上式可求知,椭圆的长轴的方程为:$y=pm asqrt{1-frac{x^2}{a^2}}$,短轴的方程为:$x=pm bsqrt{1-frac{y^2}{b^2}}$,将两式相加即可得到标准椭圆方程:$$frac{x^2}{a^2}+frac{y^2}{b^2}=1$$椭圆具有许多独特的性质,它的长轴和短轴的比值就是它的离心率,若只有长轴,则称椭圆为圆形;若两轴长度相等,则称椭圆为双曲线;若它的一个轴为无限长,则称椭圆为抛物线。
另外,椭圆也是一种平行四边形,它的四边形的边都是相等的,因此,椭圆也可以被称为对称的平行四边形。
从几何上讲,椭圆的特性可以细分为三部分:它的两个焦点、它的长短轴、它的定义方程。
第一,椭圆的两个焦点是椭圆的特征点,它们都位于椭圆的长轴上,它们的距离称为焦距,椭圆的焦距定义为:$2c=a^2-b^2$。
第二,椭圆的长轴和短轴是衡量椭圆形状的重要因素,它们对椭圆的外形有着重要的意义,如果仅仅只有长轴,那么椭圆将会变成圆形,而只有短轴的椭圆将会变成双曲线形状。
第三,椭圆的定义方程也是椭圆的重要特性之一,它直观地定义了椭圆的形状,而上述的“标准椭圆方程”就是椭圆的定义方程。
椭圆既可以被定义为几何学中的一种形状,也可以被用于物理学中的许多其他地方。
比如,它可以用来模拟太阳系中行星运动的轨道,由这种轨道可以推导出物理现象,例如逆行星因子、椭圆形轨道等。
此外,椭圆还可以作为控制机械系统、气动力学系统和电子系统的轨迹,从而让机器更加高效地运转。
椭圆公式大全椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a的点P的轨迹,这两个固定点称为焦点,常数2a称为长轴的长度。
椭圆是一种非常重要的几何形状,在数学和工程领域都有着广泛的应用。
本文将详细介绍椭圆的基本概念和相关公式,希望能够帮助读者更好地理解和运用椭圆。
1. 椭圆的基本概念。
椭圆是一种闭合曲线,具有两个焦点和两个相等的半轴。
椭圆的长轴和短轴分别是通过焦点的直线和垂直于长轴通过中点的直线。
椭圆的离心率e是一个重要的参数,它表示焦点与椭圆中心之间的距离与长轴长度的比值。
当离心率小于1时,椭圆为椭圆形;当离心率等于1时,椭圆为圆形。
2. 椭圆的标准方程。
椭圆的标准方程是一个描述椭圆形状的数学公式,通常写作(x-h)²/a² + (y-k)²/b ² = 1,其中(h, k)为椭圆中心的坐标,a为长半轴的长度,b为短半轴的长度。
通过标准方程,我们可以直观地了解椭圆的形状和大小。
3. 椭圆的参数方程。
除了标准方程外,椭圆还可以用参数方程来描述。
参数方程是一种用参数表示的曲线方程,通常写作x = h + acosθ,y = k + bsinθ,其中θ为参数。
参数方程可以更灵活地描述椭圆的轨迹,适用于一些特殊的情况。
4. 椭圆的面积和周长。
椭圆的面积和周长是椭圆的重要性质,它们的计算公式分别为A = πab和C = 4aE(e),其中A为椭圆的面积,C为椭圆的周长,E(e)为第二类完全椭圆积分。
这些公式可以帮助我们准确地计算椭圆的面积和周长。
5. 椭圆的焦点和直径。
椭圆的焦点是椭圆的特殊点,它们的坐标可以通过椭圆的标准方程或参数方程来求解。
椭圆的直径是通过椭圆中心的直线,并且包含焦点的直线称为主轴,垂直于主轴的直线称为次轴。
椭圆的焦点和直径是椭圆形状的重要特征,对于椭圆的绘制和分析具有重要意义。
6. 椭圆的相关公式。
除了上述基本概念外,椭圆还有许多相关公式,如椭圆的离心率公式、椭圆的焦距公式、椭圆的离心率和长短轴的关系等。
椭圆是数学中一种重要的几何形状,它在各个领域都有广泛的应用。
椭圆的参数是研究和描述椭圆形状的关键,本文将从椭圆的定义开始,逐步解释椭圆的参数知识点。
1. 椭圆的定义和基本要素椭圆可以通过以下方式进行定义:对于给定的两个焦点F1和F2以及一个常数d,椭圆是到F1和F2两点的距离之和等于常数d的所有点的集合。
椭圆的基本要素包括焦点、长轴、短轴和半长轴。
焦点是椭圆的两个特殊点,它们距离椭圆上任意一点的距离之和等于常数d。
长轴是连接两个焦点的直线段,短轴是与长轴垂直且通过椭圆中心的直线段。
半长轴是长轴的一半。
2. 椭圆的参数方程椭圆的参数方程是描述椭圆上的点的坐标的一组方程。
对于给定的半长轴a和半短轴b,椭圆上任意一点的坐标(x, y)可以通过以下参数方程得到:x = a cosθ y = b sinθ其中,θ是与椭圆中心到该点的连线与半长轴的夹角。
3. 椭圆的离心率椭圆的离心率是一个重要的参数,用来描述椭圆的形状。
离心率可以通过以下公式计算:ε = c/a其中,c是焦点到椭圆中心的距离,a是半长轴的长度。
离心率的取值范围是0到1,当离心率为0时,表示椭圆是一个圆;当离心率接近于1时,椭圆的形状趋近于一个细长的椭圆。
4. 椭圆的面积和周长椭圆的面积可以通过以下公式计算:A = π * a * b其中,a和b分别是半长轴和半短轴的长度。
椭圆的周长没有一个简单的数学表达式,但可以通过数值计算的方法得到近似值。
5. 椭圆和圆的关系椭圆和圆是两种特殊的椭圆形状。
当半长轴和半短轴的长度相等时,椭圆就变成了圆。
圆可以看作是一个离心率为0的椭圆。
6. 椭圆的应用椭圆在各个领域都有广泛的应用。
在天体物理学中,行星的轨道被认为是椭圆形状;在工程学中,椭圆的形状被用于设计汽车的车轮、卫星的轨道等;在数学建模中,椭圆可以用来描述一些复杂的现象,如传染病的传播、人口增长等。
椭圆的参数知识点是理解和应用椭圆的基础。
通过对椭圆的定义、参数方程、离心率、面积和周长的了解,我们可以更好地理解椭圆的形状和性质,进而应用于各个实际问题的解决中。
椭圆及其标准方程椭圆几何学是一门古老的学科,它与圆、直线、三角形、多边形等几何图形一起构成了几何学的基础知识体系。
椭圆由于其特殊的形状和良好的几何性质,在物理学、工程学、地理学等领域都有着广泛的应用。
本文主要介绍椭圆的定义、性质及其标准方程。
一、椭圆的定义椭圆是指到两个定点F1和F2的距离之和为常数2a(a>0)的所有点P的集合。
这两个点称为椭圆的焦点,连接两点的距离称为椭圆的焦距,a称为椭圆的长半轴。
用符号E表示椭圆,P表示椭圆上任意一点,则椭圆E的定义可以表示为:E={P|PF1+PF2=2a}椭圆的另一个重要参数是其短半轴b,满足a>b>0。
椭圆的离心率e定义为:e = √(a^2 - b^2) / a根据这个定义,离心率e的取值范围是0<=e<1。
当e=0时,椭圆变成了一个圆;当0<e<1时,椭圆的形状越趋近于长形;当e=1时,椭圆变成了一个双曲线。
二、椭圆的性质1. 椭圆的形状特点:椭圆是一个闭合的曲线,其形状是两个不相交的凸曲边在对称轴上拱起,且曲线上任意两点的距离之和等于定值2a。
2. 椭圆的对称性:椭圆具有中心对称和轴对称两种对称性。
椭圆的中心称为椭圆心,位于两个焦点的中垂线的交点处,椭圆关于椭圆心对称。
而以长轴和短轴为对称轴的对称性是另一种对称方式。
3. 椭圆的面积:椭圆的面积为S=πab。
4. 椭圆的周长:椭圆的周长不能用初等函数表示,一般采用级数的形式展开。
5. 椭圆的焦点性质:设椭圆E的两个焦点为F1和F2,点P在椭圆上,则有PF1+PF2=2a。
这个性质是椭圆性质的基础之一,也是解椭圆问题的重要工具。
6. 椭圆的切线性质:过椭圆上任意一点P作椭圆的两个焦点的弦,将椭圆分成两段。
连接这两段的交点与点P的连线垂直。
三、椭圆的标准方程椭圆是以坐标系为基础进行研究的,因此可以用数学方程形式表示。
通常我们采用平面直角坐标系,以椭圆心为坐标原点,以长轴和短轴为坐标轴,建立直角坐标系。