2.1平面向量的实际背景及基本概念教案3(免费)(人教A必修4)-e85150d9d15abe23482f4dd7
- 格式:pdf
- 大小:1.34 MB
- 文档页数:4
《平面向量数量积的物理背景及其含义》教学设计一、教学设计平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。
本节内容教材共安排两课时,其中第一课时主要研究数量积的概念。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。
其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。
同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
二、教学目标1知识与技能:阐明平面向量的数量积及其几何意义.会算一个向量在另一个上投影的概念,运用平面向量数量积的性质、运算律和几何意义.2过程与方法:以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过作图分析,使学生明确向量的数量积与数的乘法的联系与区别。
3情感态度与价值观:由具体的功的概念到向量的数量积,再到共线、垂直时的数量积,使学生学习从特殊到一般,再由一般到特殊的认知规律,体会数形结合思想,类比思想,体验法则学习研究的过程,培养学生学习数学的兴趣及良好的学习习惯。
三、学情分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。
这为学生学习数量积做了很好的铺垫,使学生倍感亲切。
但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。
2.1 平面向量的物理背景及基本概念教学目标:1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示.2. 掌握向量的模、零向量、单位向量、平行向量和单位向量等概念.3. 通过对向量的学习,使学生初步认识现实生活中向量和数量的区别.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.教学方法:自主学习,合作探究.教学过程:一、新课引入1.在物理学中,位移是既有大小又有方向的量.那么,你还能举出一些这样的量吗?解析:教材图示:重力,浮力,弹力,速度,加速度.2. 阅读教材74—76面,完成《世纪金榜》自主预习部分二、基础知识讲解1.向量与数量的概念向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.提问:时间,路程,功是向量吗?速度,加速度是向量吗?2.有向线段概念:带有方向的有向线段.(在三角函数线那里提到过)arbr三要素:起点,方向和长度.示范:有向线段AB u u u r ,CD uuu r3. 向量的有关概念(1)向量的表示方法:①有向线段:AB u u u r ,CD uuu r②小写英文字母:a r ,b r ,c r ,......注意:在字母上方打箭头表示向量.(2)向量的模长:AB u u u r 的模长记作:AB u u u r ,a r 的模长记作:a r .(3)用模长定义的两类向量①单位向量:1a =r ⇔a r 是单位向量(个数不唯一)图示:长度为1的一条有向线段.②零向量:0b =r ⇔b r 是零向量,通常记作:0r .图示:一个点.注意:零向量的方向是任意的,三、课堂练习即时小测:有下列物理量:①质量;②温度;③角度;④弹力;⑤风速.其中可以看成是向量的有( )A.1个B.2个C.3个D.4个2.已知向量a r 如图所示,下列说法不正确的是( )A.也可以用MN u u u u r 表示B.方向是由M 指向NC.起点是MD.终点是M3. 若点M 是△ABC 的外心,则向量AM u u u u r ,BM u u u u r ,CM u u u u r 是( )A.有共同起点的向量B.相等向量C.共线向量D.模相等的向量知识点4 概念(1)平行向量:方向相同或相反的两个非零向量叫做平行向量.式子:若向量a r 与b r 平行,记作://a b r r .规定:零向量与任一向量平行,即:0//a r r .(2)相等向量:长度相等且方向相同两个向量叫做相等向量.式子:若向量a r 与b r 相等,记作:a b =r r .(//a b r r ,a b =r r ).注意:相等向量一定是平行向量,反之不一定成立.(3)共线向量:因为任意一组平行向量都可以移动到同一直线上,所以,平行向量也叫做共线向量.练习1 如图,设O 是正六边形ABCDEF 的中心.分别写出图中与OA u u u r ,OB uuu r ,OC u u u r 相等的向量.(教材76面例2)思考:向量OA u u u r 与FE u u u r 相等吗?向量OB uuu r 与AF u u u r 相等吗?补充:1. 若四边形ABCD 为平行四边形,则(1)与AB u u u r 平行的向量有 .(2)与AB u u u r 相等的向量有 .2. 已知四边形ABCD ,则①四边形ABCD 为平行四边形⇔//AB DC u u u r u u u r ,//BC AD u u u r u u u r .②四边形ABCD 为平行四边形⇔AB DC =u u u r u u u r (或BC AD =u u u r u u u r ).作业:教材77面A 组,第2,3题。
课题:2.1平面向量的实际背景及基本概念教学目的:1.了解平面向量的实际背景;2.掌握向量的几何表示;3.理解向量的有关概念;4.逐步培养学生观察、分析、综合和类比能力和“知识重组”意识和“数形结合”能力。
教学重点:向量的概念、相等向量的概念、向量的几何表示。
教学难点:向量的概念和共线向量的概念。
授课类型:新授课授课方式:讲授式、探究式教具:多媒体、实物投影仪内容分析:向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。
向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用。
因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等。
之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法。
本章共分五大节。
第一节是“平面向量的实际背景及基本概念”,内容包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。
本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
在“向量的物理背景与概念”中介绍向量的定义;在“向量的几何表示”中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等。
教学过程:一、引入同学们都知道,数学是一门基础学科,是解决其它一些学科问题的有力工具。
2. 1平面向量的实际背景及基本概念一、教学目标:1、知识目标:⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;⑶理解零向量、单位向量、相等向量、平行向量的含义。
2、能力目标:培养用联系的观点,类比的方法研究向量;获得研究数学新问题的基本思路,学会概念思维;3、情感目标:使学生自然的、水到渠成的实现“概念的形成”;让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。
二、教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.三、教学难点:向量概念的理解,平行向量、相等向量和共线向量的区别和联系.四、学法:引入向量概念之后,随之带来一系列相关概念是比较多的,如零向量,单位向量,相等向量,平行向量,共线向量。
对于它们要抓住本质特征,让学生分析比较这些概念的区别与联系。
由于向量同时具有几何图象的特征,在学习时还要辩清它们在图形中表现相等、平行的意义,且图形还可以从简单到复杂逐步分清向量所对应的有向线段的身份,地位和作用。
对于单位向量与以前的单位长度的区别要给学生讲解清楚,单位向量不止一个,因为要表示不同的方向。
讲清基本概念后,可让学生归纳数量和向量的区别和联系.五、教具:多媒体或实物投影仪,尺规六、授课类型:新授课七、教学过程:情境创设问题1:一只老鼠和一只猫相距6米,老鼠以每秒4米的速度逃窜,猫以每秒7米的速度追,猫在多少时间里会追上老鼠?结论:猫的速度再快也没用,因为方向错了.问题2:美国“小鹰”号航空母舰导弹发射处获得信息:伊拉克的军事目标距“小鹰”号1200公里。
试问只知道这一信息导弹是否能击中目标?结论:不能,因为没有给定发射的方向.问题3:新华网东京3月30日电日本部署“爱国者-3”型拦截导弹拟拦截可能落入日本境内的朝鲜发射物。
不考虑其他因素,导弹击中拦截目标取决于导弹运行的路程还是位移?结论:位移,位移是有大小和方向的量问题提出请指出与位移具有同样特征的量:速度、重力、浮力、弹力……力、速度也是有大小和方向的量。
§2.1 平面向量的实际背景及基本概念
一、三维目标
1、知识与技能
(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;
(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;
并能弄清平行向量、相等向量、共线向量的关系
(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、过程与方法
引导发现法与讨论相结合。
这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。
体现了在老师的引导下,学生的的主体地位和作用。
3、情感目标与价值观
通过对向量与数量的比较,培养学生认识客观事物的数学本质的能力,并且意识到数学与现实生活是密不可分的,是源于生活,用于生活的。
二、教学重点及难点
1重点:向量的概念,相等向量的概念,向量的几何表示等
2难点:向量的概念和共线向量的概念。
平面向量的实际背景及基本概念各位同仁,大家好!我说课的内容是《平面向量的实际背景及基本概念》,选自人教A版数学《必修4》第二章第一节.下面我将从课标要求、教材分析、学情分析、教学目标、教学理念、教学方法和教学过程这七个方面来进行说课。
一、课标要求通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。
二、教材分析(一)本节的地位和作用向量是近代数学最重要的和最基本的数学概念之一,它是沟通代数、几何和三角函数的桥梁,是解决几何问题的有力工具,对更新和完善中学数学知识结构起着重要的作用。
向量有着丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。
向量就是从这些实际对象中抽象概括出来的数学概念。
向量集数与形于一身,是数形结合的重要体现。
向量作为数学模型,广泛地应用于解决数学、物理学科及实际生活的问题,因此它在整个高中数学学习过程中占有特别重要的地位。
本课是“平面向量”的起始课,具有“统领全局”的作用。
本节课重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力。
(二)本节的主要内容向量就是从物理背景中抽象概括出来的数学概念,因此把本节课的主要内容确定为向量的概念和向量的表示方法。
(三)教学重点、难点分析掌握向量的概念,要抓住向量的本质——大小和方向.尽管学生有着相对比较丰富的物理素材,但对向量的认识还是比较单一的(往往只考虑大小而忽略方向),所以平面向量的概念是本节课的重点也是难点,同时,向量的几何表示也是本节课的重点。
教学重点:向量的概念及向量的表示方法.教学难点:向量的概念和向量与有向线段的区别.三、学情分析从学生已经学习过的知识中看,他们已经掌握了数的抽象过程、实数的绝对值(线段的长度)、单位长度、0和1的特殊性。
还有学生在物理学科中已经积累了足够多的向量模型,并且在三角函数线部分内容的学习中(必修4任意角的三角函数、三角函数的图象与性质)已经接触到有向线段的概念,从而为本节课的学习提供了知识准备。
《平面向量数量积的物理背景及其含义》教学设计一、教学设计平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。
本节内容教材共安排两课时,其中第一课时主要研究数量积的概念。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。
其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。
同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
二、教学目标1知识与技能:阐明平面向量的数量积及其几何意义.会算一个向量在另一个上投影的概念,运用平面向量数量积的性质、运算律和几何意义.2过程与方法:以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过作图分析,使学生明确向量的数量积与数的乘法的联系与区别。
3情感态度与价值观:由具体的功的概念到向量的数量积,再到共线、垂直时的数量积,使学生学习从特殊到一般,再由一般到特殊的认知规律,体会数形结合思想,类比思想,体验法则学习研究的过程,培养学生学习数学的兴趣及良好的学习习惯。
三、学情分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。
这为学生学习数量积做了很好的铺垫,使学生倍感亲切。
但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。
第二章 平面向量本章内容介绍 向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念. (让学生对整章有个初步的、全面的了解.)第1课时\§ 平面向量的实际背景及基本概念教学目标:1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力. 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. #教 具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠(画图) A B C'结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向哪些量只有大小没有方向二、新课学习:(一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数量与向量有何区别《2、如何表示向量3、有向线段和线段有何区别和联系分别可以表示向量的什么4、长度为零的向量叫什么向量长度为1的向量叫什么向量5、满足什么条件的两个向量是相等向量单位向量是相等向量吗6、有一组向量,它们的方向相同或相反,这组向量有什么关系7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量这时各向量的终点之间有什么关系(三)探究学习1、数量与向量的区别:-数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:a①用有向线段表示;\②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:;④向量AB的大小――长度称为向量的模,记作|AB|.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.-4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.;6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关.........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)......说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固::例1 书本86页例1.例2判断:(1)平行向量是否一定方向相同(不一定)(2)不相等的向量是否一定不平行(不一定)(3)与零向量相等的向量必定是什么向量(零向量)(4)与任意向量都平行的向量是什么向量(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量(平行向量)(6)两个非零向量相等的当且仅当什么(长度相等且方向相同)'(7)共线向量一定在同一直线上吗(不一定)例3下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4 如图,设O 是正六边形ABCDEF 的中心,分别写出图中与向量OA 、OB 、OC 相等的向量.,变式一:与向量长度相等的向量有多少个(11个)变式二:是否存在与向量长度相等、方向相反的向量(存在)变式三:与向量共线的向量有哪些(FE DO CB ,,)课堂练习:1.判断下列命题是否正确,若不正确,请简述理由.①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;(④四边形ABCD 是平行四边形当且仅当AB =DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB 、AC 在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.2.书本88页练习三、小结 :1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.四、课后作业:书本88页习题第3、5题。
第二章平面向量本章教材分析1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.§2.1 平面向量的实际背景及基本概念一、教学分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.二、教学目标1、知识与技能:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。
第二章平面向量2.1 平面向量的实际背景及基本概念整体设计教学分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.三维目标1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.课时安排1课时教学过程导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.图1思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.推进新课新知探究提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果:①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB 的两个端点中,规定一个顺序,假设A 为起点、B 为终点,我们就说线段AB 具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB .起点要写在终点的前面.已知AB ,线段AB 的长度也叫做有向线段AB 的长度,记作|AB |.有向线段包含三个要素:起点、方向、长度.图2知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1°起点是A,终点是B的有向线段,对应的向量记作:AB.这里要提醒学生注意AB的方向是由点A指向点B,点A是向量的起点.2°用字母a,b,c,…表示.(一定要学生规范书写:印刷用黑体a,书写用a)3°向量AB(或a)的大小,就是向量AB(或a)的长度(或称模),记作|AB|(或|a|).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a>b就没有意义,而|a|>|b|有意义.讨论结果:①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用a →来表示,或用表示向量的有向线段的起点和终点字母表示,如AB、CD.注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出OA=a,OB=b,OC=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. ⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.应用示例例1 如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C 两地的位移.(精确到1 km)图5分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解:AB表示A地至B地的位移,且|AB|≈232 km;(AB长度×8 000 000÷100 000)AC表示A地至C地的位移,且|AC|≈296 km.(AC长度×8 000 000÷100 000)点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15°方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解:根据题意画出示意图,如图6所示.|AB|=100 m,|BC|=100 m,∠ABC=45°+15°=60°,∴△ABC为正三角形.∴|CA|=100 m,即此人从C点返回A点所走的路程为100 m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由. (1)ABCD 中,AB 与CD 是共线向量;(2)单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB//CD,所以AB ∥CD .由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O 是正六边形ABCDEF 的中心,分别写出图中所示向量与、OC 、OB 、OA 相等的量. 活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断OA 与EF ,OB 与AF 是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解:OA =CB =DO ;OB =DC =EO ;OC =AB =ED =FO .点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练本例变式一:与向量OA 长度相等的向量有多少个?(11个)本例变式二:是否存在与向量OA 长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a 与b 共线,b 与c 共线,则a 与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a 与b 不共线,则a 与b 都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A 不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a 与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.变式训练1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2.把一切单位平面向量归结到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个点D.一个圆答案:D3.将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点所构成的图形是( )A.一个点B.两个点C.一个圆D.一条线段答案:B知能训练课本本节练习.解答:1.通过具体的例子,让学生动手画两个方向不同、大小不等的力(向量),图略.2.|AB|,|BA|,这两个向量的长度相等,但它们不等.点评:向量是既有大小,又有方向的量.长度相等的两个向量未必是两个相等的量.3.|AB|=2,|CD|=2.5,|EF|=3,|GH|=22.点评:方格纸是学生学习几何、向量等内容的好工具.在方格纸中,长度和角度非常容易表现.建议在向量内容的学习中把方格纸作为重要的学具.4.(1)它们的终点相同;(2)它们的终点不同.点评:方向相同的两个向量,如果它们的起点相同,它们的终点只与长度有关.课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.作业课本习题2.1 1、2.。
第二章平面向量2.1 平面向量的实际背景及基本概念第三课时 2.1.3相等向量与共线向量1 教学目标[1]掌握相等向量,共线向量的概念。
[2]会区分相等向量,共线向量,平行向量。
[3]理解零向量与任何向量平行。
[4]通过学习对相等向量与平行向量的区别的学习,更加深刻的理解好向量与数量的关系,提高数学思维能力和认识新事物的能力。
2教学重点/难点教学重点:相等向量,共线向量的概念。
教学难点:区分相等向量与共线向量。
3专家建议通过介绍相等向量、共线向量概念,给学生渗透平移变换及数形结合的思想4 教学方法类比探究→归纳讲解→总结→练习提高。
5 教学过程5.1 复习引入【师】同学们,我们来复习一下上节课的内容,请同学们回答,我们上节课学了什么内容?【板书】向量:既有大小,又有方向的量叫做向量(物理学中常称为矢量)数量:只有大小,没有方向有向线段:带有方向的线段叫做有向线段有向线段的三要素:起点、方向、长度模:向量的长度零向量:长度为0的向量叫做零向量单位向量:长度等于1个单位的向量叫做单位向量平行向量:方向相同或相反的非零向量叫做平行向量5.2 新知介绍[1]相等向量【师】我们知道,速度是矢量,有大小和方向,那么怎样的两个速度才是相等的呢?【生】讨论回答【师】总结“大小相等,方向相同”才能说速度相等【板书】速度相等:大小相等,方向相同【师】那么相等向量要具备什么条件呢?【生】讨论回答【师】总结“长度相等,方向相同”的向量叫做相等向量【板演/PPT】相等向量:长度相等,方向相同如图,在平行四边形ABCD中,能找出相等向量吗?向量与是相等向量吗?向量与是相等向量吗?向量与CB是相等向量吗?【师】同学们拿出三角板,在练习本上画出长度分别为3cm和4cm的两组相等向量【生】动手画图【师】请大家注意,一定要满足两个条件哦,长度相等,方向相同。
(然后,检查讲解)[2]共线向量【师】两个向量除了长度相等,方向相同,还有没有其它情况?【生】讨论回答【师】总结【板书】长度相等,方向相反长度不等,方向相同长度不等,方向相反【板书/PPT】长度相等,方向相反的两个向量可以平移到同一条直线上长度不等,方向相同的两个向量可以平移到同一条直线上长度不等,方向相反的两个向量可以平移到同一条直线上【师】让我们来总结一下【板书/PPT】方向相同或相反的非零向量ba,叫做平行向量,任一组平行向量都可以移动到同一直线上,因此平行向量也叫做共线向量。
2.1平面向量的实际背景及基本概念教材分析:向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。
向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用。
因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等。
之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法。
本章共分五大节。
第一节是“平面向量的实际背景及基本概念”,内容包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。
本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
在“向量的物理背景与概念”中介绍向量的定义;在“向量的几何表示”中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等。
教学目标:1、了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. 教 具:多媒体或实物投影仪,尺规授课类型:新授课教学过程:一、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图) A B CD结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:(一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各向量的终点之间有什么关系?(三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别. A(起点) B (终点)a②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关.........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)......说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固:例1 书本86页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)例3下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4 如图,设O 是正六边形ABCDEF 的中心,分别写出图中与向量OA 、OB 、OC 相等的向量. 变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(FE DO CB ,,)课堂练习:1.判断下列命题是否正确,若不正确,请简述理由.①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形当且仅当AB =DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB 、AC 在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.2.书本88页练习三、小结 :1、 描述向量的两个指标:模和方向.2、 平行向量不是平面几何中的平行线段的简单类比.3、 向量的图示,要标上箭头和始点、终点.四、课后作业:书本88页习题2.1第3、5题。
2.1 平面向量的实际背景及基本概念1.知识与技能(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.(3)学会区分平行向量、相等向量和共线向量.2.过程与方法通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.情感、态度与价值观通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点:向量的概念,平行向量、相等向量和共线向量的区别和联系.(1)重点的突破:从向量的物理背景、几何背景等入手,从学生熟悉的矢量概念引出向量概念;还要注意与数量概念的比较,使学生在区分相似概念的过程中把握向量的概念.(2)难点的突破:借助信息技术,通过向量平移来说明向量的相等与起点无关.让学生体会,只要表示两个向量的有向线段所在直线平行或重合,这两个向量就是共线向量.向量及向量符号的由来向量最初应用于物理学,被称为矢量,很多物理量,如力、速度、位移、电场强度、磁感应强度等都是向量.大约公元前350年,古希腊著名学者亚里士多德(Aristotle,公元前384—前322)就知道力可以表示成向量.向量一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿(Newton,1642—1727).向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向,线段长表示大小的有向线段来表示它.1806年,瑞士人阿尔冈(R.Argand,1768—1822)以AB表示一个有向线段或向量.1827年,莫比乌斯(Mobius,1790—1868)以AB表示起点为A,终点为B的向量,这种用法被数学家广泛接受.另外,哈密尔顿(W.R.Hamilton,1805—1865)、吉布斯(J.W.Gibbs,1839—1903)等人则以小写希腊字母表示向量.1912年,兰格文用表示向量,以后,字母上加箭头表示向量的方法逐渐流行,尤其在手写稿中.为了方便印刷,用粗黑小写字母a,b等表示向量,这两种符号一直沿用至今.向量进入数学并得到发展,是从复数的几何表示开始的.1797年,丹麦数学家威塞尔(C.Wessel,1745—1818)利用坐标平面上的点(a,b)来表示复数a+b i,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何与三角问题.人们逐步接受了复数,也学会了利用复数表示、研究平面中的向量.1。
教材:人教 A 版高中数学必修 4课题: 2.1 平面向量的实际背景及基本概念一. 教学内容解析向量是近代数学重要和基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用. 向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小 , 又有方向的量是它的物理背景,有向线段是它的几何背景.向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学中起到联系数形、跨越学科、承前启后的作用.本课是“平面向量”的起始课,具有“统领全局”的作用 . 本节概念课,更为重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,分析问题,解决问题的能力.本节课主要内容包括向量的物理背景与概念,向量的表示,相等向量与共线向量 .二.教学目标设置1.了解向量的实际背景;2.理解平面向量、平行向量、相等向量、共线向量的概念,掌握向量的几何表示;3.经历平面向量及其相关概念的形成过程,初步体会学习新概念的基本思路.三. 学生学情分析从学生已经学习过的知识中看,他们已经掌握了数的抽象过程、实数的绝对值(线段的长度)、单位长度、 0 和 1 的特殊性 . 还有学生在物理学科中已经积累了足够多的向量模型,并且在三角函数线部分内容的学习中(必修 4 任意角的三角函数、三角函数的图象与性质)已经接触到有向线段的概念,从而为本节课的学习提供了知识准备 .尝试让学生从实际背景中抽象并概括出向量的概念.学生在学习本节课内容过程中,对撇去实际背景后理解向量的概念,一时难以适应;向量的几何表示是向量概念的形象化(几何化),它是学生认识过程中的又一次飞跃,后继的向量运算,以及用向量方法解决几何问题,都是以此为基础 . 学生的易混点是向量的几何表示(有向线段)与平面向量,学生的易错点是,在解决向量问题时,不能从向量的两个要素全面考虑,顾此失彼.四.教学策略分析本节课的难点是平面向量的概念,共线向量的概念,向量的几何表示的生成过程,突破策略主要是:1.创设问题情境,让学生从初步感悟生活中既有大小,又有方向的量开始,逐步增加信息,以期达到上升到理性认识所需的信息量;2.学生适度模仿抽象数量概念的过程,从同类事物中抽象概括得到向量的概念;3.学生比较向量和数量的区别,进一步理解向量概念;4.引导类比思考,让学生将已学习过的直线(段)平行和共线与共线向量这一新知之间建立联系;5.类比数的表示引出向量几何表示的必要性,从特殊向量(浮力)的有向线段表示推广到一般向量的几何表示,用直观的有向线段表示抽象的向量.在本节课的教学中,主要以问题引领过程,通过教师引导、学生提问、师生交流、学生合作举例,让学生自主建构向量和共线向量的概念.这样做可使学生经历新概念产生的过程,从总体上认识新知识与原有知识的联系,在过程中感受学习新概念、解决新问题的方法.五.重点与难点1.重点:向量的概念,相等向量的概念,向量的几何表示;2.难点:向量的概念和共线向量的概念,向量的几何表示的生成过程.六.教学方法与教学手段问题引导教学法,启发式教学,小组合作学习.七.教学过程1.创设情境建构概念【引例】学生在教来的一条祝福短信:“刘老您好,祝您教快!我考到了一个离合肥直距离800 公里的大城市大学,目前在了,您猜我在哪个城市?”[意 ] 通学生熟悉的情境,引学生思考.只有大小,没有方向,并不能出具体的位置,从而指出位移是一个既有大小, 又有方向的量 .[教学片段 ]:百度地的搜索,教定位地上离合肥800 公里的大城市有天津、西安、厦三个 .你能否确定是哪个城市呢?生:不能 .:什么不能确定呢?生:因只知道从合肥到个城市的位移的大小,并不知道方向.:么位移不要求有大小,而且有方向.【 1】你能否再出一些既有大小,又有方向的量?[意 ] 激活学生的已有相关.一步直演示,加深印象. 再追有没有只有大小,没有方向的量的,通两相比,突向量的两大要素.[教学片段 ]生:重力、浮力、力 ...:生活中有没有只有大小,没有方向的量?生:年、身高、面、体等.:回学数的概念,我可以从一支笔、一棵、一本⋯⋯ 中抽象出只有大小的数量“ 1”.似地,我可以力、位移⋯⋯些既有大小 , 又有方向的量行抽象,形成一种新的量 .:数学中,我把种既有大小,又有方向的量叫做向量,而把那些只有大小,没有方向的量称数量 .向量在物理学中常称矢量,数量在物理学中常称量 .【本章介】向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何的有力工具 .向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可化向量的加(减)法、数乘向量、数量运算(运算律),从而把形的基本性化向量的运算体系 .向量是沟通代数、几何与三角函数[设计意图 ] 本节课是“平面向量”的起始课,具有“统领全局”的作用,有必要对本节内容在数学学习研究中的地位做一个简要的介绍.回答平面向量这一章“是什么”、“为什么学”、“学什么”、“怎么学”,激发学生学习兴趣,明确学习任务,指明向量的研究对象及研究方法.(板书: 2.1 平面向量的实际背景及基本概念.)(板书:既有大小,又有方向的量叫做向量.)2.几何表示理解概念【问题 2】实数在数轴上是如何表示的?[设计意图 ] 类比实数的点表示,寻求向量的几何表示.[教学片段 ]生:可以用数轴上的点表示.师:同学们都知道实数常常可以用数轴上的一个点来表示,而且不同的点表示不同的实数 .请同学们在数轴上画出表示实数0, 1 的点,再画出表示实数 a 的点 .生:在稿纸上画出数轴,并标注点的位置(如图 1 所示) .图 1师:实数 a 是一个数量,数轴上表示它的点是一个点A,一个点也是几何图形,这里实际上就是用几何图形(数轴上的一个点)来表示了实数a,数量可以这样,那么向量呢?我们能不能也找到一种几何图形来表示平面向量呢?【师生互动】两回顾、一探究:回顾浮力在物理中如何表示,回顾实数中绝对值符号的使用,探究向量的几何表示和字母表示以及向量的模的字母表示.[设计意图 ]用“带箭头的线段” 表示浮力,是初中物理已学习过的内容,是学生的“最近发展区” ,将这一内容再次进行条理化、系统化,是强化、固化新知的“停泊点”,让旧知自然地“生长”出新知 .在实数的两边画上两条平行、等长的竖线段表示“表示实数的点到原点的距离”,这是学生已经熟练掌握的绝对值的几何意义,将这一符号表示方法类比到向量的模的字母表示上是自然的.[教学片段 ]师:如图 2,有两个木块浮在水面上,一个木块所受到的重力大小是10N,另一个木块所受到的重力的大小为20N.同学们试在练习纸中画出两个物体所受到的浮力,练习纸中已经给出了表示10N 的线段长度 .生:作图,并表示浮力 (如图 2 所示 ).10N图2师:表示这两个木块所受浮力大小的线段哪个更长?生:表示浮力大小为20N 的线段更长 .师:一般地,可以按一定比例画出一条线段,它的长短表示向量的大小.(板书设计:画一条线段,标注线段AB,也可记作线段 a.)师:我们用线段的长短表示了浮力的大小,那浮力的方向同学们又是如何表示的呢?生:用箭头表示的 .师:(板书设计:在已画的线段AB 中,以 A 为起点, B 为终点画一个箭头 .)一般地,可以用箭头表示向量的方向,这个图形就是一条线段上带了一个箭头,有线段有箭头,如果给这个图形起一个形象点的名字,你会叫它什么?生:有向线段 .师:带有方向的线段叫做有向线段.师:线段我们可以用AB、a 来表示,有向线段该如何用字母表示呢?师:以 A 为起点, B 为终点的有向线段记作AB ,或者用a, b,表示(板书: AB ,a,b ,.)师:这样我们就用有向线段的长度表示向量的长度,用有向线段的方向表示向量的方向,那我们就可以用有向线段表示向量了.师: AB 表示向量的方向是由 A 指向 B 的,那向量的大小又该如何用字母来表示呢?师:如图 1,在数轴上 A 点表示实数 a,那 A 点到原点的距离该如何表示呢?生: | a | .师:也就是在实数 a 的两边画两条平行、等长的竖线段(在实数中称为绝对值)来表示 A 点到原点的距离 .师:类似地,在AB 两边画两条平行、等长的竖线段,来表示向量AB 的大小,也就是向量 AB 的长度(或称模),记作| AB |.师:这里需要强调,书上的向量用的是印刷体的黑体字母 a 表示向量,没有箭头 . 但是我们书写的字母不是印刷体,在表示向量时,必须打上箭头.【问题 3】在你画的实数轴上,哪些实数比较特殊?[设计意图 ] 挖掘结果背后的思维过程,引导学生把向量集合与实数集类比.通过 0,1 这两个特殊实数类比出零向量和单位向量的概念.[教学片段 ]师:现在我们已经建立起了一个向量的集合,就像实数可以构成实数集一样.如图 1,在实数轴上有两个特殊的实数,请问是哪两个?生: 0,1.师:类似地,在向量的集合中有两个向量很特殊,一个是长度为零的向量,叫做零向量,一个是长度等于 1 个单位的向量,叫做单位向量 .(板书:长度为零的向量,叫做零向量,记作 0 .长度等于 1 个单位的向量叫做单位向量 .)师:向量是既有大小 ,又有方向的量 .研究向量需要将代数形式和几何形式相结合 .对实数的研究经验告诉我们,引进一个新的数,就要研究它的运算及运算律 .可以预见,引进向量就要研究向量的运算及其相应的运算律或运算法则 .所以对于向量还有很多内容等待我们去研究 .3.探究实例引出关系【探究互动】在坐标纸中画出如图 3 所示的向量 .(1)图中哪些向量是单位向量?(2)AB,CD, EF 三个向量的方向有何关系?(3)AB,CD 在大小和方向上有何关系?图 3[设计意图 ] 巩固单位向量的概念;该探究将平行向量、相等向量、共线向量的概念的形成过程串在了一起,并让学生参与这些概念的形成过程,使得概念成为在教师引导下,学生观察、归纳、概括之后的自然产物.[教学片段 ]师:坐标纸中哪些向量是单位向量?生: AB, CD, MN , GH .师:为什么它们是单位向量?生:因为它们的模都等于 1 个单位 .师:单位向量和它们的方向有关系吗?生:没有 .师:坐标纸中哪些向量不是单位向量?生: EF.师:刚才我们从向量大小的角度找到了单位向量,向量不仅有大小,还有方向,同学们想一想 AB, CD , EF 这三个向量的方向有何关系?生: AB 与 CD 方向相同 , AB 与 EF 方向相反 ,CD 与 EF 方向相反 .师: AB, CD , EF 中有零向量吗?生:没有 .师: AB, CD , EF 所在的线段之间的位置关系是什么?生:平行 .师:一般地,方向相同或者相反的非零向量叫做平行向量,记作 AB / / CD .(板书:方向相同或者相反的非零向量叫做平行向量,记作 AB / /CD .)师:大家想不想知道零向量的方向?生:想 .师:我们规定,零向量与任一向量平行,即对于任意的向量 a ,都有0 / /a .(板书: 0 / /a .)师: AB, CD 在大小和方向上有何关系?生:长度相等,方向相同.师:也就是 AB 和 CD 在向量的两个基本要素上完全相同,数学上将长度相等且方向相同的向量叫做相等向量,记作 AB CD .图4(板书:长度相等且方向相同的向量叫做相等向量,记作AB CD .)师:如图 4,OK与AB之间什么关系?那OK与CD之间什么关系?生:都是相等的 .师:既然相等,那就意味着可以用同一条有向线段OK 来表示两个相等的非零向量 AB 和 CD ,并且与有向线段的起点无关.换句话说,就是可以将两个相等的非零向量 AB 和 CD 在平面内都平移到向量 OK 的位置,平移后的向量与原来的向量相等 . 类似地,也可以作向量OP与向量EF相等. 此时,我们将一组平行向量 AB,CD, EF 都平移到了同一条直线上 . 因此,平行向量也叫做共线向量 .(板书:共线向量平行向量 .)【自主探究】讨论有向线段与向量之间的区别与联系?[设计意图 ]在上一个探究题目学生分组讨论,通过小组合作学习,体会向量可以在平面内可以任意平移,与表示向量的有向线段的起点无关.[教学片段 ]生:我们小组讨论的结果是有向线段有三要素,即起点、长度、方向, 而向量完全由它的方向和模决定,与起点无关 .4.辨析概念例题互动【例 1】判断下面的说法是否正确.(1)向量的模的取值范围是 (0, ) .(×)(2)若 a 与b都是单位向量,则| a | | b |.(√)(3) 若 a / /b ,则a与 b 的方向相同 .(×)(4)物理学中的作用力与反作用力是一对相等向量. (×)(5)若 | AB | 0 ,则AB BA .(×)[设计意图 ] 本节内容概念较多,容易混淆,这5个概念辨析题的设置基本上涵盖了本节中所有的新概念以及易错点,在辨析过程中加强学生对概念的理解与记忆 .[解法点评 ]紧扣向量的相关概念,同时关注零向量.【例 2】如图5,设O是正六边形ABCDEF的中心,分别写出图5中与OA、OB、OC相等的向量 .[设计意图 ] 让学生在寻找相等向量的过程中,进一步体会相等向量的概念. [教学片段 ] 学生板书:OA CB DO; OB DC EO; OC AB ED FO.9【变式】如图 6,设O是正六边形ABCDEF的中心,请在图中作出与OA 共线的向量 .[设计意图 ] 学生分小组讨论,通过学生合作学习,进一步体会共线向量的概念以及共线向量和相等向量的区别.[解法点评 ]怎么作?在图中找与线段OA 平行或共线的线段,可以先找与之平行的线段,再找与之共线的线段;从对比与向量OA相等和共线向量的结果看,可以得出怎样的结论?相等必共线,共线未必相等.[教学片段 ]学生讨论 .5.课堂小结作业布置【课堂小结】有哪位同学能够回答一下本节课我们都学习了哪些新的概念?平面向量的概念表示法模平行向量(共线向量)零向量单位向量相等向量[设计意图 ] 由学生总结概括本节课所学习的主要内容,教师加以提炼.并总结学习新概念的基本思路,即:从同类具体事下定义符号认识考查例中抽象出共特殊特殊表示同本质特征对象关系【作业布置】(1)习题 2.1:第 1 题,第 3 题.(2)思考题:平行向量与平行线段的区别与联系?(3)阅读课本 78 页《向量及向量符号的由来》 .10。
人教版高中必修4-2.1 平面向量的实际背景及基本概念课程设计引言平面向量是高中数学中的重要知识点。
学习平面向量,可以帮助学生深入了解向量的概念、性质及其应用;同时,平面向量也是很多高等数学和物理学领域的基础。
本文旨在分析平面向量在现实世界中的实际背景,同时设计一堂高中必修4-2.1平面向量课程。
一、平面向量的实际背景1. 科技领域平面向量在科技领域有着广泛的应用,尤其是在计算机图形学、游戏开发和机器学习等领域。
例如,在计算机游戏中,平面向量可以用来表示角色的位置、速度和方向等信息;在图像处理中,平面向量可以用来表示图像的亮度和颜色。
2. 工程领域在工程领域,平面向量通常用于描述力的大小和方向,例如,机械工程中的受力分析、土木工程中的结构设计、电气工程中的电流、电压描述等等。
3. 数学和物理学对于学习数学和物理学的学生来说,平面向量也是很重要的基础知识。
在数学中,平面向量可以用于求解代数方程组、行列式的计算和向量空间的理解等等。
在物理学中,平面向量可以用于描述物理运动,例如力的合成、速度和位移的计算等。
二、课程设计1. 教学目标本节课通过对平面向量的介绍,旨在帮助学生:1.了解平面向量的基本概念和性质。
2.能够进行向量的加减、数量乘法和点乘运算。
3.了解平面向量在科技和工程领域的应用。
4.能够解决平面向量的简单应用问题。
2. 教学内容本节课的教学内容包括:1.平面向量的基本概念和性质。
2.向量的加减、数量乘法和点乘运算。
3.平面向量的应用。
4.平面向量的简单应用问题。
3. 教学方法本节课主要采用讲授和练习相结合的方法。
具体来说,可以采用以下教学方法:1.讲解:通过PPT等资料,讲解平面向量的基本概念和性质。
2.示范:通过简单的例题演示平面向量的加减、数量乘法和点乘运算。
3.练习:让学生进行相关练习,加深对平面向量的理解和应用能力。
4.展示:让学生展示自己对平面向量的理解和应用能力。
4. 教学过程本节课的教学过程可以分为以下几个步骤:1.介绍向量的基本概念和性质。