2015-2016学年高中数学 1.1.3集合的基本运算教案 新人教A版必修1
- 格式:doc
- 大小:69.50 KB
- 文档页数:3
§ 集合的基本运算一. 教学目标:1. 知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.2. 过程与方法学生通过观察和类比,借助Venn 图理解集合的基本运算.3.情感.态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.重点:交集与并集,全集与补集的概念.难点:理解交集与并集的概念.符号之间的区别与联系.1.学法:学生借助Venn 图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.2.教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题问题1:我们知道,实数有加法运算。
类比实数的加法运算,集合是否也可以“相加”呢? 请同学们考察下列各个集合,你能说出集合C 与集合A .B 之间的关系吗?(1){1,3,5},{2,4,6},{1,2,3,4,5,6};A B C ===(2){|},{|},{|}A x x B x x C x x ===是理数是无理数是实数引导学生通过观察,类比.思考和交流,得出结论。
教师强调集合也有运算,这就是我们本节课所要学习的内容。
(二)研探新知—般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集. 记作:A ∪B.读作:A 并B.其含义用符号表示为:{|,}A B x x A x B =∈∈或用Venn 图表示如下:请同学们用并集运算符号表示问题1中A ,B ,C 三者之间的关系.练习.检查和反馈(1)设A={4,5,6,8),B={3,5,7,8),求A ∪B.(2)设集合A {|12},{|13},.A x x B x x AB =-<<=<<集合求让学生独立完成后,教师通过检查,进行反馈,并强调:(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.(2)对于表示不等式解集的集合的运算,可借助数轴解题.(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A .B 与集合C 之间有什么关系?①{2,4,6,8,10},{3,5,8,12},{8};A B C ===②{|20049}.A x x =是国兴中学年月入学的高一年级女同学B={x |x 是国兴中学2004年9月入学的高一年级同学},C={x |x 是国兴中学2004年9月入学的高一年级女同学}.教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集. 记作:A ∩B.读作:A 交B其含义用符号表示为:{|,}.A B x x A x B =∈∈且接着教师要求学生用Venn 图表示交集运算.(2)练习.检查和反馈①设平面内直线1l 上点的集合为1L ,直线1l 上点的集合为2L ,试用集合的运算表示1l 的位置关系.②学校里开运动会,设A={x |x 是参加一百米跑的同学},B={x |x 是参加二百米跑的同学},C={x |x 是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A ∩B 与A ∩C 的含义.学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.(三)学生自主学习,阅读理解1.教师引导学生阅读教材第11~12页中有关补集的内容,并思考回答下例问题:(1)什么叫全集?(2)补集的含义是什么?用符号如何表示它的含义?用Venn 图又表示?(3)已知集合{|38},R A x x A =≤<求.(4)设S={x |x 是至少有一组对边平行的四边形},A={x |x 是平行四边形},B={x |x 是菱形},C={x |x 是矩形},求,,A S B C B A .在学生阅读.思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价.(四)归纳整理,整体认识1.通过对集合的学习,同学对集合这种语言有什么感受?2.并集.交集和补集这三种集合运算有什么区别?(五)作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集.交集和补集的现实含义.3.书面作业:教材第14页习题组第7题和B组第4题.。
课题: 1.1.3 集合的基本运算(一)教学目的:(1)使学生理解两个集合的交集的含义;(2)使学生会求两个集合的交集教学重、难点:会求两个集合的交集授课类型:新授课课时安排:1课时教具:常规教学过程:一、复习集合的概念、子集的概念、集合相等的概念。
二、讲述新课(一)、引入1、观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?A B2、考察集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系. (二)、含义一般地,由所有属于A又属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.如:{1,2,3,6}∩{1,2,5,10}={1,2}.又如:A={a,b,c,d,e},B={c,d,e,f}.则A∩B={c,d,e}(三)、基本性质A∩B= B∩A; A∩A=A; A∩Ф=Ф; A∩B=A⇔A⊆B 注:是否给出证明应根据学生的基础而定.三、补充例题例1.设A={x|x>-2},B={x|x<3},求A ∩B.解:A ∩B={x|x>-2}∩{x|x<3}={x|-2<x<3}.例2.设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A ∩B.解:A ∩B={x|x 是等腰三角形}∩{x|x 是直角三角形}={x|x 是等腰直角三角形}.例3、已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( ) A .x =3,y =-1 B.(3,-1) C.{3,-1} D.{(3,-1)}分析: 由已知得M ∩N ={(x ,y )|x +y =2,且x -y =4}={(3,-1)}.也可采用筛选法.首先,易知A 、B 不正确,因为它们都不是集合符号.又集合M ,N 的元素都是数组(x ,y ),所以C 也不正确.注: 求两集合的交集即求同时满足两集合中元素性质的元素组成的集合.本题中就是求方程组⎩⎨⎧=-=+42y x y x 的解组成的集合.另外要弄清集合中元素的一般形式. 四、课堂练习:11页练习1,2,3中求交集的题目 五、小结: 本节课我们学习了交集的概念和基本性质以及如何求交集六、课后作业:习题 1.1B 组 1题七、板书设计:八、课后记精美句子1、善思则能“从无字句处读书”。
1.1.3集合的基本运算(全集、补集)【教学目标】1、了解全集的意义,理解补集的概念.2、能用韦恩图表达集合的关系及运算,体会直观图示对理解抽象概念的作用3、进一步体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。
【教学重难点】教学重点:会求给定子集的补集。
教学难点:会求给定子集的补集。
【教学过程】(一)复习集合的概念、子集的概念、集合相等的概念;两集合的交集,并集.(二)教学过程一、情景导入观察下面两个图的阴影部分,它们同集合A 、集合B 有什么关系?二、检查预习1、在给定的问题中,若研究的所有集合都是某一给定集合的子集,那么称这个给定的集合为 .2、若A 是全集U 的子集,由U 中不属于A 的元素构成的集合,叫做 ,记作 。
三、合作交流Φ=⋂A C A U ,U A C A U =⋃,A A C C U U =)(B C A C B A C U U U ⋂=⋃)(,B C A C B A C U U U ⋃=⋂)(注:是否给出证明应根据学生的基础而定.四、精讲精练例⒈设U={2,4,3-a 2},P={2,a 2+2-a },CU P={-1},求a . 解:∵-1∈CU P∴-1∈U∴3-a 2=-1得a =±2.当a =2时,P={2,4}满足题意.当a =-2时,P={2,8},8∉U舍去.因此a =2.[点评]由集合、补集、全集三者关系进行分析,特别注意集合元素的互异性,所以解题时不要忘记检验,防止产生增解。
变式训练一:已知A={0,2,4,6},CS A={-1,-3,1,3},CS B={-1,0,2},用列举法写出集合B.解:∵A={0,2,4,6},CS A={-1,-3,1,3}∴S={-3,-1,0,1,2,3,4,6}又CS B={-1,0,2} ∴B={-3,1,3,4,6}.例⒉设全集U=R,A={x|3m-1<x<2m},B={x|-1<x<3},B⊂≠CU A,求m的取值范围.解:由条件知,若A=Φ,则3m-1≥2m即m≥1,适合题意;若A≠Φ,即m<1时,CU A={x|x≥2m或x≤3m-1},则应有-1≥2m即m≤-21; 或3m-1≥3即m≥43与m<1矛盾,舍去. 综上可知:m的取值范围是m≥1或m≤-21. 变式训练二:设全集U={1,2,3,4},且A={x|x2-mx+n=0,x∈U},若CU A={2,3},求m,n的值.解:∵U={1,2,3,4},CU A={2,3}∴A={1,4}.∴1,4是方程x2-mx+n=0的两根.∴m=1+4=5,n=1×4=4.【板书设计】一、 基础知识1. 全集与补集2. 全集与补集的性质二、 典型例题例1: 例2:小结:【作业布置】本节课学案预习下一节。
必修一集合的基本运算教案教学内容:人教版普通高中课程标准实验教科书数学必修一第一章 1.1.3,教材9~12页。
教学目标:1、让学生清楚把握并集、交集、补集的概念。
2、让学生把握如何求出并集、交集、补集。
3、让学生能清楚区分并集、交集、补集,并把握它们之间的关系。
4、培养学生的类比迁移的数学方法,提高学生学习的兴趣。
教学重点:让学生把握如何求出并集、交集、补集。
教学难点:能用图示法表示出集合的关系,能从图示中看出集合的关系。
教学用具:多媒体教学过程:一、导入:同学们,我们之前学习过了数的运算,那么我们的集合是否也具备一些运算呢?好,那我们今天就来研究一下集合的基本运算。
二、新授:1、并集我们知道,实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?考察下面的集合,你能说出集合C与集合A、B之前的关系吗?(1)A=﹛x|x是有理数﹜B=﹛x|x是无理数﹜C=﹛x|x是实数﹜(2)A=﹛1、3、5﹜B=﹛2、4、6﹜C=﹛1、2、3、4、5、6﹜让学生根据这个问题各抒己见,教师根据学生的回答,适时引入并集的概念。
同学们,刚才你们发现A和B相加就是C,我们还可以得到这样一种关系:集合C是有所有属于集合A或属于集合B的元素组成,那么像这样由所有属于集合A或集合B的元素组成的集合,我们称为A与B的并集,记做:A∪B,读作:A并B即A∪B=﹛x|x∈A或x∈B﹜韦恩图表示为那么像刚才我们引入的题目我们就可以有C=A∪B又C=A∪B同学们能不能得出它们的另一个关系呢?A⊆C、B⊆C教师讲解例4、例5例4教师向学生提问A∪B=﹛4、5、6、8、3、5、7、8﹜对不对?为什么不对?(让学生对前面学习集合元素的互异性进行巩固,让学生明白并集并不是两个集合的简单相加)例5让学生清楚用数轴表示出集合,并能从数轴上看出集合的并集A∪A=A A∪空集=A ?2、交集考察下面问题,集合A、B与集合C之间有什么关系?(1)A=﹛2、4、6、8、10﹜ B=﹛3、5、8、12﹜C=﹛8﹜(2)A=﹛x|x是新华中学2004年9月在校的女同学﹜B=﹛x|x是新华中学2004年9月在校的高一年级同学﹜C=﹛x|x是新华中学2004年9月在校的高一年级女同学﹜让学生根据这个问题各抒己见,教师根据学生的回答,适时引入交集的概念。
1.3集合的基本运算教学设计(人教A版)集合的基本运算是人教版普通高中课程标准实验教科书,数学必修1第一章第三节的内容. 在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础. 本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用. 本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点.课程目标1. 理解两个集合的并集与交集的含义,能求两个集合的并集与交集;2. 理解全集和补集的含义,能求给定集合的补集;3. 能使用Venn图表达集合的基本关系与基本运算.数学学科素养1.数学抽象:并集、交集、全集、补集含义的理解;2.逻辑推理:并集、交集及补集的性质的推导;3.数学运算:求两个集合的并集、交集及补集,已知并集、交集及补集的性质求参数(参数的范围);4.数据分析:通过并集、交集及补集的性质列不等式组,此过程中重点关注端点是否含“=”及∅问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
重点:1.交集、并集定义的三种语言的表达方式及交集、并集的区别与联系;2全集与补集的定义.难点:利用交集并集补集含义和Venn图解决一些与集合的运算有关的问题.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、问题导入:实数有加、减、乘、除等运算.集合是否也有类似的运算.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本10-13页,思考并完成以下问题1. 两个集合的并集与交集的含义是什么?它们具有哪些性质?2.怎样用Venn图表示集合的并集和交集?3.全集与补集的含义是什么?如何用Venn图表示给定集合的补集?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究(一)知识整理1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记作:A∪B(读作:“A并B”)即: A∪B={x|x∈A,或x∈B} Venn图表示2 交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集,记作:A∩B(读作:“A交B”)即: A∩B={x|∈A,且x∈B}Venn图表示3.全集一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U。
河北省衡水中学高中数学1.1.3集合的基本运算(一)学案新人教A版必修1第一篇:河北省衡水中学高中数学 1.1.3集合的基本运算(一)学案新人教A版必修11.1.3集合的基本运算(一)一、学习目标1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自学探究能力.3.能使用Venn图表达集合的关系及运算,体会Venn图的作用.二、自学导引1、一般的,由所有属于的元素组成的集合,称为集合A与集合B 的并集,记作A Y B(读作“A并B”),即A Y B=.2、由属于的所有元素组成的集合,称为集合A与集合B的交集,记作A I B(读作“A交B”),即A I B=.3、A I A=,A Y A=,A I∅=,A Y∅=.4、若A⊆B,则A I B=,A Y B=.5、A I BA,A I BB,AA Y B,A I BA Y B.三、典型例题1、求两个集合的交集与并集例1求下列两个集合的交集和并集⑴A={1,2,3,4,5},B={-1,0,1,2,3};⑵A={x|x<-2},B={x|x>-5}.变式迁移1⑴设集合A={x|x>-1},B={x|-2<x<2}A Y B等于()A{x|x>-2}B.{x|x>-1}C.{x|-2<x<-1}D.{x|-1<x<2}⑵若将⑴中A改为A={x|x>a},求A Y B.2、已知集合的交集、并集求参数的问题例2已知集合A=-4,2a-1,a{2},B={a-5,1-a,9},若A I B={9},求a的值.3、交集、并集性质的综合应用例3设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.⑴若A I B=B,求a的值;⑵若A Y B=B,求a的值。
变式迁移3已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤2m+1},若A Y B=A,求实数m的取值范围.4、课堂练习1.已知A={0,1,2,3,4},B={3,0,5,6},则A I B等于()A{0,3}B.{0,1,2,3,4}C.{3,0,5,6}D.{0,1,2,3,4,5,6}2.已知M={x|x-2<0},N={x|x+2>0}则M I N等于()A.{x|x<2或x>-2}B.{x|-2<x<2}C.{x|x<2}D.{x|x>-2}23.已知集合M={x|y=x-1},,N={y|y=x2-1}那么M I N等于A.∅B.NC.MD.R4.若集合A={1,3,x},B=1,x2,A Y B={1,3,x},则满足条件的实数x的个数有{}()A.1个B.2个C.3 个D.4个二、填空题5.满足条件M Y{}1={1,2,3}的集合M的个数是.6.已知A I{-1且A⊆{-2,0,1}={0,1},0,1,2},则满足上述条件的集合A共有个.7.已知集合A={x|-1≤x≤2},B={x|2a<x<a+3}且满足A I B=∅,则实数a的取值范围是.8.已知集合A=1,4,a2-2a,B=a-2,a2-4a+2,a2-{}1,3},则A Y B=.3a+3,a2-5a},若A I B={10个高考试题1.集合A={x|-1≤x≤2},B={x|x<1},则A⋂(CRB)=(A){x|x>1}(B){x|x≥1}(C){x|1<x≤2}(D){x|1≤x≤2}{⎧⎪2.若集合A=⎨xlog1x≥⎪2⎩1⎫⎪⎬,则ðRA= 2⎪⎭⎛⎫⎛⎫(-∞,0]Y+∞,+∞+∞)A、B、 C、(-∞,0]Y D、+∞) ⎪⎪2⎪2⎪⎝⎭⎝⎭3.集合P={x∈Z0≤x<3},M={x∈Rx2≤9}则PIM=(A){1,2}(B){0,1,2}(C){x|0≤x<3}(D){x|0≤x≤3}4.若集合A={x-2<x<1},B={x0<x<2}则集合A ∩B= A.{x-1<x<1}B.{x-2<x<1} C.{x-2<x<2}D.{x0<x<1}第二篇:河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案新人教A版必修1高一数学必修一学案:1.1.1集合的含义与表示(一)一、学习要求:了解集合的含义,体会元素与集合的“属于”关系。
1.1.3 集合的基本运算(第一课时)一. 教学目标:1. 知识与技能(1)理解并集、交集的含义,会求两个简单集合的交集与并集;(2)能使用Venn 图、数轴表达集合的运算,体会直观图对理解抽象概念的作用.(3)通过实例分析和阅读教材,培养学生的自学能力、阅读能力和分析应用能力。
2. 过程与方法学生通过观察和类比,借助Venn 图、数轴理解集合的基本运算.3.情感.态度与价值观(1)进一步强化数形结合的思想和体会类比思想在数学中的作用.(2)理解集合作为一种语言,在数学应用中的简洁和准确.二.教学重点.难点重点:交集、并集的概念.难点:交集、并集的运算。
三.学法与教学用具1.学法:利用Venn 图和数轴,掌握并理解集合的基本运算.2.教学用具:多媒体教学。
四. 教学思路(一)自学指导:1.教师首先提出问题:通过PPT 图片,利用大家熟悉的实数之间的简单运算,引导学2.教师巡查,鼓励学生分组探讨完成上面表格,并帮助学生修改、完善,并指出:这就是我们这一堂课所要学习的内容.(二)师生合作,研探新知l.并集:—般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A ∪B. 读作:A 并B.其含义用符号表示为:{|,}A B x x A x B =∈∈U 或用Venn 图表示如下:2.交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集. 记作:A ∩B.读作:A 交B其含义用符号表示为:{|,}.A B x x A x B =∈∈I 且用Venn 图表示交集运算.(三)例题分析例题1、请同学们独自完成教材例题4、例题5(注意数轴的应用)、例题6、例题7。
例题2、 已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-I , 求实数a 的值例题3、设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈, 如果A B B =I ,求实数a 的取值范围(五)变式训练1.满足{}{}的个数是的集合A A 5,11=⋃ ( ) (A )1 (B)2 (C)3 (D)42.已知集合{}{},1,x ,4,x x >∈=≤∈=x N x B X N A 那么B A ⋂等于 ( ) (A){}4,3,2,1 (B){}4,3,2 (C){}3,2 (D){}R x x x ∈≤<,41 3.已知集合{}{},,2,,22R x x y y N R x x y y M ∈+-==∈+-==那么=⋂N M ( )(A)(0,2)(1,1) (B){})1,1)(2,0( (C){}2,1 (D){}2≤y y4.已知集合{}{}{},65,,,51≤<=⋂=⋃≤≤=><=x B A R B A b x a x B x x x A 且或则=-b a 2五、课堂小结,整理知识1、知识点:①并集、交集的概念。
1.1.3 集合的基本运算整体设计教学分析课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.三维目标1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.重点难点教学重点:交集与并集,全集与补集的概念.教学难点:理解交集与并集的概念,以及符号之间的区别与联系.课时安排2课时教学过程第1课时导入新课思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.思路3.(1)①如图1131甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?图1-1-3-1②观察集合A与B与集合C={1,2,3,4}之间的关系.学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.推进新课新知探究提出问题①通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?②用文字语言来叙述上述问题中,集合A与B与集合C之间的关系.③用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.④试用Venn图表示A∪B=C.⑤请给出集合的并集定义.⑥求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A与B与集合C之间有什么关系?(ⅰ)A={2,4,6,8,10},B={3,5,8,12},C={8};(ⅱ)A={x|x是国兴中学2007年9月入学的高一年级女同学},B={x|x是国兴中学2007年9月入学的高一年级男同学},C={x|x是国兴中学2007年9月入学的高一年级同学}.⑦类比集合的并集,请给出集合的交集定义?并分别用三种不同的语言形式来表达.活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来显示.讨论结果:①集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.②所有属于集合A或属于集合B的元素所组成了集合C.③C={x|x∈A,或x∈B}.④如图1131所示.⑤一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1131所示.⑥集合之间还可以求它们的公共元素组成集合的运算,这种运算叫求集合的交集,记作A∩B,读作A交B.(ⅰ)A∩B=C,(ⅱ)A∪B=C.⑦一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.其含义用符号表示为:A∩B={x|x∈A,且x∈B}.用Venn图表示,如图1132所示.图1-1-3-2应用示例思路11.设A={4,5,6,8},B={3,5,7,8},求A∪B,A∩B.图1-1-3-3活动:让学生回顾集合的表示法和交集、并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于V enn图写出.观察这两个集合中的元素,或用Venn图来表示,如图1133所示.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.A∩B={4,5,6,8}∩{3,5,7,8}={5,8}.点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用V enn图或直接观察得到结果.本题易错解为A∪B={3,4,5,5,6,7,8,8}.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.变式训练1.集合M={1,2,3},N={-1,5,6,7},则M∪N=________.M∩N=________.答案:{-1,1,2,3,5,6,7} ∅2.集合P={1,2,3,m},M={m2,3},P∪M={1,2,3,m},则m=_________.-,0.因m=1不合题意,故舍去.分析:由题意得m2=1或2或m,解得m=-1,1,2,2-,0答案:-1,2,23.2007河南实验中学月考,理1满足A∪B={0,2}的集合A与B的组数为( )A.2B.5C.7D.9分析:∵A∪B={0,2},∴A⊆{0,2}.则A=∅或A={0}或A={2}或A={0,2}.当A=∅时,B={0,2};当A={0}时,则集合B={2}或{0,2};当A={2}时,则集合B={0}或{0,2};当A={0,2}时,则集合B=∅或{0}或{2}或{0,2},则满足条件的集合A与B的组数为1+2+2+4=9.答案:D4.2006辽宁高考,理2设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.8分析:转化为求集合A子集的个数.很明显3∉A,又A∪B={1,2,3},必有3∈B,即集合B中至少有一个元素3,其他元素来自集合A中,则集合B的个数等于A={1,2}的子集个数,又集合A中含有22=4个元素,则集合A有22=4个子集,所以满足条件的集合B共有4个.答案:C2.设A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.活动:学生回顾集合的表示法和并集、交集的含义.利用数轴,将A、B分别表示出来,则阴影部分即为所求.用数轴表示描述法表示的数集.解:将A={x|-1<x<2}及B={x|1<x<3}在数轴上表示出来.如图1134所示的阴影部分即为所求.图1-1-3-4由图得A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3},A∩B={x|-1<x<2}∩{x|1<x<3}={x|1<x<2}.点评:本类题主要考查集合的并集和交集.用描述法表示的集合,运算时常利用数轴来计算结果.变式训练1.设A={x|2x-4<2},B={x|2x-4>0},求A∪B,A∩B.答案:A∪B=R,A∩B={x|2<x<3}.2.设A={x|2x-4=2},B={x|2x-4=0},求A∪B,A∩B.答案:A∪B={3,2},A∩B=∅.3.2007惠州高三第一次调研考试,文1设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.[0,2]B.[1,2]C.[0,4]D.[1,4]分析:在同一条数轴上表示出集合A、B,如图1135所示.由图得A∩B=[0,2].图1-1-3-5答案:A课本P11例6、例7.思路21.A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?活动:学生先思考集合中元素特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.解:因A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图1136所示,所以A∩B={x|0<x<5}, B∪C={x|x>0},A∩B∩C=∅.图1-1-3-6点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,借助于直观(数轴或Venn图)写出结果.变式训练1.设A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.解:对任意m∈A,则有m=2n=2·2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A⊆B.而10∈B但10∉A,即A B,那么A∩B=A,A∪B=B.2.求满足{1,2}∪B={1,2,3}的集合B的个数.解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.3.设A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.解:因A∩B={9},则9∈A,a-1=9或a2=9,a=10或a=±3,当a=10时,a-5=5,1-a=-9;当a=3时,a-1=2不合题意.当a=-3时,a-1=-4不合题意.故a=10,此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.4.2006北京高考,文1设集合A={x|2x+1<3},B={x|-3<x<2},则A∩B等于( )A.{x|-3<x<1}B.{x|1<x<2}C.{x|x>-3}D.{x|x<1}分析:集合A={x|2x+1<3}={x|x<1},观察或由数轴得A∩B={x|-3<x<1}.答案:A2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.活动:明确集合A 、B 中的元素,教师和学生共同探讨满足A∩B=B 的集合A 、B 的关系.集合A 是方程x 2+4x=0的解组成的集合,可以发现,B ⊆A,通过分类讨论集合B 是否为空集来求a 的值.利用集合的表示法来认识集合A 、B 均是方程的解集,通过画Venn 图发现集合A 、B 的关系,从数轴上分析求得a 的值.解:由题意得A={-4,0}.∵A∩B=B,∴B ⊆A.∴B=∅或B≠∅.当B=∅时,即关于x 的方程x 2+2(a+1)x+a 2-1=0无实数解, 则Δ=4(a+1)2-4(a 2-1)<0,解得a<-1.当B≠∅时,若集合B 仅含有一个元素,则Δ=4(a+1)2-4(a 2-1)=0,解得a=-1, 此时,B={x|x 2=0}={0}⊆A,即a=-1符合题意. 若集合B 含有两个元素,则这两个元素是-4,0, 即关于x 的方程x 2+2(a+1)x+a 2-1=0的解是-4,0.则有⎩⎨⎧=⨯+=+ 1.-a 04-1),-2(a 04-2解得a=1,则a=1符合题意. 综上所得,a=1或a≤-1. 变式训练1.已知非空集合A={x|2a+1≤x≤3a -5},B={x|3≤x≤22},则能使A ⊆(A∩B)成立的所有a 值的集合是什么?解:由题意知A ⊆(A∩B),即A ⊆B,A 非空,利用数轴得⎪⎩⎪⎨⎧≤-≥+-≤+.2253,312,5312a a a a 解得6≤a≤9,即所有a 值的集合是{a|6≤a≤9}.2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m -1},且A ∪B=A,试求实数m 的取值范围. 分析:由A ∪B=A 得B ⊆A,则有B=∅或B≠∅,因此对集合B 分类讨论. 解:∵A ∪B=A,∴B ⊆A.又∵A={x|-2≤x≤5}≠∅,∴B=∅,或B≠∅. 当B=∅时,有m+1>2m-1,∴m<2. 当B≠∅时,观察图1-1-3-7:图1-1-3-7由数轴可得⎪⎩⎪⎨⎧≤-+≤--≤+.512,12,121m m m m 解得-2≤m≤3.综上所述,实数m 的取值范围是m<2或-2≤m≤3,即m≤3.点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题. 知能训练课本P 11练习1、2、3.【补充练习】1.设a={3,5,6,8},B={4,5,7,8},(1)求A∩B,A∪B.(2)用适当的符号(⊇、⊆)填空:A∩B________A,B________A∩B,A∪B________A,A∪B________B,A∩B________A∪B. 解:(1)因A、B的公共元素为5、8,故两集合的公共部分为5、8,则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.又A、B两集合的元素3、4、5、6、7、8,故A∪B={3,4,5,6,7,8}.(2)由文氏图可知A∩B⊆A,B⊇A∩B,A∪B⊇A,A∪B⊇B,A∩B⊆A∪B.2.设A={x|x<5},B={x|x≥0},求A∩B.解:因x<5及x≥0的公共部分为0≤x<5,故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.3.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B.解:因三角形按角分类时,锐角三角形和钝角三角形彼此孤立.故A、B两集合没有公共部分. 所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}=∅.4.设A={x|x>-2},B={x|x≥3},求A∪B.解:在数轴上将A、B分别表示出来,得A∪B={x|x>-2}.5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.分析:M、N中元素是数.A、B中元素是平面内点集,关键是找其元素.解:∵M={1},N={1,2},则A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2), (2,1)}.7.2006江苏高考,7若A、B、C为三个集合,A∪B=B∩C,则一定有( )A.A⊆CB.C⊆AC.A≠CD.A=∅分析:思路一:∵(B∩C)⊆B,(B∩C)⊆C,A∪B=B∩C,∴A∪B⊆B,A∪B⊆C.∴A⊆B⊆C.∴A⊆C.思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B、D,令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,而此时A=C,排除C.答案:A拓展提升观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;(2)当A=∅时,A∩B,A∪B这两个运算结果与集合A,B的关系;(3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.由(1)(2)(3)你发现了什么结论?活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A,B的关系.用Venn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足A⊆B,用Venn图表示,如图1138所示,就可以发现A∩B,A∪B与集合A,B的关系.图1-1-3-8解:A∩B=A ⇔A ⊆B ⇔A ∪B=B.可用类似方法,可以得到集合的运算性质,归纳如下:A ∪B=B ∪A,A ⊆(A ∪B),B ⊆(A ∪B);A ∪A=A,A ∪∅=A,A ⊆B ⇔A ∪B=B; A∩B=B∩A;(A∩B)⊆A,(A∩B)⊆B;A∩A=A;A∩∅=∅;A ⊆B ⇔A∩B=A.课堂小结本节主要学习了: 1.集合的交集和并集.2.通常借助于数轴或Venn 图来求交集和并集. 作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.3.书面作业:课本P 12习题1.1A 组6、7、8.设计感想由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn 图写出集合运算的结果,这是突破本节教学难点的有效方法.第2课时导入新课问题:①分别在整数范围和实数范围内解方程(x-3)(x 3-)=0,其结果会相同吗?②若集合A={x|0<x<2,x ∈Z },B={x|0<x<2,x ∈R },则集合A 、B 相等吗?学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题. 推进新课 新知探究 提出问题①用列举法表示下列集合:A={x ∈Z |(x-2)(x+31)(x 2-)=0}; B={x ∈Q|(x-2)(x+31)(x 2-)=0};C={x ∈R|(x-2)(x+31)(x 2-)=0}.②问题①中三个集合相等吗?为什么? ③由此看,解方程时要注意什么?④问题①,集合Z,Q,R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.⑤已知全集U={1,2,3},A={1},写出全集中不属于集合A 的所有元素组成的集合B. ⑥请给出补集的定义. ⑦用Venn 图表示A.活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围. 讨论结果: ①A={2},B={2,31-},C={2,31-,2}. ②不相等,因为三个集合中的元素不相同.③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U. ⑤B={2,3}.⑥对于一个集合A,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.集合A 相对于全集U 的补集记为A,即A={x|x ∈U,且x A}.⑦如图1-1-3-9所示,阴影表示补集.图1-1-3-9应用示例思路11.设U={x|x 是小于9的正整数},A={1,2,3},B={3,4,5,6},求A,B.活动:让学生明确全集U 中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出A,B.解:根据题意,可知U={1,2,3,4,5,6,7,8},所以A={4,5,6,7,8};B={1,2,7,8}. 点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果. 常见结论:(A∩B)=(A)∪(B);(A ∪B)=(A)∩(B).变式训练1.2007吉林高三期末统考,文1已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∩(B)等于( )A.{1,6}B.{4,5}C.{2,3,4,5,7}D.{1,2,3,6,7} 分析:思路一:观察得(A)∩(B)={1,3,6}∩{1,2,6,7}={1,6}.思路二:A ∪B={2,3,4,5,7},则(A)∩(B)=(A ∪B)={1,6}.答案:A2.2007北京东城高三期末教学目标抽测一,文1设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩(B)等于( )A.{1,2,3,4,5}B.{1,4}C.{1,2,4}D.{3,5} 答案:B3.2005浙江高考,理1设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q ={3,4,5,6,7},则P∩(Q )等于( )A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5} 答案:A2.设全集U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形}.求A∩B,(A ∪B). 活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B 是由集合A,B 中公共元素组成的集合,(A ∪B)是全集中除去集合A ∪B中剩下的元素组成的集合. 解:根据三角形的分类可知 A∩B=∅,A ∪B={x|x 是锐角三角形或钝角三角形},(A ∪B)={x|x 是直角三角形}.变式训练1.已知集合A={x|3≤x<8},求 A. 解:A={x|x<3或x≥8}.2.设S={x|x 是至少有一组对边平行的四边形},A={x|x 是平行四边形},B={x|x 是菱形},C={x|x 是矩形},求B∩C,B, A.解:B∩C={x|正方形},B={x|x 是邻边不相等的平行四边形},A={x|x 是梯形}.3.已知全集I=R ,集合A={x|x 2+ax+12b=0},B={x|x 2-ax+b=0},满足(A)∩B={2},(B)∩A={4},求实数a 、b 的值. 答案:a=78,b=712-. 4.设全集U=R ,A={x|x≤2+3},B={3,4,5,6},则(A)∩B 等于…( )A.{4}B.{4,5,6}C.{2,3,4}D.{1,2,3,4} 分析:∵U=R ,A={x|x≤2+3},∴A={x|x>2+3}.而4,5,6都大于2+3,∴(A)∩B={4,5,6}.答案:B思路21.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:(1)A,B;(2)(A)∪(B),(A∩B),由此你发现了什么结论?(3)(A)∩(B),(A∪B),由此你发现了什么结论?活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.在数轴上表示集合A,B.解:如图1-1-3-10所示,图1-1-3-10(1)由图得A={x|x<-2或x>4},B={x|x<-3或x>3}.(2)由图得(A)∪(B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3};∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},∴(A∩B)={x|-2≤x≤3}={x|x<-2或x>3}.∴得出结论(A∩B)=(A)∪(B).(3)由图得(A)∩(B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4};∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴(A∪B)={x|-3≤x≤4}={x|x<-3或x>4}.∴得出结论(A∪B)=(A)∩(B).变式训练1.2006重庆高考,理1已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∪(B)等于( )A.{1,6}B.{4,5}C.{1,2,3,4,5,7}D.{1,2,3,6,7}答案:D2.2005江西高考,理1设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(B)等于( )A.{1}B.{1,2}C.{2}D.{0,1,2}答案:D2.设全集U={x|x≤20,x∈N,x是质数},A∩(B)={3,5},(A)∩B={7,19},(A)∩(B)={2,17},求集合A、B.活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A、B的关键是确定它们的元素,由于全集是U,则集合A、B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.解:U={2,3,5,7,11,13,17,19},由题意借助于Venn图,如图1-1-3-11所示,图1-1-3-11∴A={3,5,11,13},B={7,11,13,19}.点评:本题主要考查集合的运算、V enn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表现出来,这正体现了数形结合思想的优越性.变式训练1.2007临沂高三期末统考,文1图1-1-3-12设I为全集,M、N、P都是它的子集,则图1-1-3-12中阴影部分表示的集合是( )A.M∩[(N)∩P]B.M∩(N∪P)C.[(M)∩(N)]∩PD.M∩N∪(N∩P)分析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B、D.思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内即在(N)∩P内,所以阴影部分表示的集合是M∩[(N)∩P].答案:A2.设U={1,2,3,4,5,6,7,8,9},(A)∩B={3,7},(B)∩A={2,8},(A)∩(B)={1,5,6},则集合A=________,B=________.分析:借助Venn,如图1-1-3-13,把相关运算的结果表示出来,自然地就得出集合A、B了.图1-1-3-13答案:{2,4,8,9} {3,4,7,9}知能训练课本P11练习4.【补充练习】1.设全集U=R,A={x|2x+1>0},试用文字语言表述A的意义.解:A={x|2x+1>0}即不等式2x+1>0的解集,A中元素均不能使2x+1>0成立,即A中元素应当满足2x+1≤0.∴A即不等式2x+1≤0的解集.2.如图1-1-3-14所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是_______.图1-1-3-14分析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即(S)∩(M∩P).答案:(S)∩(M∩P)3.2007安徽淮南一模,理1设集合A、B都是U={1,2,3,4}的子集,已知(A)∩(B)={2},(A)∩B={1},则A等于( )A.{1,2}B.{2,3}C.{3,4}D.{1,4}分析:如图1-1-3-15所示.图1-1-3-15由于(A)∩(B)={2},(A)∩B={1},则有A={1,2}.∴A={3,4}.答案:C4.2006安徽高考,文1设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )A. B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}分析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}.答案:B5.2007河北石家庄一模,文1已知集合I={1,2,3,4},A={1},B={2,4},则A∪(B)等于( )A.{1}B.{1,3}C.{3}D.{1,2,3}分析:∵B={1,3},∴A∪(B)={1}∪{1,3}={1,3}.答案:B拓展提升问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:(1)至少解对其中一题者有多少人?(2)两题均未解对者有多少人?分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},A∪B∪C={至少解对一题的学生},(A∪B∪C)={两题均未解对的学生}.由已知,A∪C有34个人,C有20个人,从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),(A∪B∪C)有N2=50-42=8(人).∴至少解对其中一题者有42个人,两题均未解对者有8个人.课堂小结本节课学习了:①全集和补集的概念和求法.②常借助于数轴或Venn图进行集合的补集运算.作业课本P12习题1.1A组9、10,B组4.设计感想本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节也对此也予以体现,可以利用课余时间学习有关解不等式的知识.习题详解(课本P5练习)1.(1)中国∈A,美国∉A,印度∈A,英国∉A.(2)∵A={x|x2=x}={0,1},∴-1∉A.(3)∵B={x|x2+x-6=0}={-3,2},∴3∉A.(4)∵C={x∈N|1≤x≤10}={1,2,3,4,5,6,7,8,9,10},∴8∈C,9.1∉C.2.(1){x|x2=9}或{-3,3};(2){2,3,5,7};(3){(x,y)|⎩⎨⎧+=+=6-2x y 3x y }或{(1,4)};(4){x ∈R |4x-5<3}或{x|x<2}. (课本P 7练习)1.∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.2.(1)a ∈{a,b,c}.(2)∵x 2=0,∴x=0.∴{x|x 2=0}={0}. ∴0∈{0}.(3)∵x 2+1=0,∴x 2=-1.又∵x ∈R ,∴方程x 2=-1无解.∴{x ∈R |x 2+1=0}=∅.∴∅=∅. (4).(5)∵x 2=x,∴x=0或x=1. ∴{x|x 2=x}={0,1}.∴{0}{0,1}.(6)∵x 2-3x+2=0,∴x=1或x=2. ∴{x|x 2-3x+2=0}={1,2}. ∴{2,1}={1,2}.3.(1)由于1是任何正整数的公约数,任何正整数都是自身的公约数,所以8的公约数是1,2,4,8,即B={1,2,4,8}.∴AB.(2)显然B ⊆A,又∵3∈A,且3∉B,∴BA.(3)4与10的最小公倍数是20,4与10的公倍数应是20的倍数,显然A=B. (课本P 11练习)1.A∩B={5,8},A ∪B={3,5,6,7,8}.2.∵x 2-4x-5=0, ∴x=-1或x=5.∵A={x|x 2-4x-5=0}={-1,5}, 同理,B={-1,1}.∴A ∪B={-1,5}∪{-1,1}={-1,1,5}, A∩B={-1,5}∩{-1,1}={-1}.3.A∩B={x|x 是等腰直角三角形},A ∪B={x|x 是等腰三角形或直角三角形}. 4.∵B={2,4,6},A={1,3,6,7},∴A∩(B)={2,4,5}∩{2,4,6}={2,4},(A)∩(B)={1,3,6,7}∩{2,4,6}={6}. (课本P 11习题1.1)A 组1.(1)∈ (2)∈ (3)∉ (4)∈ (5)∈ (6)∈2.(1)∈ (2)∉ (3)∈3.(1){2,3,4,5};(2){-2,1};(3){0,1,2}.(3)∵-3<2x-1≤3,∴-2<2x≤4. ∴-1<x ≤2.又∵x ∈Z ,∴x=0,1,2.∴B={x ∈Z |-3<2x-1≤3}={0,1,2}. 4.(1){y|y≥-4}; (2){x|x≠0}; (3){x|x≥54}. 5.(1)∵A={x|2x-3<3x}={x|x>-3},B={x|x≥2}, ∴-4∉B,-3∉A,{2}B,B A. (2)∵A={x|x 2-1=0}={-1,1},∴1∈A,{-1}A,∅A,{1,-1}=A.(3);.6.∵B={x|3x-7≥8-2x}={x|x≥3},∴A ∪B={x|2≤x<4}∪{x|x≥3}={x|x≥2}, A∩B={x|2≤x<4}∩{x|x≥3}={x|3≤x<4}. 7.依题意,可知A={1,2,3,4,5,6,7,8},所以A∩B={1,2,3,4,5,6,7,8}∩{1,2,3}={1,2,3}=B, A∩C={1,2,3,4,5,6,7,8}∩{3,4,5,6}={3,4,5,6}=C. 又∵B ∪C={1,2,3}∪{3,4,5,6}={1,2,3,4,5,6}.∴A∩(B ∪C)={1,2,3,4,5,6,7,8}∩{1,2,3,4,5,6}={1,2,3,4,5,6}. 又∵B∩C={1,2,3}∩{3,4,5,6}={3},∴A ∪(B∩C)={1,2,3,4,5,6,7,8}∪{3}={1,2,3,4,5,6,7,8}=A.8.(1)A ∪B={x|x 是参加一百米跑的同学或参加二百米跑的同学}. (2)A∩C={x|x 是既参加一百米跑又参加四百米跑的同学}. 9.B∩C={x|x 是正方形},B={x|x 是邻边不相等的平行四边形},A={x|x 是梯形}.10.∵A ∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10}, ∴(A ∪B)={x|x≤2或x≥10}.又∵A∩B={x|3≤x<7}∩{x|2<x<10}={x|3≤x<7}, ∴(A∩B)={x|x<3或x≥7}.(A)∩B={x|x<3或x≥7}∩{x|2<x<10}={x|2<x<3或7≤x<10}, A ∪(B)={x|3≤x<7}∪{x|x≤2或x≥10}={x|x≤2或3≤x<7或x≥10}.B 组1.∵A={1,2},A ∪B={1,2}, ∴B ⊆A.∴B=∅,{1},{2},{1,2}.2.集合D={(x,y)|2x-y=1}∩{(x,y)|x+4y=5}表示直线2x-y=1与直线x+4y=5的交点坐标;由于D={(x,y)|⎩⎨⎧=+=54y x 1y -2x }={(1,1)},所以点(1,1)在直线y=x 上,即D C. 3.B={1,4},当a=3时,A={3},则A ∪B={1,3,4},A∩B=∅; 当a≠3时,A={3,a},若a=1,则A ∪B={1,3,4},A∩B={1}; 若a=4,则A ∪B={1,3,4},A∩B={4};若a≠1且a≠4,则A ∪B={1,a,3,4},A∩B=∅. 综上所得,当a=3时,A ∪B={1,3,4},A∩B=∅; 当a=1,则A ∪B={1,3,4},A∩B={1}; 当a=4,则A ∪B={1,3,4},A∩B={4};当a≠3且a≠1且a≠4时,A ∪B={1,a,3,4},A∩B=∅. 4.作出韦恩图,如图1-1-3-16所示,图1-1-3-16由U=A ∪B={x ∈N|0≤x≤10},A∩(B)={1,3,5,7},可知B={0,2,4,6,8,9,10}.。
1.1.3 集合间的基本运算教学目标:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用;4.认识由具体到抽象的思维过程,并树立相对的观点。
教学重点:交集与并集概念、补集的概念、数形结合的运用。
教学难点:理解交集与并集概念、符号之间的区别与联系,补集的有关运算教学方法:发现式教学法教学过程:(I)复习回顾⊆与A=B的意义;问题1: (1)分别说明A B(2)说出集合{1,2,3}的子集、真子集个数及表示;(II)讲授新课图1—5(1)给出了两个集合A、B;图(2)阴影部分是A与B公共部分;图(3)阴影部分是由A、B组成;图(4)集合A是集合B的真子集;图(5)集合B是集合A的真子集;指出:图(2)阴影部分叫集合A与B的交集;图(3)阴影部分叫集合A与B的并集.的公共部分,记作4.例题解析 (师生共同活动)∩∪B={x|-1<x<2}图1—3阴影部分即表示A 在U 中补集C U A 。
7.举例说明12,(III )课堂练习:(1)课本P 12练习1—5;(2)补充练习:1.已知M={1},N={1,2},设A={(x ,y )|x ∈M ,y ∈N},B={(x ,y )|x ∈N ,y ∈M},求A ∩B ,A ∪B 。
[A ∩B={(1,1)},A ∪B={(1,1),(1,2),(2,1)}]2.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( );A 3个B 4个C 6个 D5个3.设集合A={-1,1}, B={x|x 2-2ax+b=0}, 若B ∅≠, 且B A ⊆, 求a, b 的值。
(IV) 课时小结1.在并交问题求解过程中,充分利用数轴、文恩图。
2.能熟练求解一个给定集合的补集;3.注重一些特殊结论在以后解题中应用。
课题:§1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用
Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
一、引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
二、新课教学
1.并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B 读作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:
B的所有元素组成的集合(重
复元素只看成一个元素)。
例题(P9-10例4、例5)
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2.交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。
例题(P 9-10例6、例7)
拓展:求下列各图中集合A 与B 的并集与交集
当两个集合没有公共元素时,两个集合的交集是空集,集
3. 补集
全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集, 记作:C U A
即:C U A={x|x ∈U 且x ∈A}
补集的Venn 图表示
说明:补集的概念必须要有全集的限制
例题(P 12例8、例9)
4. 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的
关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。
5. 集合基本运算的一些结论:
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A
A ⊆A ∪
B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A
(C U A )∪A=U ,(C U A )∩A=∅
若A ∩B=A ,则A ⊆B ,反之也成立
若A ∪B=B ,则A ⊆B ,反之也成立
A
若x ∈(A ∩B ),则x ∈A 且x ∈B
若x ∈(A ∪B ),则x ∈A ,或x ∈B
6. 课堂练习
(1)设A={奇数}、B={偶数},则A ∩Z=A ,B ∩Z=B ,A ∩B=∅
(2)设A={奇数}、B={偶数},则A ∪Z=Z ,B ∪Z=Z ,A ∪B=Z
___;
__________C B A _____,__________C B A }25
x 0x |x {C }3x 1|x {B }2x 4|x {A )4(__________
B A }Z 21
m |m {B }Z 2n
|n {A )3(==≥≤=≤≤-=≤≤-==∈+=∈= 那么,或,,集合,则,集合
三、归纳小结(略)
四、作业布置
1、 书面作业:P 13习题1.1,第6-12题
2、 提高内容:
(1) 已知X={x|x 2+px+q=0,p 2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且 X B X ,A X =∅= ,试求p 、q ;
(2) 集合A={x|x 2+px-2=0},B={x|x 2-x+q=0},若A B={-2,0,1},求p 、q ;
(3) A={2,3,a 2+4a+2},B={0,7,a 2+4a-2,2-a},且A B ={3,7},求B。