用函数观点看一元二次方程教案
- 格式:doc
- 大小:113.50 KB
- 文档页数:3
《用函数观点看一元二次方程》教学设计单位:玉林市兴业县卖酒镇二中 姓名:龚亚华教学媒体 多 媒 体教 学 目 标知识 技能 1. 理解一次函数与二元一次方程(组)的对应关系。
2. 会用画图象的方法解二元一次方程组。
过程 方法 1、 通过对一次函数与二元一次方程(组)关系的探究及相关实际问题的解决,学会用函数的观点去认识问题的方法。
2、 体验数形结合思考意义,逐步学习利用数形结合思想分析问题和解决问题,提高解决实际问题的能力。
情感 态度通过对一次函数与二元一次方程(组)关系的探究,培养学生严谨的科学态度以及独立思考的习惯。
教学重点 探究一次函数与二元一次方程(组)的关系。
教学难点灵活运用函数知识解决相关实际问题。
教 学 过 程 设 计教学程序及教学内容师生行为设计意图 一、情境引入1、已知 2x-y=1,用含x 的代数式表示y ,则y=________2、方程2x-y=1的解有______个。
3、 x=1y=1 是方程2x-y=1的一个解吗?4、(1,1)是否是直线2x-y=1上的一个点?通过上述问题,你认为一次函数与二元一次方程有何关系?二、探究新知1、3x+5y=8对应的一次函数(以x 为自变量)是_________。
2、直线y=53x+58上任取一点(x ,y )则(x ,y )一定是方程 3x+5y=8的解吗?为什么? 3、在同一直角坐标系中画出直线y=2x-1与y=-53x+58的图象并思考: (1)它们有交点吗? (2)交点的坐标与方程组 2x-y=1 的 解有何关系? 3x+5y=8 4、当自变量x 取何值时,函数y=2x-1与 y=-53x+58的值相等?这时的函数值是多少?教师给出问题,学生很快作出回答。
学生交流讨论归纳概况,出版认识二元与一次方程的解。
函数有对应关系。
学生独立思考1、2、3,教师巡视,师生共同归纳:每一个二元一次方程对应着一个一次函数。
直线上每一点坐标都是二元一次方程组的解。
教学过程一、复习预习上节课我们学习了二次函数一般式中a,b,c和图像之间的关系、二次函数解析式的确定、二次函数求最值的方法,有细心的同学发现了一个问题:抛物线b2-4ac的符号与x轴交点的个数有某种联系?他说:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0。
这就是我们这节课要讲的内容:用函数的观点看一元二次方程。
二、知识讲解1. 二次函数与x轴交点情况:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数。
由于二次函数与x 的交点纵坐标为0,因此02=++c bx ax 的次方程有几个解就意味着二次函数与x 轴有几个交点。
一元二次方程的解的情况是由ac b 42-来决定的,因此二次函数c bx ax y ++=2与x 轴的交点个数也由ac b 42-来决定。
2.二次函数图象与一元二次方程)0(02≠=++a c bx ax 的关系: (1)如果二次函数)0(2≠++=a c bx ax y 的图象与x 轴有两个公共点,那么一元二次方程)0(02≠=++a c bx ax 有两个不相等的实数根; (2)如果二次函数)0(2≠++=a c bx ax y 的图象与x 轴有且只有一个公共点,那么一元二次方程)0(02≠=++a c bx ax 有两个相等的实数根;(3)如果二次函数)0(2≠++=a c bx ax y 的图象与x 轴没有公共点,那么一元二次方程)0(02≠=++a c bx ax 没有实数根; ① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2AB x =.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.3.抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 4.当二次函数c bx ax y ++=2中的y 取一个具体值时(y=m ),就变成了一个一元二次方程m c bx ax =++2。
初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思《二次函数与一元二次方程》教学设计【课题】九年级下册5.6《二次函数与一元二次方程》(第1课时)一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系。
因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。
2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
三、教学目标知识与技能:1.探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系2.能根据二次函数y=ax2+bx+c的系数,判断它的图象与x轴的位置关系3.应用二次函数和一元二次方程的关系解决相关问题过程与方法:经历探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系的过程,培养学生分析问题,解决问题的能力。
情感态度和价值观:使学生在数学应用增强自信心,在合作学习中增强集体责任感,加强学生数形结合思想的应用。
四、教学重难点重点:应用二次函数和一元二次方程的关系解决相关问题难点:理解二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0根的关系五、教法学法教法:类比探究法、归纳总结法、讲练结合法学法:合作探究法、小组讨论法六、教学内容与过程(一)、立体式复习检测(1)一次函数y=-3x+6的图象与x轴的交点(,)一元一次方程-3x+6=0的根为________(2)不解方程,判断方程x2-3x+3=0根的情况是________(3)解方程: x2-2x-3=0(4)(中考·白银)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是________【师生活动】:同桌提问判别式△与方程实数根的关系,然后请4位同学分别板书以上4个题目,其他同学在导学案完成以上题目。
26.2 用函数观点看一元二次方程(第一课时)
教学目标:
1.感受二次函数与一元二次方程的关系,会判断抛物线与x轴交点情况、掌握方程与函数间的转化。
2.探索二次函数与一元二次方程间的关系,函数图像与x轴的交点情况。
由特殊到一般,提高学生的分析、探索、归纳能力。
3. 在独立探索和集体讨论中体验数学和自身价值并在活动中获得获得情感体验,发展个性。
教学重点:探索二次函数与对应一元二次方程关系,理解抛物线与x 轴交点情况。
教学难点:函数、方程、x轴交点,三者之间关系的理解。
教学方法:采用“问题讨论教学法”、“多层次教学法”和“数形结合法”相结合的教学方法。
以学生自主探索、合作交流为主,以教师引导为辅。
教学过程
请学生观察图形,回答下列问题:
用函数观点看一元二次方程
教案
惠州市第五中学
李晖。
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
《用函数的观点看一元二次方程》的教案_模板《用函数的观点看一元二次方程》的教案一、教学目标:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点、难点:教学重点:1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
教学难点:1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导合作交流四:教具、学具:课件五、教学媒体:计算机、实物投影。
六、教学过程:[活动1] 检查预习引出课题预习作业:1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2] 创设情境探究新知问题1.课本P16 问题.2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?(结合预习题1,完成课本P16 观察中的题目。
)师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
22.2 用函数的观点看一元二次方程(2) 教学目标:1.复习巩固用函数y =ax 2+bx +c 的图象求方程ax 2+bx +c =0的解。
2.让学生体验函数y =x 2和y =bx +c 的交点的横坐标是方程x 2=bx +c 的解的探索过程,掌握用函数y =x 2和y =bx +c 图象交点的方法求方程ax 2=bx +c 的解。
重点难点: 重点;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点。
难点:提高学生综合解题能力,渗透数形结合的思想是教学的难点。
教学过程:一、复习巩固1.如何运用函数y =ax 2+bx +c 的图象求方程ax 2+bx +c=0的解?2.完成以下两道题:(1)画出函数y =x 2+x -1的图象,求方程x 2+x -1=0的解。
(精确到0.1)(2)画出函数y =2x 2-3x -2的图象,求方程2x 2-3x -2=0的解。
二、探索问题问题1:(问题4)育才中学初三(3)班学生在上节课的作业中出现了争论:求方程x 2=12x十3的解时,几乎所有学生都是将方程化为x 2-12x -3=0,画出函数y =x 2-12x -3的图象,观察它与x 轴的交点,得出方程的解。
唯独小刘没有将方程移项,而是分别画出了函数y =x 2和y =12x +2的图象,如图(3)所示,认为它们的交点A 、B 的横坐标-32和2就是原方程的解. 提问: 1. 这两种解法的结果一样吗? 2.小刘解法的理由是什么?3.函数y =x 2和y =bx +c 的图象一定相交于两点吗?你能否举出例子加以说明?4,函数y =x 2和y =bx +c 的图象的交点横坐标一定是一元二次方程x 2=bx +c 的解吗?5.如果函数y =x 2和y =bx +c 图象没有交点,一元二次方程x 2=bx +c 的解怎样?三、做一做利用图4,运用小刘方法求下列方程的解,并检验小刘的方法是否合理。
(1)x 2+x -1=0(精确到0.1); (2)2x 2-3x -2=0。
一元二次函数讲解教案一元二次函数讲解教案精选2篇(一)教案:一元二次函数的讲解目标:1. 学生能够理解一元二次函数的基本概念。
2. 学生能够识别一元二次函数的标准形式和一般形式,并进行相互转化。
3. 学生能够画出一元二次函数的图像,并能够提取关键信息。
4. 学生能够解一元二次方程,并能够应用一元二次函数解决实际问题。
教学过程:一、导入(5分钟)通过简单的问题引入一元二次函数的概念:- 请举一个实际生活中的例子,可以用一元二次函数来描述的。
- 你知道一元二次函数和一次函数的区别吗?二、概念讲解(10分钟)1. 定义一元二次函数:y = ax^2 + bx + c。
其中a、b、c为常数,并且a ≠ 0。
2. 一元二次函数的图像呈现抛物线的形状。
3. 标准形式和一般形式的区别:- 标准形式:y = a(x - h)^2 + k。
其中(h, k)为顶点坐标。
- 一般形式:y = ax^2 + bx + c。
4. 标准形式和一般形式的转化方法。
三、画图和提取信息(15分钟)1. 根据给定的一元二次函数,画出抛物线的图像。
2. 从图像中提取关键信息:开口方向、顶点坐标、对称轴、x轴与y轴的交点等。
四、方程求解(15分钟)1. 什么是一元二次方程?如何解一元二次方程?2. 通过图像求解一元二次方程的根。
3. 通过公式求解一元二次方程的根。
4. 实际问题的应用案例。
五、练习与巩固(15分钟)1. 练习解一元二次方程:给定一元二次函数的图像,求解相应的方程。
2. 练习画图和提取信息:给定一元二次函数的一般形式,画出抛物线的图像,并提取关键信息。
3. 练习应用问题:通过一元二次函数解决实际问题。
六、总结与反思(5分钟)请学生总结今天学习的重点内容,并提出自己的疑问或观点。
七、课堂延伸可以引导学生进一步探究一元二次函数的性质,如开口方向、对称性等。
可以让学生自主寻找相关的性质与规律,并进行讨论和总结。
也可以通过拓展问题拓宽学生的思维,如给定一元二次函数的一般形式,求解其与坐标轴的交点等。
用函数观点看一元二次方程撰稿:庄永春责编:张晓新一、目标认知学习目标1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.3.能够利用二次函数的图象求一元二次方程的近似根.重点1.体会方程与函数之间的联系.2.能够利用二次函数的图象求一元二次方程的近似根.难点1.探索方程与函数之间关系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.二、知识要点梳理知识点一、二次函数与一元二次方程的关系1.函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x轴的交点的个数由的值来确定.2.函数与直线的公共点情况方程的根的情况.函数与直线的公共点情况方程的根的情况.知识点二、利用二次函数图象求一元二次方程的近似解用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数2.由二次函数图象与的交点位置,确定交点的横坐标的取值范围;3.利用计算器计算方程的近似根.三、规律方法指导求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x轴交点的横坐标就是方程的根:(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根;(3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根。
作者姓名宋宁学校齐河县潘店镇中学学科数学年级/班级九年级教材版本人教版课时名称用函数观点看一元二次方程上课时间1课时学生人数45单元背景单元学习概述《用函数的观点看一元二次方程》选自义务教育课程标准试验教科书《数学》(人教版)九年级下册第二十六章,这节课是在学生学习了二次函数的概念、图象、性质及其相关应用的基础上,让学生继续探索二次函数与一元二次方程的关系。
课时设计说明教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。
这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。
这也突出了课标的要求:注重知识与实际问题的联系。
学习目标知识与技能:理解二次函数y=a x² +bx + c与x轴有交点,则一元二次方程ax² +bx + c = 0有实数根,若与x轴无交点,则方程无实数根;知道抛物线与x轴三种位置关系,对应着一元二次方程的根的三种情况;会利用二次函数的图象求一元二次方程的近似解过程与方法:通过对一元二次方程根的不同情况下,学生历经从函数解析式及函数图象角度探索与一元二次方程之间的关系,渗透了数形结合及转化的思想方法.情感、态度与价值观:由实际问题引入,激发学生应用数学的意识,通过师生交流、生生交流,学生养成了乐于探究、勇于探索的良好学习习惯,同时学生从中也感受了合作成功带来的喜悦.教学重难点及解决措施重点:如何让学生理解一元二次方程与二次函数之间的关系. 难点:让学生理解用图形法能求方程解的合理性及方法步骤. 解决措施:采用“主动探究、合作交流”的数学活动模式,真正为学生创设一个自主探究、合作交流的活动空间,让每个人获得有价值的数学.教学过程(环节一)情景导入球场上,一球员打出一杆球,如果球的飞行路线将是一条抛物线球的飞行高度为y(m) 与飞行时间为x(s)之间满足y= -5x²+20x问题:⑴球的飞行高度能否达到15m?如能,需要多少飞行时间?⑵球的飞行高度能否达到20m?如能,需要多少飞行时间?⑶球的飞行高度能否达到25m?为什么?活动方式:学生独立思考,列出一元二次方程并交流做出的判断.设计意图:通过实际问题的引入,列出一元二次方程,为探所二次函数与一元二次方程的的关系做铺垫,从而引出课题.(环节二)探究新知一 、从解析式探索函数与一元二次方程的关系1、从实际问题列出的三个方程出发,在解决完提出的三个问题之后,观察三个方程根的情况,并首先以第一个方程为例,剖析函数与方程的关系.y= -5x ²+20x函数值为15 根为x 1=1, x 2=3(对应自变量的值)-5x ²+20x = 152、对比上述分析,让学生结合方程根的情况,说出另外两个方程与函数之间的关系. 设计意图:通过对第一个方程与函数之间关系的探索,让学生明确方程的根为函数值为15时,对应的自变量的值(也可理解为当自变量的值为1或3是函数值为15),让学生体会它们之间的关系,并通过对另外两个方程的对比分析,让学生进一步巩固加深认识,有效渗透转化的数学思想.二、从图象探索函数与一元二次方程的关系通过对一个高度问题的探索,引出从图象角度探索函数与一元二次方程的关系,学生再次以由实际问题引出的第一个方程为例,从图象的角度说明:(1)纵坐标为15的点构成直线y=15与抛物线若有交点,则方程-5x ²+20x = 15有根,有几个交点就有几个根.(2)通过观察发现,方程的根即为交点的横坐标. (3)对比上述分析,让学生结合方程根的情况,从图象角度说出另外两个方程与函数之间的关系.1 3 o xy15设计意图:学生从图象角度出发,去探索函数值一定时,得出一元二次方程的根,即为两图象交点的横坐标,并发现交点的个数为方程根的个数,在这个环节,我并没有急于进行归纳总结,而是在接下来的环节,以例题的形式一组方程让学生巩固刚刚得出的这些结论.(环节三)应用总结一、例题讲解解方程:(1)x ²+x -2=0(2)x ²-6x +9=0(3)x ²-x +1=0 解:(1) x 1=1, x 2=-2 (2)x 1=x 2=3 (3)方程无实数根二、总结归纳函数与一元二次方程的关系1、若二次函数y=a x² + bx + c 与x 轴有交点,则一元二次方程ax² + bx + c = 0 有实数根,若与x 轴无交点,则方程无实数根.2、若二次函数y=a x² + bx + c 与x 轴有两个交点、一个交点、无交点,对应一元二次方程ax² + bx + c = 0有两个不相等的实数根、有两个不相等的实数根没有实数根.3、让学生再从方程的角度(根的情况)去判断函数图象与x 轴的交点情况. 活动方式:学生独立思考后并合作交流完成,然后师生评价共同总结.设计意图:学生通过例题解决,能较为熟练地掌握了用图象法法解一元二次方程,对二次函数与一元二次方程的关系有了更为深刻的认识,让学生体会了转化及数形结合的数学思想方法.三、能力提升将例题中的第一个方程进行变形,先让学生求其根,再让学生从图象角度 求出它的解. y= x ²+x -2 y= x ²-x +1 y= x ²-6x +9 o yxy= x ²+x1 -2 2o yxx ²+x -2=0 x ²+x =2x ²= -x +2从图象上可以看出,它们交点的横坐标都是-2和1. 活动方式:本环节要求学生小组合作,分工交流完成并,教师巡视并适时点拨.然后汇报展示.师生共同评价.设计意图:通过两种不同方程表现形式的对比,以及两种不同形式方程的相互转化,体现了转化的数学思想,发现方程变形后,根没有发生变化,并引导学生用图形的方法求方程的近似解,允许学生判断出其准确根,也在参与学生的小组活动时,说明近似根也是合理的,毕竟作图有误差,并通过画图比较后面的两种变形,在画图象求解时难易程度是有区别的,向学生渗透优化的意识.(环节四)反思总结y=ax² + bx + c若有根(根为与x 轴交点的横坐标)ax² + bx + c = 0活动方式:师生共同总结,反思提升.设计意图:通过解法流程图的演示,让学生再一次体会二次函数与一元二次方程之间的关系,让学生从函数的解析式及图象上掌握与方程的关系,期望学生通过本节课的学习,能对一元二次方程给予更深的认识,并能用图像法求的方程的根.(环节六)达标测试函数值为0 y= x ² y= -x +21-2 2 o yx1.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2011值为2.若二次函数y=-x2+3x+m的图象全部在x轴下方,则m的取值范围为3.已知抛物线y=x2-2x+m与x轴有两个交点,其中一个交点是(-2,0),则方程x2-2x+m=0的两个根分别是x1= ,x2= .(环节五)作业布置作业布置:必做:1、教科书第19页习题26.2第1题2、解方程:利用函数的图象求方程x2-2x-2 =0的实数根(精确到0.1).选做:习题26.2第4题设计意图:第一题通过作业的布置,及时反馈学生的学习效果,通过设置课后思考试题,不仅巩固本节课所学的知识,更拓展学生的思维空间.课后反思在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
《〈二次函数与一元二次方程〉第一课时》说课稿付家堰中小学刘家付各位领导、专家:大家好!我今天的说课内容是人教版九年级上册第22章第二节《二次函数与一元二次方程》的第一课时的教学内容,现就我对本节课的教学安排和教学思路向各位领导和专家汇报如下:一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系.这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系,因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。
2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
3、心理上,老师应抓住一元二次方程的求解方法很多,在学习了因式分解法、配方法、求根公式法等的基础上,激发学生对一元二次方程的其它解法的探求兴趣,进而由一次函数与一元一次方程的关系类比到二次函数的图象与一元二次方程的根的情况上来,顺着学生的思维逐步引导加以激发。
三、教学目标根据新课标的要求及九年级学生的认知水平特制定本节课的教学目标如下:知识与技能:掌握二次函数与一元二次方程的联系.过程与方法:经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
情感、态度与价值观:1、经历探索二次函数与一元二次方程的关系的过程,提高学生的分析能力与在探索过程中抽象概括能力.2、培养学生团结合作学习的良好意识和积极进取的精神。
3、培养学生用联系的观点看问题。
四、教学重难点重点:二次函数的图象和一元二次方程的联系.难点:培养学生的数形结合的意识和学会用数形结合的方法解决问题。
《用函数的观点看一元二次方程》教学设计一、内容及内容解析二次函数是描述现实世界变量之间数量变化规律的重要数学模型,这一章是初中阶段有关函数知识的重点内容之一,是对八年级的所学函数知识的深入与延伸。
学生学习了一次函数和反比例函数后,近一步学习二次函数,是函数知识螺旋发展的重要环节,也是今后继续学习其他初等函数的基础。
因此,这部分内容对学生学习函数知识有着承上启下的作用。
《用函数的观点看一元二次方程》是继学生学习了一次函数与一元一次方程、一元一次不等式(组)、二元一次方程组的联系以及二次函数初步知识后的一节内容,通过探讨二次函数与一元二次方程的关系,再次展示函数与方程的联系。
这样安排一方面可以深化学生对一元二次方程的认识,另一方面又可以运用一元二次方程解决二次函数是有关问题。
这节课是在学生学习了二次函数的概念、图象、性质及其相关应用的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。
这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。
这也突出了课标的要求:注重知识与实际问题的联系。
二、目标及目标分析知识技能:1.了解一元二次方程的根的几何意义(抛物线于x轴的公共点的横坐标)2.掌握抛物线与x轴的三种位置关系对应着一元二次方程的根的三种情况。
3.能够利用二次函数的图象求一元二次方程的近似根。
数学思考:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
解决问题:1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
26.2用函数观点看一元二次方程
(3)球的飞行高度能否达到20.5 m? 若能,需要多少时间?
(4)球从飞出到落地要用多少时间?
图26.2-1
24
20
10
5
15
O
图26.2-1-1
[活动2]
问题:下列二次函数的图象与x 轴有没有公共点?若有,求出公共点的横坐标;当x 取公共点的横坐标时,函数的值是多少?
参见教材图26.2-2.
在本次活动中,教师应关注:
(1)学生对问题从函数到方程的转换; (2)学生对根的理解;
(3)方程的解与函数中自变量的关系.
解方程:
略.
在本次活动中,教师应关注: (1)一元二次方程的解法; (2)函数图象的应用;
(3)方程与函数的联系.
教师展示问题,学生讨论合作完成: 分析:
(1) 如何作出函数的图象; (2) 利用图象确定函数的值; (3) 由函数图象,能得出相应的 一元二次方程的根吗?
图象法求解:
(1)函数图象与x 轴的公共点的横坐标是-2,1,此时的函数值是0;
(2)函数图象与x 轴的公共点的横坐标是3,此时的函数值为0;
(3)函数图象与x 轴没有公共点.
(注:此题的上述解法也可以脱离图象,理解为代数法求解.)
教师提出问题,学生在独立思考完成.
1
)3(9
6)2(2)1(222+-=+-=-+=x x y x x y x x y y
x。