遗传毒性杂质的控制
- 格式:pptx
- 大小:962.75 KB
- 文档页数:54
01、何为基因毒性杂质基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity,GTI)是指能直接或间接损害DNA,引起DNA突变、染色体断裂、DNA重组及DNA 复制过程中共价键结合或插入,导致基因突变或癌症的物质(如卤代烷烃、烷基磺酸酯类等)。
潜在基因毒性杂质(Potential Genotoxic Impurity ,PGI)结构中含有与基因毒性杂质反应活性相似的基团(如肼类、环氧化合物、N-亚硝胺类等),通常也作为基因毒性杂质来评估。
基因毒性杂质主要来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物。
此外,药物在合成、储存或者制剂过程中也可能会降解产生基因毒性杂质。
除此之外,有些药物通过激活正常细胞而产生基因毒性物质导致突变,如化疗药物顺铂等。
02、何为基因毒性杂质“警示结构”由于杂质结构的多样性,一般很难进行归类,因此,在缺乏安全性数据支持的情况下,法规和指导原则采用“警示结构”用来区分普通杂质和基因毒性杂质。
所谓“警示结构”,是指杂质中的特殊基团可能与遗传物质发生化学反应,诱导基因突变或者染色体断裂,因此具有潜在的致癌风险。
对于含有警示结构的杂质,应当进行(Q)SAR预测和体内外遗传毒性和致癌性研究,或者将杂质水平控制在毒理学关注阈值(TTC)之下。
但是含有警示结构并不能说明该杂质一定具有遗传毒性,而确认有遗传毒性的物质也不一定会产生致癌作用。
杂质自身性质和结构特点会对其毒性产生抑制或调节作用。
警示结构的重要性在于它提示了可能存在的遗传毒性和致癌性,为进一步的杂质安全性评价与控制指明方向。
(关于基因毒杂质警示结构的详细信息可参考欧盟发布的警示结构《Development ofstructure alerts for the in vivo micronucleus assay in rodents》)。
03、基因毒性杂质严格控制的必要性基因毒性杂质最主要的特点是在极低浓度时即可造成人体遗传物质的损伤,导致基因突变并促使肿瘤发生。
遗传毒性杂质在医药工业中的来源与控制路径摘要:制药企业生产出的药品如果存在遗传毒性杂质,使得药品带有可遗传的毒性,会对人类健康造成严重威胁。
近年来,药品中遗传毒性杂质问题已成为了药品监管机构重点关注的问题之一。
本文将简要概括遗传毒性杂质的属性和含义,详细分析遗传毒性杂质的具体来源,并在最后提出如何控制生产药品中遗传毒性杂质的具体途径。
关键词:遗传毒性杂质;医药工业;来源;控制路径在制药环节中,很多药品通过合成或者天然产物结构修饰制成。
相关制药企业为了在复杂的合成过程中尽可能提高生产效率,而使用大剂量的化学试剂。
这种化学试剂过量会使反应继续发生,进而发生副反应,产生副产物最后仍然储存在药品中售卖。
这样的药品中含有大量不明杂质,可能会影响人类的身体健康。
药品监管局了解到这一问题后,开始聚焦遗传毒性杂质在药品中的含量这一指标,这一问题也成了各位专家的研究重点。
一、遗传毒性杂质的属性和含义首先,我们要明确遗传毒性是指物理或化学的某些因素与生物体内的DNA等遗传物质相结合,进而发生作用并最终表现为毒性。
遗传物质进入人体后,会刺激和加快基因突变或者使人体细胞发生癌变,会对人体健康造成不利影响。
因此,遗传毒性杂质本身具有致突变性和致癌性两种基本属性,容易使得生物体发生基因突变或者发生致癌现象,这种突发性大多情况下是无法及时反应或者预测的。
二、遗传毒性杂质的来源遗传毒性杂质主要来源于药品生产过程中。
药品生产过程涉及到的原料或产物有很多,都从属于化学试剂。
例如反应物、催化剂、副产物等等。
根据研究,遗传毒性杂质的遗传毒性机制是嘧啶和嘌呤碱的N原子、O原子以及磷酸二甲酯骨架,在特殊情况下进入DNA找到碱基的亲核中心,破坏连接的键,进而使得整条DNA双链断裂。
遗传毒性杂质的常见来源包括试剂、副反应的生成物和有机溶剂三种方式。
(一)试剂含有遗传毒性杂质的试剂包括硼酸、芳香胺类、烷基卤化物、环氧乙烷、肼试剂、氮氧化物等。
环氧乙烷自身带有环,而DNA中心受到环的张力会与该物质发生亲核反应,进而产生大量遗传毒性杂质。
国内外遗传毒性杂质监管现状1 从宏观上解读杂质1.1 杂质与药物不良反应的关系很多同仁都认为杂质与药物的不良反应息息相关,认为杂质越小或越少、临床不良反应发生几率也就越小或越少,进而在进行杂质研究与控制时,力求面面俱到、尽善尽美。
殊不知,引起药物不良反应的原因是多方面的,并不仅仅是药物中的杂质。
人用药品注册技术要求国际协调会(ICH) 于2002年9 月12 日颁布了《疗效--M4E(R1) 人用药品注册的通用技术文档:模块2 的临床回顾和临床概述与模块5 :临床研究报告》。
其中阐述道:关于药物的不良反应,常见的有关因素包括剂量、单位剂量、总剂量、给药方案、疗程、人口统计学特征( 如年龄、性别、种族)、联合用药、其他基础特征( 如肾功能状态)、效能特性和药物浓度等。
可见,药物不良反应主要与主成分的不合理使用以及患者个人体质差异相关。
不同给药方式下杂质与药物不良反应间的关系解读如下。
1.1.1 口服给药口服给药是一种较为安全的给药方式。
但若用法用量不当、超出安全用药浓度上限时,将对人体带来伤害、产生不良反应 ( 如治疗窗狭窄药物常发生此情形)。
目前我国此类药物的主要问题是:部分仿制药质量与原研药存在较大差距,主要是在患者体内生物利用度的差异;生物利用度又与体外溶出行为密切相关。
原国家食品药品监督管理总局(SFDA) 自2008 年起开展“国家药品评价性抽验”工作至今,已发现国内已上市的部分口服固体制剂体外多条溶出曲线与原研制剂有显著性差异。
1.1.2 静脉滴注给药有同仁认为,静脉滴注给药方式已无生物利用度问题,此时不良反应与杂质密切相关,故应着重关注。
笔者认为这种认知是偏颇的。
此种给药方式药学管理与信息使得药物直接进入封闭的血液循环系统中,当外来物质( 包括葡萄糖注射液、氯化钠注射液、药物主成分、少量杂质、辅料和微量颗粒等)“一股脑儿地侵入”时,其中呈现出的不良反应强弱与患者的身体机能以及主成分的自身毒性及用法用量息息相关。
遗传毒性杂质控制指导原则遗传毒性杂质控制指导原则用于指导药物遗传毒性杂质的危害评估、分类、定性和限值制定,以控制药物中遗传毒性杂质潜在的致癌风险。
为药品标准制修订,上市药品安全性再评价提供参考。
一、总则遗传毒性(Genotoxcity)是指遗传物质中任何有害变化引起的毒性,而不考虑诱发该变化的机制,又称为基因毒性。
遗传毒性杂质(Genotoxic Impurities,GTIs)是指能引起遗传毒性的杂质,包括致突变性杂质和其它类型的无致突变性杂质。
其主要来源于原料药的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。
致突变性杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。
本指导原则主要关注致突变机制的遗传毒性杂质,非致突变机制的遗传毒性杂质在杂质水平的剂量下,一般可忽略其致癌风险。
药品生产、药品标准提高及上市药品再评价过程中发现杂质后,可按本指导原则进行风险评估,确定其是否为遗传毒性杂质,尤其是致突变性杂质。
如果一个杂质被鉴定为具有潜在的致癌风险,应制定相应的限值。
在制订可忽略致癌风险的杂质限值时,应进一步分析生产工艺,兼顾安全性和质量风险管理成本两方面的因素,综合考虑制定合适的限值。
本指导原则包括危害评估方法、可接受摄入量计算方法和限值制定方法。
本指导原则中描述的对杂质潜在致突变性的评估方法不适用于以下类型的原料药和制剂:生物/生物技术制品、肽类、寡核苷酸、放射性药物、发酵产品、中药和动物或植物来源的粗制品。
也不适用于已上市药物中使用的辅料、调味剂、着色剂和香料,以及与药物包材相关的可浸出物。
本指导原则中对杂质潜在致突变性的评估方法不适用于用于晚期癌症适应症的原料药和制剂,以及用于其它适应症但本身在治疗剂量下就具有遗传毒性,且预计可能与癌症风险增加有关的原料药。
在这些情况下,致突变性杂质不会显著增加原料药的致癌风险。
遗传毒性杂质控制指导原则遗传毒性杂质控制指导原则用于指导药物遗传毒性杂质的危害评估、分类、定性和限值制定,以控制药物中遗传毒性杂质潜在的致癌风险。
为药品标准制修订,上市药品安全性再评价提供参考。
一、总则遗传毒性(Genotoxcity)是指遗传物质中任何有害变化引起的毒性,而不考虑诱发该变化的机制,又称为基因毒性。
遗传毒性杂质(Genotoxic Impurities,GTIs)是指能引起遗传毒性的杂质,包括致突变性杂质和其它类型的无致突变性杂质。
其主要来源于原料药的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。
致突变性杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。
本指导原则主要关注致突变机制的遗传毒性杂质,非致突变机制的遗传毒性杂质在杂质水平的剂量下,一般可忽略其致癌风险。
药品生产、药品标准提高及上市药品再评价过程中发现杂质后,可按本指导原则进行风险评估,确定其是否为遗传毒性杂质,尤其是致突变性杂质。
如果一个杂质被鉴定为具有潜在的致癌风险,应制定相应的限值。
在制订可忽略致癌风险的杂质限值时,应进一步分析生产工艺,兼顾安全性和质量风险管理成本两方面的因素,综合考虑制定合适的限值。
本指导原则包括危害评估方法、可接受摄入量计算方法和限值制定方法。
本指导原则中描述的对杂质潜在致突变性的评估方法不适用于以下类型的原料药和制剂:生物/生物技术制品、肽类、寡核苷酸、放射性药物、发酵产品、中药和动物或植物来源的粗制品。
也不适用于已上市药物中使用的辅料、调味剂、着色剂和香料,以及与药物包材相关的可浸出物。
本指导原则中对杂质潜在致突变性的评估方法不适用于用于晚期癌症适应症的原料药和制剂,以及用于其它适应症但本身在治疗剂量下就具有遗传毒性,且预计可能与癌症风险增加有关的原料药。
在这些情况下,致突变性杂质不会显著增加原料药的致癌风险。
基因毒杂质控制策略案例基因毒杂质(Genotoxic Impurities)控制策略是药物开发和制造过程中的重要环节,旨在确保药物产品中基因毒性杂质的控制和限制。
以下是一个基因毒杂质控制策略的案例示例:
1. 风险评估:首先,对药物候选化合物进行综合的基因毒性风险评估。
评估包括利用体外基因毒性测试(如Ames 试验)和计算毒性预测模型,对化合物进行筛选和分类。
2. 导入限值:基于风险评估结果,制定适当的基因毒杂质导入限值。
此限值应与国际指南(如ICH M7指南)和适用的监管要求相一致。
3. 合成和纯化策略:在药物合成和纯化过程中,采取特定的操作条件和工艺控制,包括选择合成路线、溶剂使用、温度控制、反应时间和条件等,以最小化基因毒杂质的产生和残留。
4. 检测和分析:开发和验证适当的分析方法,用于检测和定量基因毒杂质的存在。
常见的分析技术包括高效液相色谱(HPLC)、质谱法(如LC-MS/MS)、核磁共振(NMR)
等。
5. 清洁验证:使用适当的清洁验证方法和程序,确保生产设备和工艺的清洁性,在不同批次之间避免交叉污染和残留。
6. 临床监控:在临床阶段,对药物进行基因毒杂质的监控和评估,以确保在实际使用中的毒性风险得到控制。
这只是一个基本的基因毒杂质控制策略案例,具体策略会因药物特性、制造过程和监管要求等因素而有所不同。
在实际应用中,需要根据具体情况制定并执行适合的控制策略,并与相关的监管机构保持合作与沟通。
2016-11-27字体大小:基因毒性杂质控制相关文件及指南介绍【基因毒性杂质控制相关文件及指南介绍】遗传毒性杂质控制指南PhRMA 意见书:测定、检验和控制药物中特定潜在遗传毒性杂质的基本原理 (2006)EMA:遗传毒性杂质限度指南EMA 安全工作组 (SWP):关于遗传毒性杂质限量指南的问答FDA 行业指南(草案):原料药和成品药中遗传毒性和致癌性杂质:推荐方法 (2008)。
ICH M7:诱变性杂质评估和控制遗传毒性试验指南ICH S2:人用药物的遗传毒性试验和数据解释EMA:草药物质/制剂遗传毒性评估指南 (2008)遗传毒性和致癌性物质的风险评估欧盟委员会健康与消费者保护局:遗传毒性和致癌性物质一般风险评估的方法学和途径 (2009)EMA :2006 年首先颁布了《基因毒性杂质限度指南》,并自 2007 年 1 月 1 日起正式实施。
该指南为限制新活性物质中的基因毒性杂质提供了解决问题的框架和具体做法。
弥补了 ICH Q3 不足。
引入了毒理学关注阈值 (TTC) 的概念及其取值。
提出了遗传毒性杂质可接受性评估的决策树。
FDA :2008 年 12 月正式签发:原料药和成品药中遗传毒性和致癌性杂质,推荐方法。
主要内容包括:• 原料药和制剂中的基因毒性杂质生成的预防办法• 基因毒性杂质的分析方法、处理方法和减少方法• 上市申请和临床研究申请的可接受限度• 草药原料药和制剂中基因毒性杂质评估指南FDA 和 EMA 指南的比较相似点不同点推荐的鉴定和认证潜在遗传性杂质的方法相同 推荐的处理遗传毒性和致癌性杂质的方法相同FDA 指南包含致癌性杂质TTC 设定为 1.5 μg/天指南允许的 14 天内用药的 TTC 水平为 120 μg , 而非仅针对单次用药临床试验中短期暴露的 TTC 更高FDA 指南不允许根据现售药品的短期暴露情况而 提高 TTC ICH M7【基因毒性杂质的控制策略】具有阳性致癌数据的诱变杂质(第1类)---计算可接受摄入量( AI ): • M7 Addendum 中列出的 15 种化合物中有 10 个为该计算方法计算 • Carcinogenicity Potency Database (CPDB )中列明了 1574 种致癌物质的 TD50 值毒理学关注门槛---TTC 法(第 2/3 类): • ICHM7 主要讨论的方法,主要针对第 2/3 类基因毒性杂质,比如低级磺酸酯类等。
发布日期20070820栏目化药药物评价>> 化药质量控制标题EMEA《遗传毒性杂质限度指导原则》介绍作者史继峰部门正文内容审评四部审评七室史继峰摘要:《遗传毒性杂质限度指导原则》对遗传毒性杂质进行了分类,并介绍了相关的遗传毒性杂质限度确定的原则和方法。
关键词:遗传毒性杂质毒理学担忧阈值( TTC)1.介绍在原料药( Q3A)和药物制剂( Q3B)的杂质指导原则中,杂质限度确定的依据包括各个杂质的生物安全性数据或杂质在某特定含量水平的研究概况。
而对于遗传毒性杂质限度的确定,通常都认为是特别关键的问题,但目前尚无相关的指导原则。
2.适用范围本指导原则阐述了如何处理新原料药中遗传毒性杂质的一般框架和实际方法。
该指导原则也适用于已有原料药的新申请,如果其合成路线、过程控制和杂质研究尚无法确保不会产生新的或更高含量的遗传毒性杂质(与 EU目前批准的相同原料药相比)。
该指导原则同样适用于已上市原料药有关合成方面的补充申请。
除非有特殊原因,本指导原则不适用于已上市的产品。
3.毒理学背景根据目前的研究实践,具有(体内)遗传毒性的化合物在任何暴露量下都有可能对 DNA产生损伤,而这种损伤可能会引发肿瘤。
因此,对于遗传毒性致癌物质,应谨慎认为不存在明确的阈值,任何暴露量下都存在风险。
然而,对于一些遗传毒性事件,其产生生物学意义的阈值效应的机理正越来越为人所了解。
对于非 DNA靶点的化合物和潜在致突变剂更是如此,因为它们在与关键靶点接触前就已经去毒化了。
对于这些化合物,研究的基础可以是确定关键的未观察到影响的剂量( NOEL)和采用不确定因子。
即使对能与 DNA分子发生反应的化合物,由于低剂量时有多种有效的保护机制存在,而不能将高剂量下的影响以线性方式外推到很低的(人)暴露水平。
不过,目前要用实验方法证明某诱变剂的遗传毒性阈值仍然非常困难。
所以,在缺乏恰当的证据支持遗传毒性阈值存在的情况下,确定安全剂量很困难,因此非常有必要采用一个可接受风险的暴露水平概念。
ich m7规则
ICH M7规则是关于评估和控制药物中DNA反应性(致突变)杂质以限制潜在的致癌风险的指南。
该指南旨在提供一个可用于遗传毒性杂质的鉴别、分类、限定和控制的可行性框架,以限制潜在的致癌风险。
根据ICH M7指南,遗传毒性杂质鉴别可采用两种方法:通过数据库和文献检索致癌性和遗传毒性数据(致突变性)(CPDB,IRIS,NTP,ECHA 等);使用(定量)结构活性关系(QSAR)进行计算。
采用QSAR方法预测细菌突变试验(AMES)的结果来进行毒性评估。
并采用两种QSAR预测方法:一个方法基于专家规则(expert rule-based),另一个方法基于统计学(statistical-based)。
根据文献数据库或者QSAR计算所得出的危害评估的结果,可将杂质分为5个类别。
此外,ICH M7还规定了遗传毒性杂质的限定和控制策略,包括使用计算毒理学关注阈值(TTC)方法计算遗传毒性杂质可接受摄入量、特异性限度、短于生命周期(LTL)和关注队列(CoC)等。
在实施ICH M7时,需要遵循一些指导原则,例如建立全面的IT服务管理体系,以确保高质量、高效率的服务水平,并帮助组织在信息技术服务领域进行持续改进。
以上信息仅供参考,如有需要,建议您咨询专业律师。